sponsored links
TED2010

Richard Sears: Planning for the end of oil

April 10, 2010

As the world's attention focuses on the perils of oil exploration, we present Richard Sears' talk from early February 2010. Sears, an expert in developing new energy resources, talks about our inevitable and necessary move away from oil. Toward ... what?

Richard Sears - Geophysicist
Richard Sears thinks hard about the post-oil world. He's a visiting scientist at MIT, after a long career as a VP at Shell. Full bio

sponsored links
Double-click the English subtitles below to play the video.
For the next few minutes we're going to talk about energy,
00:16
and it's going to be a bit of a varied talk.
00:18
I'll try to spin a story about energy,
00:21
and oil's a convenient starting place.
00:23
The talk will be broadly about energy,
00:25
but oil's a good place to start.
00:27
And one of the reasons is this is remarkable stuff.
00:29
You take about eight or so carbon atoms,
00:32
about 20 hydrogen atoms,
00:34
you put them together in exactly the right way
00:36
and you get this marvelous liquid:
00:38
very energy-dense and very easy to refine
00:40
into a number of very useful products and fuels.
00:42
It's great stuff.
00:45
Now, as far as it goes,
00:47
there's a lot of oil out there in the world.
00:49
Here's my little pocket map
00:51
of where it's all located.
00:53
A bigger one for you to look at.
00:55
But this is it, this is the oil in the world.
00:57
Geologists have a pretty good idea of where the oil is.
00:59
This is about 100 trillion gallons
01:01
of crude oil
01:04
still to be developed and produced in the world today.
01:06
Now, that's just one story about oil,
01:09
and we could end it there and say,
01:11
"Well, oil's going to last forever
01:13
because, well, there's just a lot of it."
01:15
But there's actually more to the story than that.
01:17
Oh, by the way, if you think you're very far from some of this oil,
01:19
1000 meters below where you're all sitting
01:22
is one of the largest producing oil fields in the world.
01:25
Come talk to me about it, I'll fill in some of the details if you want.
01:28
So, that's one of the stories of oil; there's just a lot of it.
01:31
But what about oil? Where is it in the energy system?
01:34
Here's a little snapshot of 150 years of oil,
01:39
and it's been a dominant part of our energy system
01:42
for most of those 150 years.
01:44
Now, here's another little secret I'm going to tell you about:
01:47
For the last 25 years,
01:51
oil has been playing less and less of a role
01:53
in global energy systems.
01:56
There was one kind of peak oil in 1985,
01:58
when oil represented 50 percent of global energy supply.
02:01
Now, it's about 35 percent.
02:03
It's been declining
02:05
and I believe it will continue to decline.
02:07
Gasoline consumption in the U.S. probably peaked in 2007
02:09
and is declining.
02:11
So oil is playing a less significant role
02:13
every year.
02:16
And so, 25 years ago,
02:18
there was a peak oil;
02:20
just like, in the 1920s,
02:22
there was a peak coal;
02:24
and a hundred years before that,
02:26
there was a peak wood.
02:28
This is a very important picture of the evolution of energy systems.
02:30
And what's been taking up the slack in the last few decades?
02:33
Well, a lot of natural gas
02:36
and a little bit of nuclear, for starters.
02:38
And what goes on in the future?
02:41
Well, I think out ahead of us a few decades
02:43
is peak gas,
02:45
and beyond that,
02:48
peak renewables.
02:50
Now, I'll tell you another little, very important
02:52
story about this picture.
02:54
Now, I'm not pretending that energy use in total
02:56
isn't increasing, it is --
02:58
that's another part of the story. Come talk to me about it,
03:00
we'll fill in some of the details --
03:02
but there's a very important message here:
03:04
This is 200 years of history,
03:06
and for 200 years we've been systematically decarbonizing
03:08
our energy system.
03:11
Energy systems of the world
03:13
becoming progressively -- year on year,
03:15
decade on decade, century on century --
03:17
becoming less carbon intense.
03:19
And that continues into the future
03:22
with the renewables that we're developing today,
03:24
reaching maybe 30 percent of primary energy
03:26
by mid century.
03:28
Now that might be the end of the story --
03:30
Okay, we just replace it all with conventional renewables --
03:32
but I think, actually, there's more to the story than that.
03:34
And to tell the next part of the story --
03:36
and this is looking out say 2100 and beyond.
03:38
What is the future
03:41
of truly sustainable, carbon-free energy?
03:43
Well, we have to take a little excursion,
03:45
and we'll start in central Texas.
03:47
Here's a piece of limestone.
03:49
I picked it up outside of Marble Falls, Texas.
03:51
It's about 400 million years old.
03:53
And it's just limestone, nothing really special about it.
03:55
Now, here's a piece of chalk.
03:58
I picked this up at MIT. It's a little younger.
04:00
And it's different than this limestone, you can see that.
04:03
You wouldn't build a building out of this stuff,
04:05
and you wouldn't try to give a lecture and write on the chalkboard with this.
04:07
Yeah, it's very different -- no, it's not different.
04:10
It's not different, it's the same stuff:
04:12
calcium carbonate, calcium carbonate.
04:14
What's different is how the molecules are put together.
04:17
Now, if you think that's kind of neat,
04:20
the story gets really neat right now.
04:23
Off the coast of California comes this:
04:26
It's an abalone shell.
04:29
Now, millions of abalone every year
04:31
make this shell.
04:33
Oh, by the way, just in case you weren't already guessing,
04:35
it's calcium carbonate.
04:37
It's the same stuff as this
04:39
and the same stuff as this.
04:41
But it's not the same stuff; it's different.
04:43
It's thousands of times,
04:45
maybe 3,000 times tougher than this.
04:47
And why? Because the lowly abalone
04:50
is able to lay down
04:53
the calcium carbonate crystals in layers,
04:55
making this beautiful, iridescent
04:57
mother of pearl.
04:59
Very specialized material
05:01
that the abalone self-assembles,
05:03
millions of abalone,
05:05
all the time, every day, every year.
05:07
This is pretty incredible stuff.
05:09
All the same, what's different?
05:11
How the molecules are put together.
05:13
Now, what does this have to do with energy?
05:15
Here's a piece of coal.
05:18
And I'll suggest that this coal
05:20
is about as exciting
05:22
as this chalk.
05:24
Now, whether we're talking about fuels
05:27
or energy carriers,
05:29
or perhaps novel materials for batteries
05:31
or fuel cells,
05:33
nature hasn't ever built those perfect materials yet
05:35
because nature didn't need to.
05:38
Nature didn't need to because, unlike the abalone shell,
05:40
the survival of a species didn't depend
05:43
on building those materials,
05:46
until maybe now when it might just matter.
05:48
So, when we think about the future of energy,
05:52
imagine
05:55
what would it be like
05:57
if instead of this,
05:59
we could build the energy equivalent of this
06:01
just by rearranging the molecules differently.
06:05
And so that is my story.
06:09
The oil will never run out.
06:11
It's not because we have a lot of it.
06:13
It's not because we're going to build a bajillion windmills.
06:15
It's because, well,
06:18
thousands of years ago,
06:21
people invented ideas --
06:23
they had ideas, innovations, technology --
06:25
and the Stone Age ended,
06:27
not because we ran out of stones.
06:30
(Laughter)
06:32
It's ideas, it's innovation, it's technology
06:34
that will end the age of oil, long before we run out of oil.
06:37
Thank you very much.
06:40
(Applause)
06:42

sponsored links

Richard Sears - Geophysicist
Richard Sears thinks hard about the post-oil world. He's a visiting scientist at MIT, after a long career as a VP at Shell.

Why you should listen

Richard Sears is a visiting scientist at MIT, after a long career as a geophysicist and executive at Shell. His brief in both places: Think about the world post-oil. It's a corporate-academic crossover that aims to enrich the academic conversation with real-world experience from people like Sears, who is an expert in looking for new energy resources -- both hydrocarbon and the world of options for what's next.

At MIT, Sears is affiliated with the MIT Energy Initiative and the Laboratory for Information and Decision Systems (LIDS). He's also an official "gamechanger" at LeadingEnergyNow.

The original video is available on TED.com
sponsored links

If you need translations, you can install "Google Translate" extension into your Chrome Browser.
Furthermore, you can change playback rate by installing "Video Speed Controller" extension.

Data provided by TED.

This website is owned and operated by Tokyo English Network.
The developer's blog is here.