sponsored links
TEDSalon London 2010

Michael Pawlyn: Using nature's genius in architecture

マイケル・パウリィン:自然の素質を建築に生かす

November 10, 2010

建築家は、いかにして持続可能な美の新世界を構築出来るのでしょう?自然から学ぶことによってです。ロンドンのTEDサロンで、マイケル・パウリィンが建築と社会を変えることができる自然の3つの習慣について説明します:抜本的な資源の効率化、閉ループそして太陽エネルギーの活用。

Michael Pawlyn - Architect
Michael Pawlyn takes cues from nature to make new, sustainable architectural environments. Full bio

sponsored links
Double-click the English subtitles below to play the video.
I'd like to start with a couple of quick examples.
まず短い例から紹介します
00:15
These are spinneret glands
これは蜘蛛の腹部にある
00:18
on the abdomen of a spider.
出糸突起腺です
00:20
They produce six different types of silk, which is spun together into a fiber,
ここから繊維状に紡がれた 6種類のシルクを作り出します
00:22
tougher than any fiber humans have ever made.
人が作ったどんな繊維よりも丈夫です
00:25
The nearest we've come is with aramid fiber.
一番近いものがアラミド繊維です
00:28
And to make that, it involves extremes of temperature,
アラミド繊維を作るには極度の高温や
00:31
extremes of pressure and loads of pollution.
圧力が必要で汚染の負荷もあります
00:33
And yet the spider manages to do it at ambient temperature and pressure
蜘蛛はこれを普通の温度と圧力で
00:36
with raw materials of dead flies and water.
原料と言えば死んだハエや水でこれを作ります
00:39
It does suggest we've still got a bit to learn.
ここから学ぶことがあるはずです
00:42
This beetle can detect a forest fire at 80 kilometers away.
この昆虫は80キロ離れたところから森林火事を感知します
00:44
That's roughly 10,000 times the range
これは人口火災探知機の
00:47
of man-made fire detectors.
1万倍の範囲です
00:49
And what's more, this guy doesn't need a wire
しかもこの昆虫は
00:51
connected all the way back to a power station burning fossil fuels.
化石燃料を燃やす発電所を電源とする必要もありません
00:53
So these two examples give a sense of what biomimicry can deliver.
これらの3つの例からバイオミミクリで何かできると感じられます
00:57
If we could learn to make things and do things the way nature does,
私たちが自然界のやり方を真似すれば
01:00
we could achieve factor 10, factor 100,
資源やエネルギーは10分の1
01:03
maybe even factor 1,000 savings
百分の1どころか千分の1まで
01:05
in resource and energy use.
節約できるかもしれません
01:07
And if we're to make progress with the sustainability revolution,
そして持続可能を掲げての改革を進めるにおいて
01:10
I believe there are three really big changes
3つの大きな変化を
01:13
we need to bring about.
もたらす必要があります
01:15
Firstly, radical increases in resource efficiency.
まずは資源効率の抜本的向上
01:17
Secondly, shifting from a linear, wasteful,
次に廃棄物や公害まみれの
01:20
polluting way of using resources
一方通行の資源の使い道を
01:22
to a closed-loop model.
閉ループに移行していくこと
01:24
And thirdly, changing from a fossil fuel economy
3つ目に化石燃料経済から
01:26
to a solar economy.
太陽燃料経済への移行
01:28
And for all three of these, I believe,
これら3つにおいて
01:30
biomimicry has a lot of the solutions that we're going to need.
必要な解決策がバイオミミクリにあると思います
01:32
You could look at nature as being like a catalog of products,
自然を製品カタログと考えてみてください
01:34
and all of those have benefited
それらはすべて
01:37
from a 3.8-billion-year research and development period.
38億年の研究開発期間から恩恵を受けています
01:39
And given that level of investment, it makes sense to use it.
投資のレベルを考えると それを使うのは理に適っています
01:42
So I'm going to talk about some projects that have explored these ideas.
これらのアイデアを研究したプロジェクトを紹介します
01:45
And let's start with radical increases
急進的な資源効率の向上から
01:48
in resource efficiency.
はじめましょう
01:50
When we were working on the Eden Project,
エデン・プロジェクトでは
01:52
we had to create a very large greenhouse
巨大なグリーンハウスを
01:54
in a site that was not only irregular,
変わった場所というだけでなく
01:56
but it was continually changing because it was still being quarried.
採石中で常に変化している場所に作らなければなりませんでした
01:58
It was a hell of a challenge,
それは過酷な挑戦で
02:01
and it was actually examples from biology
実際に生物学が
02:03
that provided a lot of the clues.
多くの手がかりをくれました
02:05
So for instance,
たとえば
02:07
it was soap bubbles that helped us generate a building form
どんな地表にも対応できる
02:09
that would work regardless of the final ground levels.
建物型の生成には石鹸の泡がヒントとなりました
02:11
Studying pollen grains
花粉の研究や
02:14
and radiolaria and carbon molecules
放散虫類や炭素の分子は
02:16
helped us devise the most efficient structural solution
六角形や五角形を利用して
02:18
using hexagons and pentagons.
最も効率的な構造解の考案に役立ちました
02:21
The next move was that we wanted
次の段階として
02:24
to try and maximize the size of those hexagons.
これらの六角形のサイズを大きくしようとしました
02:26
And to do that we had to find an alternative to glass,
そのためにはガラスの代替を見つけなくてはなりません
02:28
which is really very limited in terms of its unit sizes.
それはサイズの面でかなり限りがありました
02:30
And in nature there are lots of examples
自然界には沢山の例があります
02:33
of very efficient structures based on pressurized membranes.
加圧膜を基盤とした大変効率的な構造です
02:36
So we started exploring this material called ETFE.
そこで私たちはETFEという材質の研究を始めました
02:39
It's a high-strength polymer.
高強度のポリマーです
02:42
And what you do is you put it together in three layers,
これで何をするかと言うと 3つの層に重ねて
02:44
you weld it around the edge, and then you inflate it.
端にそって溶接し 膨らまします
02:46
And the great thing about this stuff
これの素晴らしいところは
02:49
is you can make it in units
1つの大きさがガラスの7倍ほどに
02:51
of roughly seven times the size of glass,
作ることができるのです
02:53
and it was only one percent of the weight of double-glazing.
しかも重さは2重ガラスの1%です
02:55
So that was a factor-100 saving.
これが百分の1の節約です
02:57
And what we found is that we got into a positive cycle
そして1つのブレイクスルーが他の突破口を作るといった
02:59
in which one breakthrough facilitated another.
肯定的なサイクルに乗ったのです
03:02
So with such large, lightweight pillows,
このように大きくて軽い素材を使っているので
03:04
we had much less steel.
鉄はかなり少ないです
03:07
With less steel we were getting more sunlight in,
鉄が少ないので日光が沢山入ります
03:09
which meant we didn't have to put as much extra heat in winter.
冬の暖房が少なくてすみます
03:11
And with less overall weight in the superstructure,
上部構造全体が軽量なので
03:14
there were big savings in the foundations.
基盤も大きく節約できます
03:16
And at the end of the project we worked out
プロジェクトの終わりには
03:18
that the weight of that superstructure
上部構造自体の重さは
03:20
was actually less than the weight of the air inside the building.
その内部の空気よりも軽くなりました
03:22
So I think the Eden Project is a fairly good example
エデン・プロジェクトは生物学からのアイデアが
03:25
of how ideas from biology
いかに資源効率の
03:28
can lead to radical increases in resource efficiency --
急進的向上に繋がるかという良い例だと言えるでしょう
03:30
delivering the same function,
ごくわずかな材料で
03:33
but with a fraction of the resource input.
同じ機能を提供するのです
03:35
And actually there are loads of examples in nature
自然には同じような解決に導く
03:37
that you could turn to for similar solutions.
実に多くの例があります
03:39
So for instance, you could develop super-efficient roof structures
たとえば アマゾンの巨大睡蓮から
03:42
based on giant Amazon water lilies,
素晴らしい効率の屋根の構造を開発できます
03:45
whole buildings inspired by abalone shells,
あわびの殻に触発された建築物
03:48
super-lightweight bridges inspired by plant cells.
植物細胞から発案された超軽量の橋
03:50
There's a world of beauty and efficiency to explore here
自然をデザインの素材とした
03:53
using nature as a design tool.
美しく効率的な世界が広がっています
03:56
So now I want to go onto talking about the linear-to-closed-loop idea.
一方通行から閉ループへのアイデアについて紹介します
03:59
The way we tend to use resources
通常私たちは資源を取り出して
04:02
is we extract them,
寿命の短い製品を作り
04:04
we turn them into short-life products and then dispose of them.
使用後は処分してしまいます
04:06
Nature works very differently.
自然はまったく別です
04:08
In ecosystems, the waste from one organism
自然の生態系では 1有機体からでたゴミは
04:10
becomes the nutrient for something else in that system.
その生態系の中で 他への栄養になります
04:12
And there are some examples of projects
意図的に自然の生態系を模倣しようとした
04:14
that have deliberately tried to mimic ecosystems.
プロジェクト例はいくつかあります
04:16
And one of my favorites
私のお気に入りの1つが
04:19
is called the Cardboard to Caviar Project
クラハム・ワイルズの
04:21
by Graham Wiles.
ダンボールからキャビアプロジェクトです
04:23
And in their area they had a lot of shops and restaurants
彼らの地域では店やレストランが多く
04:25
that were producing lots of food, cardboard and plastic waste.
たくさんの食料 ダンボールやプラスティックのゴミを出します
04:28
It was ending up in landfills.
これらは埋立地に運ばれます
04:31
Now the really clever bit is what they did with the cardboard waste.
彼らはこのダンボールのゴミを賢く利用しました
04:33
And I'm just going to talk through this animation.
アニメーションで説明します
04:35
So they were paid to collect it from the restaurants.
彼らはレストランからお金をもらってダンボールを回収します
04:38
They then shredded the cardboard
ダンボールを細断して
04:40
and sold it to equestrian centers as horse bedding.
馬のベッド用に乗馬センターへ売り
04:42
When that was soiled, they were paid again to collect it.
汚れた頃にお金をもらって回収します
04:45
They put it into worm recomposting systems,
それをミミズ再堆肥化システムに入れ
04:47
which produced a lot of worms, which they fed to Siberian sturgeon,
たくさんに増えたミミズをシベリアチョウザメに与え
04:49
which produced caviar, which they sold back to the restaurants.
サメからキャビアを得て レストランに売ります
04:52
So it transformed a linear process
これは直線的な過程を
04:55
into a closed-loop model,
閉ループへと転換させました
04:57
and it created more value in the process.
そして一連の過程に価値を作り出しました
04:59
Graham Wiles has continued to add more and more elements to this,
グラハム・ワイルズはより多くの要素を付け加え続け
05:02
turning waste streams into schemes that create value.
廃棄物の流れから価値を生み出す仕組みを作りました
05:04
And just as natural systems
自然のシステムが時とともに
05:07
tend to increase in diversity and resilience over time,
多様性や復元力を増す傾向があるように
05:09
there's a real sense with this project
このプロジェクトには
05:12
that the number of possibilities
可能性がいくつにも
05:14
just continue increasing.
増えつつあるという実感があります
05:17
And I know it's a quirky example,
これは風変わりな例ですが
05:19
but I think the implications of this are quite radical,
非常に大きな意味合いを持っています
05:21
because it suggests that we could actually
廃棄物という大きな問題を
05:23
transform a big problem -- waste -- into a massive opportunity.
壮大な可能性へと変換できることを示唆しているからです
05:25
And particularly in cities --
都市では特に
05:28
we could look at the whole metabolism of cities,
全体の代謝を見て
05:30
and look at those as opportunities.
機会ととらえることができます
05:32
And that's what we're doing on the next project I'm going to talk about,
それについてお話しします
05:34
the Mobius Project,
メビウス・プロジェクト
05:36
where we're trying to bring together a number of activities,
数々の活動を一つの建物の中に
05:38
all within one building,
結集して
05:40
so that the waste from one can be the nutrient for another.
廃棄物を他の栄養にしようとする試みです
05:42
And the kind of elements I'm talking about
まず
05:45
are, firstly, we have a restaurant inside a productive greenhouse,
稼働中の温室の中にレストランを作ります
05:47
a bit like this one in Amsterdam called De Kas.
アムステルダムのデカスのようなものです
05:50
Then we would have an anaerobic digester,
次にその地域の生分解性廃棄物
05:52
which could deal with all the biodegradable waste from the local area,
すべてに対応できる嫌気性消化装置を設け
05:54
turn that into heat for the greenhouse
廃棄物から生まれる熱を温室に使ったり
05:57
and electricity to feed back into the grid.
電気に変えて配管網へフィードバックします
05:59
We'd have a water treatment system
汚水を新鮮な水へと
06:01
treating wastewater, turning that into fresh water
処理するシステムを取り入れ
06:03
and generating energy from the solids
植物や微生物を利用して
06:05
using just plants and micro-organisms.
固体からエネルギーを生成します
06:07
We'd have a fish farm fed with vegetable waste from the kitchen
台所から出る野菜のくずやコンポストからの
06:10
and worms from the compost
ミミズを餌に魚の養殖をして
06:12
and supplying fish back to the restaurant.
レストランに提供することもできます
06:14
And we'd also have a coffee shop, and the waste grains from that
コーヒーショップを設けて コーヒーのかすを
06:16
could be used as a substrate for growing mushrooms.
マッシュルームを育てる菌床に使うこともできます
06:19
So you can see that we're bringing together
ご覧いただけますように食物やエネルギー
06:21
cycles of food, energy and water and waste
そして水や廃棄物の循環を
06:23
all within one building.
1つの建物に結集するのです
06:25
And just for fun, we've proposed this for a roundabout in central London,
遊び心で これをロンドン中心のロータリーに提案しました
06:27
which at the moment is a complete eyesore.
今のままではまったく目障りな風景です
06:30
Some of you may recognize this.
見覚えのある人もいらっしゃるでしょう
06:32
And with just a little bit of planning,
これがほんの少しの計画で
06:34
we could transform a space dominated by traffic
交通機関に支配される空間から
06:36
into one that provides open space for people,
人が食物と再びつながれて
06:39
reconnects people with food
廃棄物を閉ループのチャンスに変換する
06:42
and transforms waste into closed loop opportunities.
オープンスペースを提供する空間へと変換できるのです
06:44
So the final project I want to talk about
今日お話しする最後のプロジェクトは
06:47
is the Sahara Forest Project, which we're working on at the moment.
今私たちが取り組んでいるサハラ森林プロジェクトです
06:49
It may come as a surprise to some of you
驚く方もいらっしゃるでしょうが
06:52
to hear that quite large areas of what are currently desert
現在は砂漠状態の広大な場所が
06:54
were actually forested a fairly short time ago.
あまり遠くない過去は森林だったのです
06:56
So for instance, when Julius Caesar arrived in North Africa,
例えば ジュリアス・シーザーが北アフリカに到着したとき
06:59
huge areas of North Africa
北アフリカの大半は
07:02
were covered in cedar and cypress forests.
杉や檜の林に覆われていました
07:04
And during the evolution of life on the Earth,
地球上の生命の進化の過程で
07:07
it was the colonization
植物の定着こそが
07:09
of the land by plants
現在私たちが恩恵を受けている
07:11
that helped create the benign climate we currently enjoy.
穏やかな気候を作ったのです
07:13
The converse is also true.
逆も然り
07:15
The more vegetation we lose,
植物を失うほどに
07:17
the more that's likely to exacerbate climate change
気候変動は悪化し
07:19
and lead to further desertification.
砂漠化につながる可能性が高いということです
07:21
And this animation,
このアニメーションは
07:24
this shows photosynthetic activity over the course of a number of years,
長年にわたる光合成の活動を示します
07:26
and what you can see is that the boundaries of those deserts
これらの砂漠の境界が
07:29
shift quite a lot,
常に変化しているのが見えます
07:32
and that raises the question
ここから 境界の変動を止めることが出来るか
07:34
of whether we can intervene at the boundary conditions
また砂漠を縮小させることが出来るかという
07:36
to halt, or maybe even reverse, desertification.
疑問がわいてきます
07:39
And if you look at some of the organisms
砂漠に適応するように
07:42
that have evolved to live in deserts,
進化した生き物には
07:44
there are some amazing examples of adaptations to water scarcity.
水不足に適応した素晴らしい例が見られます
07:46
This is the Namibian fog-basking beetle,
これはナミビアの霧から水を得る昆虫
07:49
and it's evolved a way of harvesting its own fresh water in a desert.
砂漠で新鮮な水を自己採集できるように進化しました
07:51
The way it does this is it comes out at night,
どうやるかと言うと 夜
07:54
crawls to the top of a sand dune,
砂丘の上によじ登ります
07:56
and because it's got a matte black shell,
艶のない黒い甲冑に覆われているので
07:58
is able to radiate heat out to the night sky
闇夜に熱を放出でき
08:00
and become slightly cooler than its surroundings.
周りのものよりも少し温度が下がります
08:02
So when the moist breeze blows in off the sea,
こうして海辺からの湿った微風が吹くと
08:04
you get these droplets of water forming on the beetle's shell.
甲冑にこのような水滴が出来ます
08:06
Just before sunrise, he tips his shell up, the water runs down into his mouth,
日が昇る直前に 昆虫はお尻を突き上げて 水を口に運び
08:09
has a good drink, goes off and hides for the rest of the day.
おいしい水を飲み 残りの日を隠れて過します
08:12
And the ingenuity, if you could call it that,
この知恵と呼べるものは
08:14
goes even further.
さらに進化します
08:16
Because if you look closely at the beetle's shell,
昆虫をもっと近くでみると
08:18
there are lots of little bumps on that shell.
甲冑に小さな突起が沢山あります
08:20
And those bumps are hydrophilic; they attract water.
この突起物は親水性で水を呼び寄せます
08:22
Between them there's a waxy finish which repels water.
突起物の間はワックス状で水をはじきます
08:25
And the effect of this is that
そして効果はというと
08:28
as the droplets start to form on the bumps,
突起物の上で水滴は
08:30
they stay in tight, spherical beads,
固い球状の数珠の形となり
08:32
which means they're much more mobile
ただ水が甲冑全体を
08:34
than they would be if it was just a film of water over the whole beetle's shell.
濡らした状態よりも転がりやすくなります
08:36
So even when there's only a small amount of moisture in the air,
空気中にあまり湿気がない場合でも
08:39
it's able to harvest that very effectively and channel it down to its mouth.
かなり効果的に採集し 口に運ぶことができます
08:42
So amazing example of an adaptation
資源がかなり限られるなかで
08:45
to a very resource-constrained environment --
驚くべき適応例です
08:47
and in that sense, very relevant
ある意味これは
08:49
to the kind of challenges we're going to be facing
数年先 数十年先に我々が
08:51
over the next few years, next few decades.
直面するだろう課題にも通じるものです
08:53
We're working with the guy who invented the Seawater Greenhouse.
私たちは海水温室を発案した人と協働しています
08:55
This is a greenhouse designed for arid coastal regions,
この温室は乾燥した海岸地域向けに設計されました
08:57
and the way it works is that you have this whole wall of evaporator grills,
どうやるかと言うと この蒸発器グリルの壁全体に
09:00
and you trickle seawater over that
海水をしたたらせることで
09:04
so that wind blows through, it picks up a lot of moisture
風が吹くたびに 温室の水気が増し
09:06
and is cooled in the process.
温度は下がります
09:08
So inside it's cool and humid,
それによって内側は涼しくて湿気が高く
09:10
which means the plants need less water to grow.
植物の成長にあまり水がいりません
09:12
And then at the back of the greenhouse,
そして温室の後ろ側で
09:14
it condenses a lot of that humidity as freshwater
湿気は淡水として凝縮されます
09:16
in a process that is effectively identical to the beetle.
効果は昆虫のそれによく似ています
09:19
And what they found with the first Seawater Greenhouse that was built
最初の海水温室を設立してわかったのは
09:22
was it was producing slightly more freshwater
室内の植物が必要とするよりも
09:25
than it needed for the plants inside.
少し多めに淡水ができるということ
09:27
So they just started spreading this on the land around,
ですから周辺の土地にも水を撒きました
09:30
and the combination of that and the elevated humidity
これは湿気をあげる相乗効果となり
09:33
had quite a dramatic effect on the local area.
地域に大きな影響を及ぼしました
09:35
This photograph was taken on completion day,
この写真は温室完成時のものです
09:38
and just one year later, it looked like that.
それからたった1年でこうなりました
09:40
So it was like a green inkblot spreading out from the building
まるで温室から緑のインクが広がっているかのように
09:42
turning barren land back into biologically productive land --
不毛の地を生物学的に生産的な土地へと変えました
09:45
and in that sense, going beyond sustainable design
ある意味 持続可能なデザインを超える
09:48
to achieve restorative design.
復元デザインを成し遂げたのです
09:50
So we were keen to scale this up
私たちはこれをもっと発展させて
09:52
and apply biomimicry ideas to maximize the benefits.
バイオミミクリのアイデアを適応して最大の効果を上げるつもりです
09:54
And when you think about nature,
自然を考えるとき
09:57
often you think about it as being all about competition.
競争ばかりに目が行きます
09:59
But actually in mature ecosystems,
しかし成熟した生態系においては
10:01
you're just as likely to find examples
共生する関係も
10:03
of symbiotic relationships.
同じくらい目にするでしょう
10:05
So an important biomimicry principle
重要なバイオミミクリの原則は
10:07
is to find ways of bringing technologies together
いかに技術を共生集団として
10:09
in symbiotic clusters.
結集させるかということです
10:11
And the technology that we settled on
そして海水温室の理想的な
10:13
as an ideal partner for the Seawater Greenhouse
パートナーとなった技術は
10:15
is concentrated solar power,
集光型太陽熱発電(CSP)です
10:17
which uses solar-tracking mirrors to focus the sun's heat
追尾ミラーを使って太陽熱を集め
10:19
to create electricity.
電気を作ります
10:21
And just to give you some sense of the potential of CSP,
CSPにどんな可能性があるかというと
10:23
consider that we receive
我々は毎年太陽から
10:26
10,000 times as much energy from the sun every year
私たちが使う全エネルギーの
10:28
as we use in energy from all forms --
1万倍ものエネルギーを受け取ります
10:31
10,000 times.
1万倍です
10:33
So our energy problems are not intractable.
現在抱えるエネルギー問題は解決できます
10:35
It's a challenge to our ingenuity.
知恵への挑戦です
10:37
And the kind of synergies I'm talking about
私の言う相乗効果とは
10:39
are, firstly, both these technologies work very well in hot, sunny deserts.
まず これらの技術は暑い太陽の照りつける砂漠で効果を挙げます
10:41
CSP needs a supply of demineralized freshwater.
CSPは脱塩水を必要とします
10:45
That's exactly what the Seawater Greenhouse produces.
まさにそれは海水温室が作り出すものです
10:48
CSP produces a lot of waste heat.
CSPは多くの無駄な熱を出します
10:50
We'll be able to make use of all that to evaporate more seawater
その熱はより多くの海水の蒸発に利用できるので
10:52
and enhance the restorative benefits.
復元利益が増します
10:55
And finally, in the shade under the mirrors,
最後に ミラーの下の日陰では
10:57
it's possible to grow all sorts of crops
直射日光の下では育たない
10:59
that would not grow in direct sunlight.
あらゆる種類の作物が生産できます
11:01
So this is how this scheme would look.
これがこの計画の構想です
11:03
The idea is we create this long hedge of greenhouses facing the wind.
風に面して温室を生垣のように並べ
11:05
We'd have concentrated solar power plants
その道沿いに一定間隔で
11:08
at intervals along the way.
集光型太陽熱発電装置を置きます
11:10
Some of you might be wondering what we would do with all the salts.
塩はいったいどうするんだと思う人もいるでしょう
11:12
And with biomimicry, if you've got an underutilized resource,
バイオミミクリでは十分に活用されない資源があれば
11:15
you don't think, "How am I going to dispose of this?"
「どうやって廃棄しよう」ではなく
11:18
You think, "What can I add to the system to create more value?"
「価値をより高めるには何が追加できるか?」と考えます
11:20
And it turns out
わかったのは
11:23
that different things crystallize out at different stages.
異なるものが異なる段階で結晶化するということ
11:25
When you evaporate seawater, the first thing to crystallize out
海水を蒸発させるとき まず最初に結晶するのは
11:27
is calcium carbonate.
炭酸カルシウムです
11:29
And that builds up on the evaporators --
蒸発器の上に積もります
11:31
and that's what that image on the left is --
左側の画像です
11:33
gradually getting encrusted with the calcium carbonate.
ゆっくりと炭酸カルシウムに覆われていきます
11:35
So after a while, we could take that out,
しばらくしたら 取り出して
11:37
use it as a lightweight building block.
軽量建築ブロックとして使います
11:39
And if you think about the carbon in that,
含まれる炭素については
11:41
that would have come out of the atmosphere, into the sea
大気から出たものが海に行き
11:43
and then locked away in a building product.
それが建築材に固定されると考えられます
11:45
The next thing is sodium chloride.
次は塩化ナトリウムです
11:47
You can also compress that into a building block,
ここで行ったように
11:49
as they did here.
建築用ブロックに押し込めます
11:51
This is a hotel in Bolivia.
これはボリビアのホテルです
11:53
And then after that, there are all sorts
その後は 取り出すのが可能な
11:55
of compounds and elements that we can extract,
様々な合成物や元素が出てきます
11:57
like phosphates, that we need to get back into the desert soils to fertilize them.
リン酸塩などは 砂漠を肥沃にするため土に戻します
11:59
And there's just about every element of the periodic table
海水には 周期表にある元素の
12:02
in seawater.
ほぼ全てが含まれています
12:04
So it should be possible to extract valuable elements
ですから 高性能バッテリー用のリチウムのような
12:06
like lithium for high-performance batteries.
高価な元素も取り出せるはずです
12:08
And in parts of the Arabian Gulf,
ペルシャ湾の一部では
12:12
the seawater, the salinity is increasing steadily
脱塩工場からの不要な塩水の廃棄により
12:15
due to the discharge of waste brine
海水の塩分が
12:18
from desalination plants.
徐々に高くなっています
12:20
And it's pushing the ecosystem close to collapse.
それは生態系を脅かしています
12:22
Now we would be able to make use of all that waste brine.
それらの廃棄塩水を役立てることができるのです
12:25
We could evaporate it
蒸発させて
12:27
to enhance the restorative benefits
復元利益を高め
12:29
and capture the salts,
塩を取り出せます
12:31
transforming an urgent waste problem into a big opportunity.
急を要する廃棄物問題を大きなチャンスとするのです
12:33
Really the Sahara Forest Project is a model
サハラ森林プロジェクトは いかにして
12:36
for how we could create zero-carbon food,
炭素を排出せず食料を作ったり
12:38
abundant renewable energy in some of the most water-stressed parts of the planet
再生可能エネルギーを最も水の乏しい地域で作ったり
12:41
as well as reversing desertification in certain areas.
砂漠化を逆行できるかというモデルなのです
12:44
So returning to those big challenges that I mentioned at the beginning:
最初に触れた大きなチャレンジに話を戻します
12:48
radical increases in resource efficiency,
抜本的資源効率化 閉ループ
12:51
closing loops and a solar economy.
太陽熱経済
12:53
They're not just possible; they're critical.
これは可能なだけでなく決定的に重要です
12:55
And I firmly believe that studying the way nature solves problems
そして自然が問題を解決する方法に学べば
12:58
will provide a lot of the solutions.
多くの解決策があると固く信じます
13:01
But perhaps more than anything, what this thinking provides
それ以上にこの考え方は持続可能なデザインを
13:04
is a really positive way of talking about sustainable design.
考える際の本当に良い参照点となります
13:07
Far too much of the talk about the environment
環境に関する話の多くは
13:09
uses very negative language.
大変悲観的です
13:11
But here it's about synergies and abundance and optimizing.
でも私が話したのは共生や潤沢 そして最適化についてです
13:13
And this is an important point.
これは重要な点です
13:16
Antoine de Saint-Exupery once said,
アントワーヌ・ド・サン テグジュペリの言葉です
13:18
"If you want to build a flotilla of ships,
「船団を造りたかったら
13:20
you don't sit around talking about carpentry.
大工仕事について話し込むんじゃなくて
13:22
No, you need to set people's souls ablaze
離れた岸を探検するビジョンで
13:24
with visions of exploring distant shores."
人々の魂を奮い立たせることだ」
13:27
And that's what we need to do, so let's be positive,
これが我々に必要なことです 希望を持つこと
13:29
and let's make progress with what could be
そして前に進みましょう
13:32
the most exciting period of innovation we've ever seen.
かつてないほど刺激的な革新の時なのです
13:34
Thank you.
ありがとうございました
13:36
(Applause)
(拍手)
13:38
Translator:Kayo Mizutani
Reviewer:Wataru Narita

sponsored links

Michael Pawlyn - Architect
Michael Pawlyn takes cues from nature to make new, sustainable architectural environments.

Why you should listen

Michael Pawlyn established the architecture firm Exploration in 2007 to focus on environmentally sustainable projects that take their inspiration from nature.

Prior to setting up the company, Pawlyn worked with the firm Grimshaw for ten years and was central to the team that radically re-invented horticultural architecture for the Eden Project. He was responsible for leading the design of the Warm Temperate and Humid Tropics Biomes and the subsequent phases that included proposals for a third Biome for plants from dry tropical regions. In 1999 he was one of five winners in A Car-free London, an ideas competition for strategic solutions to the capital’s future transport needs and new possibilities for urban spaces. In September 2003 he joined an intensive course in nature-inspired design at Schumacher College, run by Amory Lovins and Janine Benyus. He has lectured widely on the subject of sustainable design in the UK and abroad.

His Sahara Forest Project, covered in this TEDTalk, recently won major funding >>

sponsored links

If you need translations, you can install "Google Translate" extension into your Chrome Browser.
Furthermore, you can change playback rate by installing "Video Speed Controller" extension.

Data provided by TED.

This website is owned and operated by Tokyo English Network.
The developer's blog is here.