08:44
TED2013

Jessica Green: We're covered in germs. Let's design for that.

Filmed:

Our bodies and homes are covered in microbes -- some good for us, some bad for us. As we learn more about the germs and microbes who share our living spaces, TED Fellow Jessica Green asks: Can we design buildings that encourage happy, healthy microbial environments?

- Engineer and biodiversity scientist
Jessica Green wants people to understand the important role microbes play in every facet of our lives: climate change, building ecosystems, human health, even roller derby -- using nontraditional tools like art, animation and film to help people visualize the invisible world. Full bio

Everything is covered in invisible ecosystems
00:13
made of tiny lifeforms: bacteria, viruses and fungi.
00:17
Our desks, our computers, our pencils, our buildings
00:21
all harbor resident microbial landscapes.
00:25
As we design these things, we could be thinking
00:29
about designing these invisible worlds,
00:31
and also thinking about how they interact
00:34
with our personal ecosystems.
00:36
Our bodies are home to trillions of microbes,
00:39
and these creatures define who we are.
00:43
The microbes in your gut can influence your weight and your moods.
00:45
The microbes on your skin can help boost your immune system.
00:49
The microbes in your mouth can freshen your breath,
00:53
or not,
00:56
and the key thing is that our personal ecosystems
00:57
interact with ecosystems on everything we touch.
01:00
So, for example, when you touch a pencil,
01:03
microbial exchange happens.
01:05
If we can design the invisible ecosystems in our surroundings,
01:08
this opens a path to influencing
01:12
our health in unprecedented ways.
01:15
I get asked all of the time from people,
01:18
"Is it possible to really design microbial ecosystems?"
01:21
And I believe the answer is yes.
01:25
I think we're doing it right now,
01:28
but we're doing it unconsciously.
01:29
I'm going to share data with you
01:33
from one aspect of my research focused on architecture
01:35
that demonstrates how, through both conscious
01:38
and unconscious design,
01:41
we're impacting these invisible worlds.
01:44
This is the Lillis Business Complex at the University of Oregon,
01:47
and I worked with a team of architects and biologists
01:51
to sample over 300 rooms in this building.
01:53
We wanted to get something like a fossil record of the building,
01:58
and to do this, we sampled dust.
02:02
From the dust, we pulled out bacterial cells,
02:05
broke them open, and compared their gene sequences.
02:09
This means that people in my group
02:12
were doing a lot of vacuuming during this project.
02:14
This is a picture of Tim, who,
02:17
right when I snapped this picture, reminded me,
02:20
he said, "Jessica, the last lab group I worked in
02:22
I was doing fieldwork in the Costa Rican rainforest,
02:25
and things have changed dramatically for me."
02:28
So I'm going to show you now first what we found in the offices,
02:32
and we're going to look at the data through a visualization tool
02:35
that I've been working on in partnership with Autodesk.
02:38
The way that you look at this data is,
02:42
first, look around the outside of the circle.
02:44
You'll see broad bacterial groups,
02:48
and if you look at the shape of this pink lobe,
02:51
it tells you something about the relative abundance of each group.
02:54
So at 12 o'clock, you'll see that offices have a lot of
02:57
alphaproteobacteria, and at one o'clock
02:59
you'll see that bacilli are relatively rare.
03:02
Let's take a look at what's going on in different space types in this building.
03:06
If you look inside the restrooms,
03:11
they all have really similar ecosystems,
03:13
and if you were to look inside the classrooms,
03:16
those also have similar ecosystems.
03:18
But if you look across these space types,
03:21
you can see that they're fundamentally different
03:23
from one another.
03:26
I like to think of bathrooms like a tropical rainforest.
03:28
I told Tim, "If you could just see the microbes,
03:31
it's kind of like being in Costa Rica. Kind of."
03:33
And I also like to think of offices as being a temperate grassland.
03:37
This perspective is a really powerful one for designers,
03:42
because you can bring on principles of ecology,
03:46
and a really important principle of ecology is dispersal,
03:50
the way organisms move around.
03:52
We know that microbes are dispersed around by people
03:55
and by air.
03:59
So the very first thing we wanted to do in this building
04:00
was look at the air system.
04:03
Mechanical engineers design air handling units
04:05
to make sure that people are comfortable,
04:08
that the air flow and temperature is just right.
04:11
They do this using principles of physics and chemistry,
04:13
but they could also be using biology.
04:17
If you look at the microbes
04:21
in one of the air handling units in this building,
04:23
you'll see that they're all very similar to one another.
04:26
And if you compare this to the microbes
04:30
in a different air handling unit,
04:34
you'll see that they're fundamentally different.
04:36
The rooms in this building are like islands in an archipelago,
04:39
and what that means is that mechanical engineers
04:42
are like eco-engineers, and they have the ability
04:45
to structure biomes in this building the way that they want to.
04:48
Another facet of how microbes get around is by people,
04:53
and designers often cluster rooms together
04:57
to facilitate interactions among people,
05:00
or the sharing of ideas, like in labs and in offices.
05:03
Given that microbes travel around with people,
05:06
you might expect to see rooms that are close together
05:09
have really similar biomes.
05:11
And that is exactly what we found.
05:14
If you look at classrooms right adjacent to one another,
05:16
they have very similar ecosystems,
05:19
but if you go to an office
05:21
that is a farther walking distance away,
05:25
the ecosystem is fundamentally different.
05:28
And when I see the power that dispersal has
05:30
on these biogeographic patterns,
05:35
it makes me think that it's possible
05:37
to tackle really challenging problems,
05:40
like hospital-acquired infections.
05:44
I believe this has got to be, in part,
05:46
a building ecology problem.
05:49
All right, I'm going to tell you one more story about this building.
05:52
I am collaborating with Charlie Brown.
05:56
He's an architect,
05:59
and Charlie is deeply concerned about global climate change.
06:01
He's dedicated his life to sustainable design.
06:06
When he met me and realized that it was possible for him
06:09
to study in a quantitative way
06:12
how his design choices impacted
06:15
the ecology and biology of this building,
06:17
he got really excited, because it added a new dimension to what he did.
06:20
He went from thinking just about energy
06:25
to also starting to think about human health.
06:26
He helped design some of the air handling systems
06:30
in this building and the way it was ventilated.
06:34
So what I'm first going to show you is
06:36
air that we sampled outside of the building.
06:39
What you're looking at is a signature of bacterial communities
06:42
in the outdoor air, and how they vary over time.
06:46
Next I'm going to show you what happened
06:50
when we experimentally manipulated classrooms.
06:53
We blocked them off at night
06:57
so that they got no ventilation.
06:59
A lot of buildings are operated this way,
07:01
probably where you work,
07:03
and companies do this to save money on their energy bill.
07:05
What we found is that these rooms remained relatively stagnant
07:08
until Saturday, when we opened the vents up again.
07:12
When you walked into those rooms,
07:15
they smelled really bad,
07:16
and our data suggests that it had something to do with
07:18
leaving behind the airborne bacterial soup
07:21
from people the day before.
07:25
Contrast this to rooms
07:27
that were designed using a sustainable passive design strategy
07:29
where air came in from the outside through louvers.
07:34
In these rooms, the air tracked the outdoor air relatively well,
07:37
and when Charlie saw this, he got really excited.
07:42
He felt like he had made a good choice
07:44
with the design process
07:47
because it was both energy efficient
07:48
and it washed away the building's resident microbial landscape.
07:51
The examples that I just gave you are about architecture,
07:56
but they're relevant to the design of anything.
07:59
Imagine designing with the kinds of microbes that we want
08:01
in a plane
08:06
or on a phone.
08:07
There's a new microbe, I just discovered it.
08:10
It's called BLIS, and it's been shown
08:12
to both ward off pathogens
08:15
and give you good breath.
08:18
Wouldn't it be awesome if we all had BLIS on our phones?
08:20
A conscious approach to design,
08:26
I'm calling it bioinformed design,
08:28
and I think it's possible.
08:31
Thank you.
08:32
(Applause)
08:34
Translated by Joseph Geni
Reviewed by Morton Bast

▲Back to top

About the Speaker:

Jessica Green - Engineer and biodiversity scientist
Jessica Green wants people to understand the important role microbes play in every facet of our lives: climate change, building ecosystems, human health, even roller derby -- using nontraditional tools like art, animation and film to help people visualize the invisible world.

Why you should listen

Jessica Green, a TED2010 Fellow and TED2011 Senior Fellow, is an engineer and ecologist who specializes in biodiversity theory and microbial systems. As a professor at both the University of Oregon and the Santa Fe Institute, she is the founding director of the innovative Biology and the Built Environment (BioBE) Center that bridges biology and architecture.

Green envisions a future with genomic-driven approaches to architectural design that promote sustainability, human health and well-being. She is spearheading efforts to model buildings as complex ecosystems that house trillions of diverse microorganisms interacting with each other, with humans, and with their environment. This framework uses next-generation sequencing technology to characterize the “built environment microbiome” and will offer site-specific design solutions to minimize the spread of infectious disease and maximize building energy efficiency.

More profile about the speaker
Jessica Green | Speaker | TED.com