sponsored links
TEDxCaltech

Angela Belcher: Using nature to grow batteries

アンジェラ・ベルチャー:自然を使って電池を育てる

January 14, 2011

アワビの貝殻に触発されたアンジェラ・ベルチャーは、人が利用できるようなすばらしいナノ構造を作るようにウイルスをプログラムします。定向進化を通して優秀な遺伝子を選択することで、高出力の新しい電池、例えば、クリーンな水素燃料や記録的に高効率な太陽電池などを製造するウイルスを生み出しました。どうやって実現したのかTEDxCaltechで語っています。

Angela Belcher - Biological engineer
Angela Belcher looks to nature for inspiration on how to engineer viruses to create extraordinary new materials. Full bio

sponsored links
Double-click the English subtitles below to play the video.
I thought I would talk a little bit about how nature makes materials.
自然界で物質はどう作られるのでしょう
00:15
I brought along with me an abalone shell.
アワビの貝殻を持って来ました
00:18
This abalone shell is a biocomposite material
これは生物が作り出した材料です
00:20
that's 98 percent by mass calcium carbonate
質量の98%が 炭酸カルシウム
00:23
and two percent by mass protein.
質量の2%が タンパク質で
00:26
Yet, it's 3,000 times tougher
生息環境にあるほかの物質より
00:28
than its geological counterpart.
3,000倍も頑丈にできています
00:30
And a lot of people might use structures like abalone shells,
アワビの貝殻のような構造物は広く利用されています
00:32
like chalk.
例えば チョークです
00:35
I've been fascinated by how nature makes materials,
自然界の物づくりは魅力的で
00:37
and there's a lot of sequence
その妙技から
00:39
to how they do such an exquisite job.
たくさんのことが学べます
00:41
Part of it is that these materials
例えば これは
00:43
are macroscopic in structure,
肉眼で見える構造物ですが
00:45
but they're formed at the nanoscale.
ナノスケールで
00:47
They're formed at the nanoscale,
組み立てられています
00:49
and they use proteins that are coded by the genetic level
遺伝子レベルでコード化されたタンパク質を使うことで
00:51
that allow them to build these really exquisite structures.
精巧な構造物を組み上げることができるのです
00:54
So something I think is very fascinating
そこで 生命を持たない ―
00:57
is what if you could give life
例えば 太陽電池などの各種の電池に
00:59
to non-living structures,
命を持たせたらどうなるのか
01:02
like batteries and like solar cells?
とても興味がわいてきます
01:04
What if they had some of the same capabilities
生命を持たない物体が
01:06
that an abalone shell did,
アワビの貝殻と同じ能力をもつ
01:08
in terms of being able
つまり 室温 大気圧下で
01:10
to build really exquisite structures
無害な化学物質を使って
01:12
at room temperature and room pressure,
精巧な構造物を作る能力をもち
01:14
using non-toxic chemicals
有害な物質を
01:16
and adding no toxic materials back into the environment?
環境に出さないとしたらどうでしょう?
01:18
So that's the vision that I've been thinking about.
そんなことを思い描いてきたのです
01:21
And so what if you could grow a battery in a Petri dish?
シャーレで電池を育てられたら?
01:24
Or, what if you could give genetic information to a battery
電池に遺伝情報を組み込んで
01:26
so that it could actually become better
時間の経過とともに
01:29
as a function of time,
進化させられたら?
01:31
and do so in an environmentally friendly way?
しかも環境に優しくできないか?
01:33
And so, going back to this abalone shell,
アワビの貝殻に話を戻しますが
01:35
besides being nano-structured,
ナノ構造もそうですが
01:38
one thing that's fascinating,
もう一つ興味を引かれるのは
01:40
is when a male and a female abalone get together,
アワビのオスとメスが協力して
01:42
they pass on the genetic information
遺伝情報を伝える点です
01:44
that says, "This is how to build an exquisite material.
「精巧な物質は こう組み立てる」
01:46
Here's how to do it at room temperature and pressure,
「室温 大気圧下で こうやる」
01:49
using non-toxic materials."
「無害な材料で こうやる」
01:51
Same with diatoms, which are shown right here, which are glasseous structures.
ケイ藻も同じです ガラスのような構造をしていて
01:53
Every time the diatoms replicate,
分裂する時に
01:56
they give the genetic information that says,
遺伝情報を伝えます
01:58
"Here's how to build glass in the ocean
「完全なナノ構造のガラスを
02:00
that's perfectly nano-structured.
海で組み上げるにはこうする」
02:02
And you can do it the same, over and over again."
「同じように繰り返せる」
02:04
So what if you could do the same thing
太陽電池などの電池で 同じように
02:06
with a solar cell or a battery?
できたらどうでしょう?
02:08
I like to say my favorite biomaterial is my four year-old.
大好きなバイオマテリアルは 4歳の子です
02:10
But anyone who's ever had, or knows, small children
育児経験者や よくご存知の方ならお分かりでしょうが
02:13
knows they're incredibly complex organisms.
4歳の子どもは ややこしい生命体です
02:16
And so if you wanted to convince them
無理に何かをさせるのは
02:19
to do something they don't want to do, it's very difficult.
とても大変です
02:21
So when we think about future technologies,
そこで 未来のテクノロジーについて検討する時
02:23
we actually think of using bacteria and virus,
細菌やウイルスといった
02:26
simple organisms.
原始的な生物の利用を考えます
02:28
Can you convince them to work with a new toolbox,
新しいツールボックスを利用して
02:30
so that they can build a structure
私たちにとって意味ある構造物を
02:32
that will be important to me?
作らせることが可能でしょうか?
02:34
Also, when we think about future technologies,
未来のテクノロジーを検討するとき
02:36
we start with the beginning of Earth.
地球誕生から考え始めます
02:38
Basically, it took a billion years
地球に生命が生まれるまで
02:40
to have life on Earth.
10億年かかりました
02:42
And very rapidly, they became multi-cellular,
急速に多細胞化して
02:44
they could replicate, they could use photosynthesis
複製可能となり エネルギー供給手段として
02:46
as a way of getting their energy source.
光合成も可能になりました
02:49
But it wasn't until about 500 million years ago --
でも5億年ほど前
02:51
during the Cambrian geologic time period --
カンブリア紀に入ってようやく
02:53
that organisms in the ocean started making hard materials.
海の生命が 堅い物質を作るようになりました
02:55
Before that, they were all soft, fluffy structures.
それまでは 柔らかくふわっとしていたのです
02:58
And it was during this time
この時代 その環境には
03:01
that there was increased calcium and iron
カルシウムと鉄とケイ素が
03:03
and silicon in the environment,
増えていました
03:05
and organisms learned how to make hard materials.
生命体は堅い物質を作る方法を習得しました
03:07
And so that's what I would like be able to do --
私は これを実現したいのです
03:10
convince biology
周期表の残りの元素を
03:12
to work with the rest of the periodic table.
生物に活用してもらうのです
03:14
Now if you look at biology,
生物をよく見ると DNAや抗体
03:16
there's many structures like DNA and antibodies
タンパク質 リボゾームなど
03:18
and proteins and ribosomes that you've heard about
ナノ構造の物質はたくさんあります
03:20
that are already nano-structured.
自然界はナノスケールの
03:22
So nature already gives us
精巧な構造物を
03:24
really exquisite structures on the nanoscale.
用意してくれています
03:26
What if we could harness them
HIVのような仕組みで
03:28
and convince them to not be an antibody
ナノスケールの生体組織に
03:30
that does something like HIV?
抗体を作らせないようにして
03:32
But what if we could convince them
太陽電池を作らせるのは
03:34
to build a solar cell for us?
どうでしょう?
03:36
So here are some examples: these are some natural shells.
これは自然界の貝殻です
03:38
There are natural biological materials.
自然界のバイオマテリアルです
03:40
The abalone shell here -- and if you fracture it,
アワビの貝殻を割ってみると
03:42
you can look at the fact that it's nano-structured.
ナノ構造が見つかります
03:44
There's diatoms made out of SIO2,
二酸化ケイ素で作られたケイ藻は
03:46
and they're magnetotactic bacteria
走磁性細菌といい
03:49
that make small, single-domain magnets used for navigation.
小さな単磁区を作って方向を判断します
03:51
What all these have in common
共通点は ナノスケールで
03:54
is these materials are structured at the nanoscale,
組み上げられている点と
03:56
and they have a DNA sequence
タンパク質配列をコード化した
03:58
that codes for a protein sequence
DNA配列が
04:00
that gives them the blueprint
すばらしい構造を作るための
04:02
to be able to build these really wonderful structures.
設計図となっている点です
04:04
Now, going back to the abalone shell,
アワビの貝殻は
04:06
the abalone makes this shell by having these proteins.
こういったタンパク質を使って貝殻を作っています
04:08
These proteins are very negatively charged.
タンパク質は負の電荷を帯びて
04:11
And they can pull calcium out of the environment,
環境からカルシウムを取り込み
04:13
put down a layer of calcium and then carbonate, calcium and carbonate.
カルシウムの層を作り 炭酸塩化することを繰り返します
04:15
It has the chemical sequences of amino acids,
アミノ酸の化学的配列から指示が出ています
04:18
which says, "This is how to build the structure.
「こうやって作る」
04:21
Here's the DNA sequence, here's the protein sequence
「これが 実行するための —
04:23
in order to do it."
DNA配列 タンパク質配列」
04:25
And so an interesting idea is, what if you could take any material that you wanted,
面白いアイデアがあります 所望の物質や元素を
04:27
or any element on the periodic table,
組み上げるための
04:30
and find its corresponding DNA sequence,
DNA配列を見つけ出して
04:32
then code it for a corresponding protein sequence
アワビの貝殻ではなく
04:35
to build a structure, but not build an abalone shell --
所望の構造物を作れるように タンパク質配列を
04:37
build something that, through nature,
コード化することで
04:40
it has never had the opportunity to work with yet.
まだ利用されていない自然の力を利用するのです
04:42
And so here's the periodic table.
こちらは 私の大好きな
04:45
And I absolutely love the periodic table.
周期表です
04:47
Every year for the incoming freshman class at MIT,
毎年 MITの新入生に配る周期表で
04:49
I have a periodic table made that says,
こう書いてあります
04:52
"Welcome to MIT. Now you're in your element."
「ようこそMITへ 得意分野(エレメント)を学ぼう」
04:54
And you flip it over, and it's the amino acids
裏には アミノ酸が記載されています
04:57
with the PH at which they have different charges.
等電点も示してあります
05:00
And so I give this out to thousands of people.
何千もの人に配っています
05:02
And I know it says MIT, and this is Caltech,
MITと書かれていますが
05:05
but I have a couple extra if people want it.
こちらの大学でもお配りします
05:07
And I was really fortunate
オバマ大統領の MIT訪問時に
05:09
to have President Obama visit my lab this year
私の研究室にも
05:11
on his visit to MIT,
招くことになったので
05:13
and I really wanted to give him a periodic table.
ぜひ周期表を渡したくて
05:15
So I stayed up at night, and I talked to my husband,
夜遅くに夫に尋ねました
05:17
"How do I give President Obama a periodic table?
「どうやって周期表を渡したらいい?
05:19
What if he says, 'Oh, I already have one,'
持ってるとか 覚えてるとか
05:22
or, 'I've already memorized it'?" (Laughter)
言われたらどうしよう」
05:24
And so he came to visit my lab
大統領が研究室を訪れて
05:26
and looked around -- it was a great visit.
素晴らしい視察を終えた時
05:28
And then afterward, I said,
こう切り出しました
05:30
"Sir, I want to give you the periodic table
「周期表を差し上げます
05:32
in case you're ever in a bind and need to calculate molecular weight."
緊急時に分子量を計算する必要があるかもしれませんから」
05:34
And I thought molecular weight sounded much less nerdy
モル質量よりも分子量と言う方が
05:38
than molar mass.
オタクっぽくないかと ...
05:40
And so he looked at it,
大統領は周期表を見て
05:42
and he said,
「ありがとう
05:44
"Thank you. I'll look at it periodically."
周期的に見るよ」
05:46
(Laughter)
(笑)
05:48
(Applause)
(拍手)
05:50
And later in a lecture that he gave on clean energy,
後日 大統領は クリーンエネルギーの講演で
05:54
he pulled it out and said,
周期表を出して言いました
05:57
"And people at MIT, they give out periodic tables."
「MITでは周期表をもらえる」
05:59
So basically what I didn't tell you
まだ言っていませんでしたが
06:01
is that about 500 million years ago, organisms starter making materials,
5億年前 原始的な生命体が物質を作り始めましたが
06:04
but it took them about 50 million years to get good at it.
上達まで5千万年かかりました
06:07
It took them about 50 million years
アワビの貝殻の作り方を
06:09
to learn how to perfect how to make that abalone shell.
5千万年かけて会得したのです
06:11
And that's a hard sell to a graduate student. (Laughter)
院生に求めるのは無理です
06:13
"I have this great project -- 50 million years."
「すごいプロジェクトだけど 5千万年かかるの」
06:15
And so we had to develop a way
もっと迅速にやる方法を
06:18
of trying to do this more rapidly.
開拓しなければなりません
06:20
And so we use a virus that's a non-toxic virus
そこで 細菌に感染する
06:22
called M13 bacteriophage
毒性の無いウイルスである
06:24
that's job is to infect bacteria.
M13バクテリオファージを使います
06:26
Well it has a simple DNA structure
DNAの構造がシンプルで
06:28
that you can go in and cut and paste
DNA配列の切り貼りが
06:30
additional DNA sequences into it.
簡単にできます
06:32
And by doing that, it allows the virus
このようにウイルスを使って
06:34
to express random protein sequences.
ランダムにタンパク質配列を発現させることができます
06:36
And this is pretty easy biotechnology.
遺伝子工学としては簡単で
06:39
And you could basically do this a billion times.
無数に繰り返すことができます
06:41
And so you can go in and have a billion different viruses
一種類のタンパク質を作る
06:43
that are all genetically identical,
一つの配列を除いて
06:45
but they differ from each other based on their tips,
同じ遺伝子をもつウイルスを
06:47
on one sequence
無数に
06:49
that codes for one protein.
作ることができます
06:51
Now if you take all billion viruses,
その無数のウイルスを
06:53
and you can put them in one drop of liquid,
一滴の液体に入れて
06:55
you can force them to interact with anything you want on the periodic table.
任意の元素と相互作用させます
06:57
And through a process of selection evolution,
そして 選択と進化を経て
07:00
you can pull one out of a billion that does something that you'd like it to do,
太陽電池の育成など所望の働きをするウイルスを
07:02
like grow a battery or grow a solar cell.
一つ選び出せます
07:05
So basically, viruses can't replicate themselves; they need a host.
ウイルスは自己複製できず宿主が必要ですから
07:07
Once you find that one out of a billion,
膨大な中から一つ見つけたら
07:10
you infect it into a bacteria,
細菌に感染させて
07:12
and you make millions and billions of copies
その特定の配列を
07:14
of that particular sequence.
無数に複製させます
07:16
And so the other thing that's beautiful about biology
生物がすばらしいのは
07:18
is that biology gives you really exquisite structures
精密で
07:20
with nice link scales.
精巧な構造物を作る点です
07:22
And these viruses are long and skinny,
こちらの長くて薄いウイルスに
07:24
and we can get them to express the ability
発現能力を与えて
07:26
to grow something like semiconductors
半導体や電池の材料を
07:28
or materials for batteries.
育成させることができます
07:30
Now this is a high-powered battery that we grew in my lab.
こちらは 私の研究室で育成している高出力電池です
07:32
We engineered a virus to pick up carbon nanotubes.
ウイルスを改良して 一部分でカーボンナノチューブを
07:35
So one part of the virus grabs a carbon nanotube.
つかめるようにしてあって
07:38
The other part of the virus has a sequence
ほかの部分に 電池の
07:40
that can grow an electrode material for a battery.
電極材料を育成する配列を組み込んであります
07:42
And then it wires itself to the current collector.
さらに 電極材料を電流コレクタに接続します
07:45
And so through a process of selection evolution,
選択と進化を経て
07:48
we went from being able to have a virus that made a crummy battery
性能の悪い電池を作っていたウイルスが
07:50
to a virus that made a good battery
性能の良い
07:53
to a virus that made a record-breaking, high-powered battery
記録的な高出力の電池を作るウイルスに変わりました
07:55
that's all made at room temperature, basically at the bench top.
すべて室温の実験台で作れます
07:58
And that battery went to the White House for a press conference.
ホワイトハウスでの会見に持って行った電池が
08:01
I brought it here.
こちらです
08:04
You can see it in this case -- that's lighting this LED.
この箱の中で LEDを点灯させています
08:06
Now if we could scale this,
もっと大きくできれば
08:09
you could actually use it
実際にプリウスも
08:11
to run your Prius,
動かせるようになります
08:13
which is my dream -- to be able to drive a virus-powered car.
ウイルス駆動車を運転するのが私の夢です
08:15
But it's basically --
膨大な数の
08:19
you can pull one out of a billion.
ウイルスから一つを抜き出して
08:21
You can make lots of amplifications to it.
大量に複製することができます
08:24
Basically, you make an amplification in the lab,
複製は実験室でできます
08:26
and then you get it to self-assemble
そうやって 自己組織化させて
08:28
into a structure like a battery.
電池などを作らせるのです
08:30
We're able to do this also with catalysis.
触媒作用も利用できます
08:32
This is the example
これは 光触媒作用により
08:34
of photocatalytic splitting of water.
水が分離する例です
08:36
And what we've been able to do
これまでに可能になったのは
08:38
is engineer a virus to basically take dye-absorbing molecules
ウイルスを改良して その表面に
08:40
and line them up on the surface of the virus
色素吸着分子を並べて
08:43
so it acts as an antenna,
アンテナとして機能させ
08:45
and you get an energy transfer across the virus.
ウイルスを介してエネルギーを伝えることです
08:47
And then we give it a second gene
別の遺伝子には
08:49
to grow an inorganic material
水を 酸素と水素に
08:51
that can be used to split water
分解するような
08:53
into oxygen and hydrogen
無機材料を育成させます
08:55
that can be used for clean fuels.
これでクリーンな燃料を作れます
08:57
And I brought an example with me of that today.
サンプルを持って来ました
08:59
My students promised me it would work.
学生は動くと言っていました
09:01
These are virus-assembled nanowires.
ウイルスが作ったナノワイヤーが
09:03
When you shine light on them, you can see them bubbling.
中に入っていて 光を当てると泡立ちます
09:05
In this case, you're seeing oxygen bubbles come out.
このサンプルからは酸素の泡が発生します
09:08
And basically, by controlling the genes,
遺伝子を操作することで
09:12
you can control multiple materials to improve your device performance.
デバイス性能を高める多様な材料を制御できます
09:15
The last example are solar cells.
最後の例は太陽電池です
09:18
You can also do this with solar cells.
太陽電池でも可能です
09:20
We've been able to engineer viruses
ウイルスを改良して
09:22
to pick up carbon nanotubes
カーボンナノチューブの周りに
09:24
and then grow titanium dioxide around them --
電子を輸送するための二酸化チタンを
09:26
and use as a way of getting electrons through the device.
成長させることが可能となりました
09:30
And what we've found is through genetic engineering,
遺伝子工学により
09:34
we can actually increase
この太陽電池の効率は
09:36
the efficiencies of these solar cells
この種の色素増感型で実現されている
09:38
to record numbers
最高記録の効率にまで
09:41
for these types of dye-sensitized systems.
到達しています
09:43
And I brought one of those as well
一つ持って来ましたので
09:46
that you can play around with outside afterward.
後で 外に出て試してみてください
09:48
So this is a virus-based solar cell.
ウイルス製の太陽電池です
09:51
Through evolution and selection,
選択と進化を経て
09:53
we took it from an eight percent efficiency solar cell
効率は 8パーセントから
09:55
to an 11 percent efficiency solar cell.
11パーセントにすることができました
09:58
So I hope that I've convinced you
自然界の物づくりを知ること
10:01
that there's a lot of great, interesting things to be learned
そして次のステップとして
10:03
about how nature makes materials --
自分で育成できるか確かめたり
10:06
and taking it the next step
自然界のやり方を
10:08
to see if you can force,
利用できるか確かめたりして
10:10
or whether you can take advantage of how nature makes materials,
自然界に無い物質を作ることが
10:12
to make things that nature hasn't yet dreamed of making.
とても重要で興味深いと分かっていただけたらうれしいです
10:14
Thank you.
ありがとうございました
10:17
Translator:Satoshi Tatsuhara
Reviewer:Masaaki Ueno

sponsored links

Angela Belcher - Biological engineer
Angela Belcher looks to nature for inspiration on how to engineer viruses to create extraordinary new materials.

Why you should listen

With a bachelors in Creative Studies and a Ph.D. in Inorganic Chemistry, Angela Belcher has made a career out of finding surprising and innovative solutions to energy problems.

As head of the Biomolecular Materials Group at MIT, Belcher brings together the fields of materials chemistry, electrical engineering and molecular biology to engineer viruses that can create batteries and clean energy sources. A MacArthur Fellow, she also founded Cambrios Technologies, a Cambridge-based startup focused on applying her work with natural biological systems to the manufacture and assembly of electronic, magnetic and other commercially important materials. TIME magazine named her a climate-change hero in 2007.

Watch an animation of Angela Belcher's life story >>

sponsored links

If you need translations, you can install "Google Translate" extension into your Chrome Browser.
Furthermore, you can change playback rate by installing "Video Speed Controller" extension.

Data provided by TED.

This website is owned and operated by Tokyo English Network.
The developer's blog is here.