sponsored links
TEDSalon London 2010

Michael Pawlyn: Using nature's genius in architecture

November 10, 2010

How can architects build a new world of sustainable beauty? By learning from nature. At TEDSalon in London, Michael Pawlyn describes three habits of nature that could transform architecture and society: radical resource efficiency, closed loops, and drawing energy from the sun.

Michael Pawlyn - Architect
Michael Pawlyn takes cues from nature to make new, sustainable architectural environments. Full bio

sponsored links
Double-click the English subtitles below to play the video.
I'd like to start with a couple of quick examples.
00:15
These are spinneret glands
00:18
on the abdomen of a spider.
00:20
They produce six different types of silk, which is spun together into a fiber,
00:22
tougher than any fiber humans have ever made.
00:25
The nearest we've come is with aramid fiber.
00:28
And to make that, it involves extremes of temperature,
00:31
extremes of pressure and loads of pollution.
00:33
And yet the spider manages to do it at ambient temperature and pressure
00:36
with raw materials of dead flies and water.
00:39
It does suggest we've still got a bit to learn.
00:42
This beetle can detect a forest fire at 80 kilometers away.
00:44
That's roughly 10,000 times the range
00:47
of man-made fire detectors.
00:49
And what's more, this guy doesn't need a wire
00:51
connected all the way back to a power station burning fossil fuels.
00:53
So these two examples give a sense of what biomimicry can deliver.
00:57
If we could learn to make things and do things the way nature does,
01:00
we could achieve factor 10, factor 100,
01:03
maybe even factor 1,000 savings
01:05
in resource and energy use.
01:07
And if we're to make progress with the sustainability revolution,
01:10
I believe there are three really big changes
01:13
we need to bring about.
01:15
Firstly, radical increases in resource efficiency.
01:17
Secondly, shifting from a linear, wasteful,
01:20
polluting way of using resources
01:22
to a closed-loop model.
01:24
And thirdly, changing from a fossil fuel economy
01:26
to a solar economy.
01:28
And for all three of these, I believe,
01:30
biomimicry has a lot of the solutions that we're going to need.
01:32
You could look at nature as being like a catalog of products,
01:34
and all of those have benefited
01:37
from a 3.8-billion-year research and development period.
01:39
And given that level of investment, it makes sense to use it.
01:42
So I'm going to talk about some projects that have explored these ideas.
01:45
And let's start with radical increases
01:48
in resource efficiency.
01:50
When we were working on the Eden Project,
01:52
we had to create a very large greenhouse
01:54
in a site that was not only irregular,
01:56
but it was continually changing because it was still being quarried.
01:58
It was a hell of a challenge,
02:01
and it was actually examples from biology
02:03
that provided a lot of the clues.
02:05
So for instance,
02:07
it was soap bubbles that helped us generate a building form
02:09
that would work regardless of the final ground levels.
02:11
Studying pollen grains
02:14
and radiolaria and carbon molecules
02:16
helped us devise the most efficient structural solution
02:18
using hexagons and pentagons.
02:21
The next move was that we wanted
02:24
to try and maximize the size of those hexagons.
02:26
And to do that we had to find an alternative to glass,
02:28
which is really very limited in terms of its unit sizes.
02:30
And in nature there are lots of examples
02:33
of very efficient structures based on pressurized membranes.
02:36
So we started exploring this material called ETFE.
02:39
It's a high-strength polymer.
02:42
And what you do is you put it together in three layers,
02:44
you weld it around the edge, and then you inflate it.
02:46
And the great thing about this stuff
02:49
is you can make it in units
02:51
of roughly seven times the size of glass,
02:53
and it was only one percent of the weight of double-glazing.
02:55
So that was a factor-100 saving.
02:57
And what we found is that we got into a positive cycle
02:59
in which one breakthrough facilitated another.
03:02
So with such large, lightweight pillows,
03:04
we had much less steel.
03:07
With less steel we were getting more sunlight in,
03:09
which meant we didn't have to put as much extra heat in winter.
03:11
And with less overall weight in the superstructure,
03:14
there were big savings in the foundations.
03:16
And at the end of the project we worked out
03:18
that the weight of that superstructure
03:20
was actually less than the weight of the air inside the building.
03:22
So I think the Eden Project is a fairly good example
03:25
of how ideas from biology
03:28
can lead to radical increases in resource efficiency --
03:30
delivering the same function,
03:33
but with a fraction of the resource input.
03:35
And actually there are loads of examples in nature
03:37
that you could turn to for similar solutions.
03:39
So for instance, you could develop super-efficient roof structures
03:42
based on giant Amazon water lilies,
03:45
whole buildings inspired by abalone shells,
03:48
super-lightweight bridges inspired by plant cells.
03:50
There's a world of beauty and efficiency to explore here
03:53
using nature as a design tool.
03:56
So now I want to go onto talking about the linear-to-closed-loop idea.
03:59
The way we tend to use resources
04:02
is we extract them,
04:04
we turn them into short-life products and then dispose of them.
04:06
Nature works very differently.
04:08
In ecosystems, the waste from one organism
04:10
becomes the nutrient for something else in that system.
04:12
And there are some examples of projects
04:14
that have deliberately tried to mimic ecosystems.
04:16
And one of my favorites
04:19
is called the Cardboard to Caviar Project
04:21
by Graham Wiles.
04:23
And in their area they had a lot of shops and restaurants
04:25
that were producing lots of food, cardboard and plastic waste.
04:28
It was ending up in landfills.
04:31
Now the really clever bit is what they did with the cardboard waste.
04:33
And I'm just going to talk through this animation.
04:35
So they were paid to collect it from the restaurants.
04:38
They then shredded the cardboard
04:40
and sold it to equestrian centers as horse bedding.
04:42
When that was soiled, they were paid again to collect it.
04:45
They put it into worm recomposting systems,
04:47
which produced a lot of worms, which they fed to Siberian sturgeon,
04:49
which produced caviar, which they sold back to the restaurants.
04:52
So it transformed a linear process
04:55
into a closed-loop model,
04:57
and it created more value in the process.
04:59
Graham Wiles has continued to add more and more elements to this,
05:02
turning waste streams into schemes that create value.
05:04
And just as natural systems
05:07
tend to increase in diversity and resilience over time,
05:09
there's a real sense with this project
05:12
that the number of possibilities
05:14
just continue increasing.
05:17
And I know it's a quirky example,
05:19
but I think the implications of this are quite radical,
05:21
because it suggests that we could actually
05:23
transform a big problem -- waste -- into a massive opportunity.
05:25
And particularly in cities --
05:28
we could look at the whole metabolism of cities,
05:30
and look at those as opportunities.
05:32
And that's what we're doing on the next project I'm going to talk about,
05:34
the Mobius Project,
05:36
where we're trying to bring together a number of activities,
05:38
all within one building,
05:40
so that the waste from one can be the nutrient for another.
05:42
And the kind of elements I'm talking about
05:45
are, firstly, we have a restaurant inside a productive greenhouse,
05:47
a bit like this one in Amsterdam called De Kas.
05:50
Then we would have an anaerobic digester,
05:52
which could deal with all the biodegradable waste from the local area,
05:54
turn that into heat for the greenhouse
05:57
and electricity to feed back into the grid.
05:59
We'd have a water treatment system
06:01
treating wastewater, turning that into fresh water
06:03
and generating energy from the solids
06:05
using just plants and micro-organisms.
06:07
We'd have a fish farm fed with vegetable waste from the kitchen
06:10
and worms from the compost
06:12
and supplying fish back to the restaurant.
06:14
And we'd also have a coffee shop, and the waste grains from that
06:16
could be used as a substrate for growing mushrooms.
06:19
So you can see that we're bringing together
06:21
cycles of food, energy and water and waste
06:23
all within one building.
06:25
And just for fun, we've proposed this for a roundabout in central London,
06:27
which at the moment is a complete eyesore.
06:30
Some of you may recognize this.
06:32
And with just a little bit of planning,
06:34
we could transform a space dominated by traffic
06:36
into one that provides open space for people,
06:39
reconnects people with food
06:42
and transforms waste into closed loop opportunities.
06:44
So the final project I want to talk about
06:47
is the Sahara Forest Project, which we're working on at the moment.
06:49
It may come as a surprise to some of you
06:52
to hear that quite large areas of what are currently desert
06:54
were actually forested a fairly short time ago.
06:56
So for instance, when Julius Caesar arrived in North Africa,
06:59
huge areas of North Africa
07:02
were covered in cedar and cypress forests.
07:04
And during the evolution of life on the Earth,
07:07
it was the colonization
07:09
of the land by plants
07:11
that helped create the benign climate we currently enjoy.
07:13
The converse is also true.
07:15
The more vegetation we lose,
07:17
the more that's likely to exacerbate climate change
07:19
and lead to further desertification.
07:21
And this animation,
07:24
this shows photosynthetic activity over the course of a number of years,
07:26
and what you can see is that the boundaries of those deserts
07:29
shift quite a lot,
07:32
and that raises the question
07:34
of whether we can intervene at the boundary conditions
07:36
to halt, or maybe even reverse, desertification.
07:39
And if you look at some of the organisms
07:42
that have evolved to live in deserts,
07:44
there are some amazing examples of adaptations to water scarcity.
07:46
This is the Namibian fog-basking beetle,
07:49
and it's evolved a way of harvesting its own fresh water in a desert.
07:51
The way it does this is it comes out at night,
07:54
crawls to the top of a sand dune,
07:56
and because it's got a matte black shell,
07:58
is able to radiate heat out to the night sky
08:00
and become slightly cooler than its surroundings.
08:02
So when the moist breeze blows in off the sea,
08:04
you get these droplets of water forming on the beetle's shell.
08:06
Just before sunrise, he tips his shell up, the water runs down into his mouth,
08:09
has a good drink, goes off and hides for the rest of the day.
08:12
And the ingenuity, if you could call it that,
08:14
goes even further.
08:16
Because if you look closely at the beetle's shell,
08:18
there are lots of little bumps on that shell.
08:20
And those bumps are hydrophilic; they attract water.
08:22
Between them there's a waxy finish which repels water.
08:25
And the effect of this is that
08:28
as the droplets start to form on the bumps,
08:30
they stay in tight, spherical beads,
08:32
which means they're much more mobile
08:34
than they would be if it was just a film of water over the whole beetle's shell.
08:36
So even when there's only a small amount of moisture in the air,
08:39
it's able to harvest that very effectively and channel it down to its mouth.
08:42
So amazing example of an adaptation
08:45
to a very resource-constrained environment --
08:47
and in that sense, very relevant
08:49
to the kind of challenges we're going to be facing
08:51
over the next few years, next few decades.
08:53
We're working with the guy who invented the Seawater Greenhouse.
08:55
This is a greenhouse designed for arid coastal regions,
08:57
and the way it works is that you have this whole wall of evaporator grills,
09:00
and you trickle seawater over that
09:04
so that wind blows through, it picks up a lot of moisture
09:06
and is cooled in the process.
09:08
So inside it's cool and humid,
09:10
which means the plants need less water to grow.
09:12
And then at the back of the greenhouse,
09:14
it condenses a lot of that humidity as freshwater
09:16
in a process that is effectively identical to the beetle.
09:19
And what they found with the first Seawater Greenhouse that was built
09:22
was it was producing slightly more freshwater
09:25
than it needed for the plants inside.
09:27
So they just started spreading this on the land around,
09:30
and the combination of that and the elevated humidity
09:33
had quite a dramatic effect on the local area.
09:35
This photograph was taken on completion day,
09:38
and just one year later, it looked like that.
09:40
So it was like a green inkblot spreading out from the building
09:42
turning barren land back into biologically productive land --
09:45
and in that sense, going beyond sustainable design
09:48
to achieve restorative design.
09:50
So we were keen to scale this up
09:52
and apply biomimicry ideas to maximize the benefits.
09:54
And when you think about nature,
09:57
often you think about it as being all about competition.
09:59
But actually in mature ecosystems,
10:01
you're just as likely to find examples
10:03
of symbiotic relationships.
10:05
So an important biomimicry principle
10:07
is to find ways of bringing technologies together
10:09
in symbiotic clusters.
10:11
And the technology that we settled on
10:13
as an ideal partner for the Seawater Greenhouse
10:15
is concentrated solar power,
10:17
which uses solar-tracking mirrors to focus the sun's heat
10:19
to create electricity.
10:21
And just to give you some sense of the potential of CSP,
10:23
consider that we receive
10:26
10,000 times as much energy from the sun every year
10:28
as we use in energy from all forms --
10:31
10,000 times.
10:33
So our energy problems are not intractable.
10:35
It's a challenge to our ingenuity.
10:37
And the kind of synergies I'm talking about
10:39
are, firstly, both these technologies work very well in hot, sunny deserts.
10:41
CSP needs a supply of demineralized freshwater.
10:45
That's exactly what the Seawater Greenhouse produces.
10:48
CSP produces a lot of waste heat.
10:50
We'll be able to make use of all that to evaporate more seawater
10:52
and enhance the restorative benefits.
10:55
And finally, in the shade under the mirrors,
10:57
it's possible to grow all sorts of crops
10:59
that would not grow in direct sunlight.
11:01
So this is how this scheme would look.
11:03
The idea is we create this long hedge of greenhouses facing the wind.
11:05
We'd have concentrated solar power plants
11:08
at intervals along the way.
11:10
Some of you might be wondering what we would do with all the salts.
11:12
And with biomimicry, if you've got an underutilized resource,
11:15
you don't think, "How am I going to dispose of this?"
11:18
You think, "What can I add to the system to create more value?"
11:20
And it turns out
11:23
that different things crystallize out at different stages.
11:25
When you evaporate seawater, the first thing to crystallize out
11:27
is calcium carbonate.
11:29
And that builds up on the evaporators --
11:31
and that's what that image on the left is --
11:33
gradually getting encrusted with the calcium carbonate.
11:35
So after a while, we could take that out,
11:37
use it as a lightweight building block.
11:39
And if you think about the carbon in that,
11:41
that would have come out of the atmosphere, into the sea
11:43
and then locked away in a building product.
11:45
The next thing is sodium chloride.
11:47
You can also compress that into a building block,
11:49
as they did here.
11:51
This is a hotel in Bolivia.
11:53
And then after that, there are all sorts
11:55
of compounds and elements that we can extract,
11:57
like phosphates, that we need to get back into the desert soils to fertilize them.
11:59
And there's just about every element of the periodic table
12:02
in seawater.
12:04
So it should be possible to extract valuable elements
12:06
like lithium for high-performance batteries.
12:08
And in parts of the Arabian Gulf,
12:12
the seawater, the salinity is increasing steadily
12:15
due to the discharge of waste brine
12:18
from desalination plants.
12:20
And it's pushing the ecosystem close to collapse.
12:22
Now we would be able to make use of all that waste brine.
12:25
We could evaporate it
12:27
to enhance the restorative benefits
12:29
and capture the salts,
12:31
transforming an urgent waste problem into a big opportunity.
12:33
Really the Sahara Forest Project is a model
12:36
for how we could create zero-carbon food,
12:38
abundant renewable energy in some of the most water-stressed parts of the planet
12:41
as well as reversing desertification in certain areas.
12:44
So returning to those big challenges that I mentioned at the beginning:
12:48
radical increases in resource efficiency,
12:51
closing loops and a solar economy.
12:53
They're not just possible; they're critical.
12:55
And I firmly believe that studying the way nature solves problems
12:58
will provide a lot of the solutions.
13:01
But perhaps more than anything, what this thinking provides
13:04
is a really positive way of talking about sustainable design.
13:07
Far too much of the talk about the environment
13:09
uses very negative language.
13:11
But here it's about synergies and abundance and optimizing.
13:13
And this is an important point.
13:16
Antoine de Saint-Exupery once said,
13:18
"If you want to build a flotilla of ships,
13:20
you don't sit around talking about carpentry.
13:22
No, you need to set people's souls ablaze
13:24
with visions of exploring distant shores."
13:27
And that's what we need to do, so let's be positive,
13:29
and let's make progress with what could be
13:32
the most exciting period of innovation we've ever seen.
13:34
Thank you.
13:36
(Applause)
13:38

sponsored links

Michael Pawlyn - Architect
Michael Pawlyn takes cues from nature to make new, sustainable architectural environments.

Why you should listen

Michael Pawlyn established the architecture firm Exploration in 2007 to focus on environmentally sustainable projects that take their inspiration from nature.

Prior to setting up the company, Pawlyn worked with the firm Grimshaw for ten years and was central to the team that radically re-invented horticultural architecture for the Eden Project. He was responsible for leading the design of the Warm Temperate and Humid Tropics Biomes and the subsequent phases that included proposals for a third Biome for plants from dry tropical regions. In 1999 he was one of five winners in A Car-free London, an ideas competition for strategic solutions to the capital’s future transport needs and new possibilities for urban spaces. In September 2003 he joined an intensive course in nature-inspired design at Schumacher College, run by Amory Lovins and Janine Benyus. He has lectured widely on the subject of sustainable design in the UK and abroad.

His Sahara Forest Project, covered in this TEDTalk, recently won major funding >>

The original video is available on TED.com
sponsored links

If you need translations, you can install "Google Translate" extension into your Chrome Browser.
Furthermore, you can change playback rate by installing "Video Speed Controller" extension.

Data provided by TED.

This website is owned and operated by Tokyo English Network.
The developer's blog is here.