14:53
TEDGlobal 2013

Molly Stevens: A new way to grow bone

モリー・スティーブンス: 新しい骨再生法

Filmed:

まとまった量の骨を再生するのに、何が必要なのでしょうか。典型的な骨の再生法では、患者の腰から採骨し、損傷した所に埋め込むのですが、限界もあり、手術後2、3年でかなりの痛みが生じうるのです。情報を豊かに織り込み、モリー・スティーブンスは、骨生来の能力を使い、痛みを伴わず骨組織の再生をする新しい幹細胞応用法を紹介します。

- Biomaterials researcher
Molly Stevens studies and creates new biomaterials that could be used to detect disease and repair bones and human tissue. Full bio

As humans, it's in our nature
誰もが 健康を改善したり
00:12
to want to improve our health
and minimize our suffering.
肉体的苦しみを最小限に留め
00:14
Whatever life throws at us,
我が身に起る事が
00:17
whether it's cancer, diabetes, heart disease,
癌 糖尿病 心臓病または骨折と
00:19
or even broken bones, we want to try and get better.
それが何であろうと
良くなりたいと思うものです
00:21
Now I'm head of a biomaterials lab,
私は生体材料研究所の所長ですが
00:24
and I'm really fascinated by the way that humans
過去 様々な材料が
独創的な方法で人体に
00:27
have used materials in really creative ways
使われてきたということに
00:30
in the body over time.
とても感心させられます
00:32
Take, for example, this beautiful blue nacre shell.
例えば この貝の青い真珠層をご覧下さい
00:35
This was actually used by the Mayans
これはマヤ族が歯のインプラントに
00:38
as an artificial tooth replacement.
実際 使っていました
00:40
We're not quite sure why they did it.
その理由はよく分かりませんが
00:44
It's hard. It's durable.
硬く長持ちし
00:45
But it also had other very nice properties.
他にもとても良い特質があります
00:48
In fact, when they put it into the jawbone,
顎に入れると
00:52
it could integrate into the jaw,
顎骨と融合するのです
00:54
and we know now with very sophisticated
高度画像技術で
00:57
imaging technologies
分かっている
00:59
that part of that integration comes from the fact
融合の理由は この材料の
01:01
that this material is designed
用途によく合ったデザイン
01:03
in a very specific way, has a beautiful chemistry,
そして素晴らしい化学的性質と
01:05
has a beautiful architecture.
構造にありました
01:08
And I think in many ways we can sort of think
あらゆる意味で
01:10
of the use of the blue nacre shell and the Mayans
マヤ族の青い真珠層を持つ貝の使い道は
01:12
as the first real application
まさしく最初の
01:15
of the bluetooth technology.
ブルートゥース技術だ
なんて思ったりします
01:16
(Laughter)
(笑)
01:19
But if we move on and think throughout history
先に進んで 歴史を通して
01:20
how people have used different
materials in the body,
人類が体に様々な種類の材料を
使ってきたことを考えてみると
01:25
very often it's been physicians
創意工夫をしてきたのは
医師の場合が多く
01:28
that have been quite creative.
創意工夫をしてきたのは
医師の場合が多く
01:29
They've taken things off the shelf.
彼らが様々な発明をしてきました
01:31
One of my favorite examples
その中でも 私のお気に入りは
01:33
is that of Sir Harold Ridley,
サー・ハロルド・リドリーのものです
01:35
who was a famous ophthalmologist,
彼は有名な眼科医で—
01:38
or at least became a famous ophthalmologist.
少なくとも そうなったのですが—
01:40
And during World War II, what he would see
第2次世界大戦中 彼は
01:42
would be pilots coming back from their missions,
戦線から戻って来たパイロットを見て
01:44
and he noticed that within their eyes
彼らの目の中に
01:47
they had shards of small bits of material
小さな異物のかけらが
入っているのに気がつきました
01:49
lodged within the eye,
小さな異物のかけらが
入っているのに気がつきました
01:52
but the very interesting thing about it
興味深いことに
01:53
was that material, actually, wasn't causing
その物質は炎症反応を
01:55
any inflammatory response.
全く引き起こしていなかったのでした
01:57
So he looked into this, and he figured out
調べて分かったことは
01:59
that actually that material was little shards of plastic
その物質は 小さなプラスチックのかけらで
02:02
that were coming from the canopy of the Spitfires.
スピットファイア戦闘機の天蓋から
来る物でした
02:04
And this led him to propose that material
それで彼はこの物質を
02:07
as a new material for intraocular lenses.
新しい眼内レンズの素材
として提唱したのです
02:10
It's called PMMA, and it's now used
PMMAと呼ばれるもので
02:12
in millions of people every year
毎年 何百万人の人の目に
02:14
and helps in preventing cataracts.
白内障を防ぐ為に使われています
02:16
And that example, I think, is a really nice one,
この例は
02:19
because it helps remind us that in the early days,
昔は機械的機能をさせる為に
02:21
people often chose materials
よく生体不活性材料が
選ばれ
02:24
because they were bioinert.
よく生体不活性材料が
選ばれ
02:26
Their very purpose was to
perform a mechanical function.
使われていた ということを
示しています
02:28
You'd put them in the body
生体不活性材料を体に入れても
02:31
and you wouldn't get an adverse response.
拒絶反応はありません
02:33
And what I want to show you is that
しかし ここで私が述べたい事は
02:35
in regenerative medicine,
再生医療は
02:36
we've really shifted away from that idea
生体不活性材料から
02:38
of taking a bioinert material.
全く離れたということです
02:40
We're actually actively looking for materials
我々が積極的に探している材料は
02:41
that will be bioactive, that will interact with the body,
生体と作用する
生体活性材料で
02:44
and that furthermore we can put in the body,
生体内に入れられると
02:47
they'll have their function,
そこで機能し
02:49
and then they'll dissolve away over time.
時が経つにつれ
生体内に吸収されるものです
02:51
If we look at this schematic,
このチャートをご覧下さい
02:55
this is showing you what we think of
これが示しているのは
02:57
as the typical tissue-engineering approach.
細胞組織工学の
典型的アプローチです
02:59
We have cells there, typically from the patient.
普通患者から細胞を取り
03:01
We can put those onto a material,
それを材料に入れ
03:04
and we can make that material
very complex if we want to,
非常に複雑なものに
することもでき—
03:05
and we can then grow that up in the lab
実験室で増殖するか
03:08
or we can put it straight back into the patient.
患者の体に直接 戻すか
どちらでもできます
03:10
And this is an approach that's
used all over the world,
これが世界中で そして
03:13
including in our lab.
我々の実験室でも
行われている方法です
03:15
But one of the things that's really important
幹細胞について
本当に大切なことの1つは
03:19
when we're thinking about stem cells
幹細胞について
本当に大切なことの1つは
03:21
is that obviously stem cells
can be many different things,
幹細胞は
あらゆる組織に分化でき
03:23
and they want to be many different things,
又 そうなる傾向にあるので
03:26
and so we want to make sure that the environment
幹細胞を入れる環境に
03:28
we put them into has enough information
我々が必要な情報を
確実に組み込むと
03:29
so that they can become the right sort
目的の特定の組織に
なるという事です
03:32
of specialist tissue.
目的の特定の組織に
なるという事です
03:34
And if we think about the different types of tissues
世界中の実験室で
再生が試みられている
03:36
that people are looking at regenerating
組織のタイプは
03:40
all over the world, in all the
different labs in the world,
組織のタイプは
03:42
there's pretty much every tissue you can think of.
殆ど考え得る全ての組織
と言っていい程です
03:44
And actually, the structure of those tissues
そんな組織の構造は
03:47
is quite different, and it's going to really depend
かなり多様で
03:48
on whether your patient has any underlying disease,
患者の他の
隠れた病気とか健康問題が
03:51
other conditions, in terms of how
患者の他の
隠れた病気とか健康問題が
03:53
you're going to regenerate your tissue,
組織の再生法や
03:56
and you're going to need to think about the materials
材料の使用法や
03:58
you're going to use really carefully,
材料の使用法や
04:00
their biochemistry, their mechanics,
生化学的性質、 機能
04:02
and many other properties as well.
その他多くの特質に影響し それにより
我々の対処法も大きく変わってきます
04:04
Our tissues all have very
different abilities to regenerate,
組織は其々
異なる再生能力があります
04:08
and here we see poor Prometheus,
ここで思い出すのが
可哀想なプロメテウス
04:11
who made a rather tricky career choice
危なっかしい決断をした彼は
04:13
and was punished by the Greek gods.
ギリシャの神々に罰せられ
04:16
He was tied to a rock, and an eagle would come
岩に縛り付けられ
鷲が毎日
04:19
every day to eat his liver.
彼の肝臓をついばみに来ます
04:21
But of course his liver would regenerate every day,
彼の肝臓は毎日再生し
04:23
and so day after day he was punished
そうやって来る日も来る日も
04:25
for eternity by the gods.
永遠に神々に罰せられるのです
04:27
And liver will regenerate in this very nice way,
肝臓はこのように
再生されることになるでしょうが
04:33
but actually if we think of other tissues,
他の組織
04:37
like cartilage, for example,
例えば軟骨は
04:39
even the simplest nick and you're going to find it
どんな些細な欠損でも
04:40
really difficult to regenerate your cartilage.
再生するのは
とても難しいのです
04:42
So it's going to be very different from tissue to tissue.
この様に組織により
違いが非常に大きく
04:45
Now, bone is somewhere in between,
骨の再生能力はその中間です
04:48
and this is one of the tissues
that we work on a lot in our lab.
骨は我々の実験室で
よく扱われる組織の1つで
04:51
And bone is actually quite good at repairing.
自己修復能力は
実は かなり高いのです
04:54
It has to be. We've probably all had fractures
そうでなければ困ります
たぶん我々はみな
04:56
at some point or other.
骨折を経験しているでしょうし
04:58
And one of the ways that you can think
骨折治療の1つの方法は
04:59
about repairing your fracture
骨折治療の1つの方法は
05:02
is this procedure here, called
an iliac crest harvest.
「腸骨採取」と呼ばれる手法で
05:03
And what the surgeon might do
外科医が
05:06
is take some bone from your iliac crest,
腸骨から骨を採取し
05:08
which is just here,
ここにありますが—
05:11
and then transplant that
somewhere else in the body.
体の他の部分にそれを移植します
05:12
And it actually works really well,
これは本当にうまく行くのです
05:15
because it's your own bone,
本人の骨なので
05:16
and it's well vascularized,
うまく血管新生化し
05:18
which means it's got a really good blood supply.
血液の流れが
とても良くなるのですが
05:19
But the problem is, there's
only so much you can take,
問題は採骨できる量に
限界があるという事です
05:22
and also when you do that operation,
その上 手術後
採骨した場所が
05:24
your patients might actually have significant pain
2年経っても
05:27
in that defect site even two
years after the operation.
非常に痛む可能性があるのです
05:30
So what we were thinking is,
それで我々が考えた事は
05:33
there's a tremendous need
for bone repair, of course,
勿論 骨修復の需要は
非常に大きいのですが—
05:35
but this iliac crest-type approach
腸骨タイプのアプローチでは
05:38
really has a lot of limitations to it,
限界があまりにあるので
05:41
and could we perhaps recreate
必要に応じ 生体内で
05:43
the generation of bone within the body
骨を再生し 移植したらどうだろう
05:45
on demand and then be able to transplant it
それにより腸骨採取後のような
05:47
without these very, very painful aftereffects
極度の痛みが伴わない移植が
05:51
that you would have with the iliac crest harvest?
出来るのではないだろうか?
ということです
05:56
And so this is what we did, and the way we did it
その我々のやり方は
05:59
was by coming back to this typical tissue-engineering approach
典型的な細胞組織工学の
アプローチに戻ったのですが
06:02
but actually thinking about it rather differently.
かなり違った観点を取りました
06:05
And we simplified it a lot,
随分 簡素化して
06:08
so we got rid of a lot of these steps.
かなりステップを省きました
06:10
We got rid of the need to
harvest cells from the patient,
患者からの
細胞採取の必要性
06:12
we got rid of the need to put
in really fancy chemistries,
あらゆる高価な
化学薬品の必要性
06:14
and we got rid of the need
そして研究室で担体を
06:17
to culture these scaffolds in the lab.
培養する必要性を
なくしました
06:19
And what we really focused on
我々が本当に
焦点を置いているのは
06:21
was our material system and making it quite simple,
材料系と
それを簡素化する事ですが
06:24
but because we used it in a really clever way,
よく考えられた方法で使用したので
06:27
we were able to generate enormous amounts of bone
このアプローチによって
06:30
using this approach.
膨大な量の骨を
再生できたのです
06:32
So we were using the body
それで我々は生体を
06:34
as really the catalyst to help us
骨を大量に作る為の
06:36
to make lots of new bone.
媒体として使いました
06:38
And it's an approach that we call
そのアプローチを
06:40
the in vivo bioreactor, and we were able to make
「生体バイオリアクター」と呼び
このやり方で
06:42
enormous amounts of bone using this approach.
とてつもない量の骨を
再生できるのです
06:45
And I'll talk you through this.
分かり易く説明すると
06:47
So what we do is,
こうです
06:49
in humans, we all have a layer of stem cells
生体には幹細胞の層が
06:51
on the outside of our long bones.
長骨の外側にあり
06:53
That layer is called the periosteum.
「骨膜」とよばれ
06:55
And that layer is actually normally
普段とても
06:57
very, very tightly bound to the underlying bone,
しっかりと
その下の骨に密着していて
06:59
and it's got stem cells in it.
幹細胞を含んでいます
07:02
Those stem cells are really important
この幹細胞は
07:03
in the embryo when it develops,
胎芽の成長にとても重要で
07:05
and they also sort of wake up if you have a fracture
骨折すると
07:07
to help you with repairing the bone.
骨を修復しようと活性化します
07:09
So we take that periosteum layer
我々はその骨膜に目をつけ
07:12
and we developed a way to inject underneath it
その下に液体を
注入する方法を開発しました
07:14
a liquid that then, within 30 seconds,
その液体は注入後30秒内で
07:17
would turn into quite a rigid gel
固形のゲルになり
07:20
and can actually lift the
periosteum away from the bone.
骨から骨膜を持ち上げる事ができ
07:21
So it creates, in essence, an artificial cavity
人工の空洞が
07:25
that is right next to both the bone
骨と幹細胞豊かな骨膜の間にできます
07:28
but also this really rich layer of stem cells.
骨と幹細胞豊かな骨膜の間にできます
07:32
And we go in through a pinhole incision
微小な切り口から入るので
07:36
so that no other cells from the body can get in,
生体の他の細胞は入れません
07:37
and what happens is that that
artificial in vivo bioreactor cavity
人工的に作られた空洞
バイオリアクター・スペースが
07:40
can then lead to the proliferation of these stem cells,
幹細胞の増殖に繋がり
07:45
and they can form lots of new tissue,
多くの新しい組織を作り
07:48
and then over time, you can harvest that tissue
時が経つと組織を採取し
07:50
and use it elsewhere in the body.
人体の他の場所に移植できます
07:52
This is a histology slide
これがそのプロセスで見られる
07:55
of what we see when we do that,
組織構造のスライドです
07:57
and essentially what we see
我々が見ているのは
07:59
is very large amounts of bone.
非常に大量の骨です
08:02
So in this picture, you can see the middle of the leg,
この写真では足の中の中央部—
08:03
so the bone marrow,
骨髄が右端に見え
08:06
then you can see the original bone,
次に本来の骨があり
08:07
and you can see where that original bone finishes,
その骨が終わった所の
08:09
and just to the left of that is the new bone
丁度左に新生骨が
08:12
that's grown within that bioreactor cavity,
バイオリアクター・スペース内で
再生しています
08:15
and you can actually make it even larger.
もっと大きくもできます
08:17
And that demarcation that you can see
本来の骨と新生骨との
08:19
between the original bone and the new bone
境界部分は
08:22
acts as a very slight point of weakness,
ほんの少しだけですが弱い所で
08:24
so actually now the surgeon can come along,
ここが外科医の出番です
08:26
can harvest away that new bone,
新生骨を採取し
08:28
and the periosteum can grow back,
骨膜が再生します
08:30
so you're left with the leg
初めっから手術など
08:32
in the same sort of state
しなかったような状態の
08:34
as if you hadn't operated on it in the first place.
足が戻ってきます
08:36
So it's very, very low in terms of after-pain
それで術後の痛みは
08:38
compared to an iliac crest harvest.
腸骨採集後と比べれば
とても軽いのです
08:42
And you can grow different amounts of bone
骨再生量は
08:45
depending on how much gel you put in there,
ゲルの注入量次第なので
08:48
so it really is an on demand sort of procedure.
必要に応じて調節できます
08:50
Now, at the time that we did this,
我々が これを公表した時
08:53
this received a lot of attention in the press,
メディアの注目を浴びました
08:55
because it was a really nice way
新しい骨再生の
08:58
of generating new bone,
実にいい方法だからです
09:01
and we got many, many contacts
これを使いたいと言う
09:02
from different people that
were interested in using this.
様々な人々から問い合わせが来ました
09:04
And I'm just going to tell you,
実のところ
09:07
sometimes those contacts are very strange,
全くおかしなものもありました
09:09
slightly unexpected,
思ってもなかったような
09:12
and the very most interesting,
とっても面白いもの
09:13
let me put it that way, contact that I had,
と言ったらいいでしょう
09:16
was actually from a team of American footballers
その1つは
米国のフットボール選手からで
09:19
that all wanted to have double-thickness skulls
自分たちの頭蓋骨の厚みを
2倍にしたいというものでした
09:22
made on their head.
自分たちの頭蓋骨の厚みを
2倍にしたいというものでした
09:25
And so you do get these kinds of contacts,
こんな問い合わせは
本当にあるのです
09:30
and of course, being British
フランスで育った
09:32
and also growing up in France,
イギリス人の私は
09:35
I tend to be very blunt,
ちょっと辛口な傾向があり
09:37
and so I had to explain to them very nicely
彼らにこう説明しました
09:39
that in their particular case,
「あなた達の様な特殊ケースでは
09:41
there probably wasn't that much in there
たぶんその中にはあまり
09:42
to protect in the first place.
守るものなんて ないんじゃないの」って
09:44
(Laughter)
(笑)
09:47
(Applause)
(拍手)
09:49
So this was our approach,
これが我々のアプローチでした
09:50
and it was simple materials,
単純な材料ですが
09:52
but we thought about it carefully.
入念に計画しました
09:54
And actually we know that those cells
生体や胎芽の幹細胞が
09:56
in the body, in the embryo, as they develop
成長すると
09:57
can form a different kind of tissue, cartilage,
ある異なる組織の
軟骨になるのが分かっているので
09:59
and so we developed a gel that was slightly different
少し化学的性質の違うゲルを開発し
10:03
in nature and slightly different chemistry,
少し化学的性質の違うゲルを開発し
10:05
put it in there, and we were able to get
それを注入し軟骨を100%
10:08
100 percent cartilage instead.
再生できました
10:10
And this approach works really well, I think,
これはあらかじめ計画されると
とてもうまく行くやり方で
10:12
for pre-planned procedures,
これはあらかじめ計画されると
とてもうまく行くやり方で
10:14
but it's something you do have to pre-plan.
前もって計画しなければ
ならないものです
10:16
So for other kinds of operations,
他の手術では
10:19
there's definitely a need for other
他の担体を基礎とした
アプローチが確かに必要です
10:22
scaffold-based approaches.
他の担体を基礎とした
アプローチが確かに必要です
10:23
And when you think about designing
他の担体を開発する時は
10:26
those other scaffolds, actually,
他の担体を開発する時は
10:28
you need a really multi-disciplinary team.
様々な分野からの
専門家チームが必要です
10:30
And so our team has chemists,
我々のチームには化学者
10:32
it has cell biologists, surgeons, physicists even,
細胞生物学者 外科医
そして物理学者さえもが加わり
10:34
and those people all come together
皆で一体となり
10:37
and we think really hard about
designing the materials.
材料の開発に懸命に
取り組んでいます
10:39
But we want to make them have enough information
特定の細胞機能をさせるよう
また実用化に向け複雑にならないよう
10:42
that we can get the cells to do what we want,
特定の細胞機能をさせるよう
また実用化に向け複雑にならないよう
10:45
but not be so complex as to make it difficult
材料には 十分な情報を
10:47
to get to clinic.
備えて欲しいのです
10:49
And so one of the things we think about a lot
我々の仕事の1つは
10:51
is really trying to understand
生体組織構造の理解を
深める事です
10:54
the structure of the tissues in the body.
生体組織構造の理解を
深める事です
10:55
And so if we think of bone,
骨について考えると
10:58
obviously my own favorite tissue,
私が関心を持つ組織ですが—
11:00
we zoom in, we can see,
ズームインしてみると
11:02
even if you don't know anything
about bone structure,
皆さんが骨組織の事は
よく知らなくても
11:04
it's beautifully organized,
really beautifully organized.
本当に素晴らしく
組織化されていると分かります
11:06
We've lots of blood vessels in there.
そこには血管が張り巡っています
11:08
And if we zoom in again, we see that the cells
更にズームインすると
11:10
are actually surrounded by a 3D matrix
ナノスケール繊維の
11:12
of nano-scale fibers, and they give a lot
3D基質が細胞を囲み
11:15
of information to the cells.
細胞に多くの情報を与えています
11:17
And if we zoom in again,
更にズームインすると
11:20
actually in the case of bone, the matrix
骨の場合
細胞周辺の基質は美しく
11:21
around the cells is beautifully organized
ナノスケールで纏まり
11:23
at the nano scale, and it's a hybrid material
混成された
11:26
that's part organic, part inorganic.
有機・無機質のハイブリッドです
11:28
And that's led to a whole field, really,
ここで全く新しい分野
11:31
that has looked at developing materials
ハイブリッド的な構造を持った
材料の開発分野に移り
11:33
that have this hybrid kind of structure.
ハイブリッド的な構造を持った
材料の開発分野に移り
11:35
And so I'm showing here just two examples
その例を2つだけお見せします
11:38
where we've made some materials
that have that sort of structure,
ハイブリッド的構造を持った
11:41
and you can really tailor it.
調整可能な材料を作りました
11:44
You can see here a very squishy one
ここにブヨブヨした物が見えますが
11:46
and now a material that's also
this hybrid sort of material
これもハイブリッド的材料で
11:48
but actually has remarkable toughness,
驚く程強く
11:52
and it's no longer brittle.
壊れ易くありません
11:54
And an inorganic material
would normally be really brittle,
無機質の材料は通常とても脆く
11:55
and you wouldn't be able to have
このような丈夫さや強さはありません
11:58
that sort of strength and toughness in it.
このような丈夫さや強さはありません
11:59
One other thing I want to quickly mention is that
もう1つだけちょっと
触れておきたい事は
12:01
many of the scaffolds we make
are porous, and they have to be,
我々が作る担体の多くは
12:04
because you want blood vessels to grow in there.
そこに血管が通り
育つように多孔質です
12:07
But the pores are actually oftentimes
穴のサイズは
12:09
much bigger than the cells,
細胞より大きく
12:11
and so even though it's 3D,
3Dではありますが
12:12
the cell might see it more
as a slightly curved surface,
細胞には少しカーブした表面のように
見えるかもしれませんね
12:14
and that's a little bit unnatural.
少々不自然です
12:17
And so one of the things you can think about doing
ですから 考えないといけないのは
12:19
is actually making scaffolds
with slightly different dimensions
担体を少し違う次元で
12:21
that might be able to surround your cells in 3D
3Dで細胞を包み
12:24
and give them a little bit more information.
もう少し情報を
細胞に与えるように作る事です
12:27
And there's a lot of work going
on in both of these areas.
これらの領域では
色々な研究がなされています
12:29
Now finally, I just want to talk a little bit about
最後に少しだけ
12:33
applying this sort of thing to cardiovascular disease,
これを心血管疾患に応用する事
についてお話します
12:37
because this is a really big clinical problem.
実に大きな臨床上の問題だからです
12:40
And one of the things that we know is that,
分かっている事の1つは
12:43
unfortunately, if you have a heart attack,
残念ながら 心臓発作を起こしたら
12:46
then that tissue can start to die,
組織は活動停止し始めるため
12:49
and your outcome may not be very good over time.
見通しは 時と共に
悪くなって行くかもしれません
12:52
And it would be really great, actually,
我々が 組織の壊死を
12:55
if we could stop that dead tissue
阻止するか 再生を促すか
12:57
either from dying or help it to regenerate.
どちらか出来るなら
どんなにか素晴らしいことでしょう
12:59
And there's lots and lots of stem
cell trials going on worldwide,
今 世界中で行われている
幹細胞を使った臨床試験では
13:03
and they use many different types of cells,
あるゆるタイプの
細胞を使っていますが
13:06
but one common theme that seems to be coming out
表面化してきた共通の課題は
13:08
is that actually, very often, those cells will die
細胞は心臓に移植されると
死んでしまう事が多い
13:11
once you've implanted them.
ということです
13:14
And you can either put them into the heart
細胞を心臓か
13:15
or into the blood system,
血液システムに
入れる事はできますが
13:17
but either way, we don't seem to be able
どちらにしろ
13:19
to get quite the right number of cells
十分な数の細胞を
正しい場所に入れ
13:22
getting to the location we want them to
十分な数の細胞を
正しい場所に入れ
13:24
and being able to deliver the sort of beautiful
思わしい臨床結果が得られる
細胞再生ができないようなのです
13:26
cell regeneration that we would like to have
思わしい臨床結果が得られる
細胞再生ができないようなのです
13:30
to get good clinical outcomes.
思わしい臨床結果が得られる
細胞再生ができないようなのです
13:33
And so some of the things that we're thinking of,
我々とこの分野の人々は
13:36
and many other people in the field are thinking of,
我々とこの分野の人々は
13:38
are actually developing materials for that.
その問題を解決する為の材料を
開発する事を考えています
13:42
But there's a difference here.
しかし1つ違いがあります
13:45
We still need chemistry, we still need mechanics,
その為には我々は
化学的技術的な向上
13:46
we still need really interesting topography,
参考となるトポグラフィー画像
13:48
and we still need really interesting
ways to surround the cells.
適切な細胞を囲む方法がまだ必要です
13:51
But now, the cells also
細胞はまた
13:54
would probably quite like a material
伝導体のような働きを
13:56
that's going to be able to be conductive,
するようになるでしょう
13:58
because the cells themselves will respond very well
なぜなら細胞そのものは よく反応し
14:00
and will actually conduct signals
between themselves.
お互い同士でシグナルを
伝え合うからです
14:05
You can see them now
今でも このように
14:08
beating synchronously on these materials,
材料の中で細胞は
同調し合い脈打っています
14:10
and that's a very, very exciting development
とても興奮させられる事が
14:12
that's going on.
起きています
14:15
So just to wrap up, I'd like to actually say that
最後に
14:17
being able to work in this sort of field,
この分野で働く我々に取って
14:22
all of us that work in this field
とても夢のある科学分野であり
14:24
that's not only super-exciting science,
とても夢のある科学分野であり
14:26
but also has the potential
大なり小なり患者にインパクトを
与える可能性のあるこの分野で
14:28
to impact on patients,
大なり小なり患者にインパクトを
与える可能性のあるこの分野で
14:30
however big or small they are,
働けるという事を
本当に光栄に思います
14:32
is really a great privilege.
働けるという事を
本当に光栄に思います
14:35
And so for that, I'd like to thank all of you as well.
その為にも
皆様にも感謝を述べたいと思います
14:36
Thank you.
ありがとうございます
14:39
(Applause)
(拍手)
14:41
Translated by Reiko O Bovee
Reviewed by Eriko T.

▲Back to top

About the Speaker:

Molly Stevens - Biomaterials researcher
Molly Stevens studies and creates new biomaterials that could be used to detect disease and repair bones and human tissue.

Why you should listen

At Imperial College London, Molly Stevens heads a highly multidisciplinary research group that designs bioactive materials for regenerative medicine and biosensing. It's fundamental science with an eye to practical applications as healthcare products.

Among the products from her lab: an engineered bone, cardiac tissue suitable for use in transplants, and disease-sensing nanoparticle aggregates that change color in the presence of even tiny quantities of cancer-related enzymes, making early sensing possible. As Stevens told The Lancet: "It's right down at the nanoscience level. It's really exciting stuff, but it actually results in something very tangibly useful."

More profile about the speaker
Molly Stevens | Speaker | TED.com