ABOUT THE SPEAKER
Allan Adams - Theoretical physicist
Allan Adams is a theoretical physicist working at the intersection of fluid dynamics, quantum field theory and string theory.

Why you should listen

Allan Adams is a theoretical physicist working at the intersection of fluid dynamics, quantum field theory and string theory. His research in theoretical physics focuses on string theory both as a model of quantum gravity and as a strong-coupling description of non-gravitational systems.

Like water, string theory enjoys many distinct phases in which the low-energy phenomena take qualitatively different forms. In its most familiar phases, string theory reduces to a perturbative theory of quantum gravity. These phases are useful for studying, for example, the resolution of singularities in classical gravity, or the set of possibilities for the geometry and fields of spacetime. Along these lines, Adams is particularly interested in microscopic quantization of flux vacua, and in the search for constraints on low-energy physics derived from consistency of the stringy UV completion.

In other phases, when the gravitational interactions become strong and a smooth spacetime geometry ceases to be a good approximation, a more convenient description of string theory may be given in terms of a weakly-coupled non-gravitational quantum field theory. Remarkably, these two descriptions—with and without gravity—appear to be completely equivalent, with one remaining weakly-coupled when its dual is strongly interacting. This equivalence, known as gauge-gravity duality, allows us to study strongly-coupled string and quantum field theories by studying perturbative features of their weakly-coupled duals. Gauge-gravity duals have already led to interesting predictions for the quark-gluon plasma studied at RHIC. A major focus of Adams's present research is to use such dualities to find weakly-coupled descriptions of strongly-interacting condensed matter systems which can be realized in the lab.
More profile about the speaker
Allan Adams | Speaker | TED.com
TED2014

Allan Adams: The discovery that could rewrite physics

Allan Adams: Oppdagelsen som kunne omskrive fysikken

Filmed:
1,865,923 views

17. mars 2014 annonserte en gruppe fysikere et veldig spennende funn: selve dataene for ideen om et inflasjonsunivers, en ledetråd til Big Bang. Hva betyr dette for ikke-fysikere? TED spurte Allan Adams om å kort forklare resultatene - i denne improviserte talen, illustrert av Randall Munroe fra xkcd.
- Theoretical physicist
Allan Adams is a theoretical physicist working at the intersection of fluid dynamics, quantum field theory and string theory. Full bio

Double-click the English transcript below to play the video.

00:12
If you look deepdyp into the night skyhimmel,
0
928
3492
Hvis du stirrer dypt inn i nattehimmelen,
00:16
you see starsstjerner,
1
4420
1616
ser du stjerner,
00:18
and if you look furtherlengre, you see more starsstjerner,
2
6036
2572
og om du ser dypere, ser du mer stjerner,
00:20
and furtherlengre, galaxiesgalakser, and
furtherlengre, more galaxiesgalakser.
3
8608
2159
og dypere, galakser,
og enda dypere, mer galakser.
00:22
But if you keep looking furtherlengre and furtherlengre,
4
10767
3873
Men om du fortsetter å se dypere og dypere,
00:26
eventuallyetter hvert you see nothing for a long while,
5
14640
3116
etter hvert ser du ingenting
en stund
00:29
and then finallyendelig you see a
faintsvime av, fadingfalming afterglowAfterglow,
6
17756
4462
men endelig ser du en svak, falmende glød,
00:34
and it's the afterglowAfterglow of the BigStor BangBang.
7
22218
3024
og det er gløden av
det Store Smellet (Big Bang).
00:37
Now, the BigStor BangBang was an eraera in the earlytidlig universeunivers
8
25242
2817
Big Bang var en tid i det tidlige universet
00:40
when everything we see in the night skyhimmel
9
28059
2171
da alt vi ser på nattehimmelen
00:42
was condensedkondensert into an incrediblyutrolig smallliten,
10
30230
2410
var kondensert ned til et utrolig lite,
00:44
incrediblyutrolig hotvarmt, incrediblyutrolig roilingroiling massmasse,
11
32640
4326
utrolig varmt, utrolig turbulent masse,
00:48
and from it sprungoppstått everything we see.
12
36966
2692
og fra den massen kom alt vi ser
00:51
Now, we'vevi har mappedtilordnet that afterglowAfterglow
13
39658
2859
Vi har kartlagt denne ettergløden,
00:54
with great precisionpresisjon,
14
42517
1679
med stor presisjon,
00:56
and when I say we, I mean people who aren'ter ikke me.
15
44196
2044
og når jeg sier vi, mener jeg folk som ikke er meg.
00:58
We'veVi har mappedtilordnet the afterglowAfterglow
16
46240
1876
Vi har kartlagt ettergløden
01:00
with spectacularspektakulære precisionpresisjon,
17
48116
1322
med utrolig presisjon,
01:01
and one of the shockssjokk about it
18
49438
1548
og et av sjokkene vedrørende det
01:02
is that it's almostnesten completelyhelt uniformuniform.
19
50986
2946
er at det er omtrent helt ensartet.
01:05
FourteenFjorten billionmilliarder lightlett yearsår that way
20
53932
1958
Fjorten milliarder lysår i den retningen
01:07
and 14 billionmilliarder lightlett yearsår that way,
21
55890
1860
og fjorten milliarder lysår i den retningen,
01:09
it's the samesamme temperaturetemperatur.
22
57750
1408
er det samme temperatur.
01:11
Now it's been 14 billionmilliarder yearsår
23
59158
3314
Nå har det gått 13 miliarder år
01:14
sincesiden that BigStor BangBang,
24
62472
1818
siden Big Bang,
01:16
and so it's got faintsvime av and coldkald.
25
64290
2472
og det har falmet og blitt kaldt.
01:18
It's now 2.7 degreesgrader.
26
66762
2308
Det er nå 2.7 grader.
01:21
But it's not exactlynøyaktig 2.7 degreesgrader.
27
69070
2280
Men ikke akkurat 2.7 grader.
01:23
It's only 2.7 degreesgrader to about
28
71350
2294
Det er bare 2.7 grader i
01:25
10 partsdeler in a millionmillion.
29
73644
1842
10 deler per million.
01:27
Over here, it's a little hottervarmere,
30
75486
994
Der borte er det litt varmere,
01:28
and over there, it's a little coolerkulere,
31
76480
1868
og der borte, der er det litt kaldere,
01:30
and that's incrediblyutrolig importantviktig
to everyonealle in this roomrom,
32
78348
3088
og det er utrolig viktig
for alle i dette rommet,
01:33
because where it was a little hottervarmere,
33
81436
1724
fordi der det var litt varmere,
01:35
there was a little more stuffting,
34
83160
1696
var det litt mer masse,
01:36
and where there was a little more stuffting,
35
84856
1567
og der det var litt mer masse,
01:38
we have galaxiesgalakser and clustersklynger of galaxiesgalakser
36
86423
1969
har vi galakser og galaksehoper
01:40
and superclusterssuperclusters
37
88392
1252
og superhoper
01:41
and all the structurestruktur you see in the cosmoskosmos.
38
89644
2708
og alle strukturene du ser i kosmos.
01:44
And those smallliten, little, inhomogeneitiesinhomogeneities,
39
92352
3112
Og alle de små ugjevnhetene,
01:47
20 partsdeler in a millionmillion,
40
95464
2282
20 deler per million,
01:49
those were formeddannet by quantumquantum mechanicalmekanisk wigglesWiggles
41
97746
2754
de var skapt av små kvantemekaniske vridninger
01:52
in that earlytidlig universeunivers that were stretchedstrukket
42
100500
1808
i det tidlige universet som ble strekt
01:54
acrosspå tvers the sizestørrelse of the entirehel cosmoskosmos.
43
102308
2279
over hele kosmoset.
01:56
That is spectacularspektakulære,
44
104587
1714
Det er spektakulært,
01:58
and that's not what they foundfunnet on MondayMandag;
45
106301
1665
og det er ikke hva dem fant sist mandag;
01:59
what they foundfunnet on MondayMandag is coolerkulere.
46
107966
2036
det dem fant var kulere.
02:02
So here'sher er what they foundfunnet on MondayMandag:
47
110002
2266
Så dette er det dem fant sist mandag:
02:04
ImagineTenk you take a bellklokke,
48
112268
3503
Tenk deg at du tar en bjelle,
02:07
and you whackknerte the bellklokke with a hammerhammer.
49
115771
1611
og at du slår den med en hammer.
Hva skjer? Den ringer.
02:09
What happensskjer? It ringsringer.
50
117382
1676
02:11
But if you wait, that ringingringer fadesfades
51
119058
2208
Men hvis du venter, falmer ringingen
og den falmer og falmer
02:13
and fadesfades and fadesfades
52
121266
1620
02:14
untilfør you don't noticelegge merke til it anymorelenger.
53
122886
1942
til du ikke lengre merker den.
02:16
Now, that earlytidlig universeunivers was incrediblyutrolig densetett,
54
124828
2648
Det tidlige universet var utrolig tett,
02:19
like a metalmetall, way densertettere,
55
127476
2079
som metall, mye tettere,
02:21
and if you hittruffet it, it would ringringe,
56
129555
2405
og hvis du slo den, ville den ringe.
02:23
but the thing ringingringer would be
57
131960
1863
men den ringingen ville være
strukturen til romtid,
02:25
the structurestruktur of space-timerom-tid itselfseg selv,
58
133823
2088
02:27
and the hammerhammer would be quantumquantum mechanicsmekanikk.
59
135911
2816
og hammeren ville vært kvantemekanikk.
02:30
What they foundfunnet on MondayMandag
60
138727
1931
Det dem fant sist mandag
02:32
was evidencebevis of the ringingringer
61
140658
2362
var bevis for den ringingen
02:35
of the space-timerom-tid of the earlytidlig universeunivers,
62
143020
2315
av romtid i det tidlige universet,
02:37
what we call gravitationalgravitasjons wavesbølger
63
145335
2105
det vi kaller gravitasjonsbølger
02:39
from the fundamentalfundamental eraera,
64
147440
1520
fra den fundamentale tiden,
02:40
and here'sher er how they foundfunnet it.
65
148960
1975
og dette er hvordan dem fant bølgene.
02:42
Those wavesbølger have long sincesiden fadedfalmet.
66
150935
2072
Disse bølgene har falmet for lenge siden.
02:45
If you go for a walk,
67
153007
1488
Hvis du går en tur,
så vrir ikke kvantestrengene i deg.
02:46
you don't wigglevrikke.
68
154495
1588
02:48
Those gravitationalgravitasjons wavesbølger in the structurestruktur of spacerom
69
156083
2748
Disse gravitasjonsbølgene i romtiden
02:50
are totallyhelt klart invisibleusynlig for all practicalpraktisk purposesformål.
70
158831
2774
er praktisk talt helt usynlige.
02:53
But earlytidlig on, when the universeunivers was makinglager
71
161605
2904
Men tidlig, da universet lagde
02:56
that last afterglowAfterglow,
72
164509
2370
den siste gløden,
02:58
the gravitationalgravitasjons wavesbølger
73
166879
1558
lagde gravitasjonsbølgene
03:00
put little twistsvendinger in the structurestruktur
74
168437
2863
små vridninger i strukturen
03:03
of the lightlett that we see.
75
171300
1527
til lyset vi kan se i dag.
03:04
So by looking at the night skyhimmel deeperdypere and deeperdypere --
76
172827
2966
Så ved å stirre inn i nattehimmelen, dypere og dypere --
03:07
in factfaktum, these guys spentbrukt
threetre yearsår on the SouthSør PolePole
77
175793
2638
faktisk, disse karene brukte 3 år på sydpolen
03:10
looking straightrett up throughgjennom the coldestkaldeste, clearestdet klareste,
78
178431
2589
til å se rett opp igjennom det kaldeste, klareste,
03:13
cleanestreneste airluft they possiblymuligens could find
79
181020
2350
reneste luften dem kunne finne.
03:15
looking deepdyp into the night skyhimmel and studyingstudere
80
183370
2429
Stirret dypt inn i nattehimmelen og studerte
03:17
that glowglød and looking for the faintsvime av twistsvendinger
81
185799
3376
den falmede gløden og lette etter de små vridningene
03:21
whichhvilken are the symbolsymbol, the signalsignal,
82
189175
2348
som er symbolet, signalet
03:23
of gravitationalgravitasjons wavesbølger,
83
191523
1820
av gravitasjonsbølger,
03:25
the ringingringer of the earlytidlig universeunivers.
84
193343
2341
av ringingen i det tidlige universet.
03:27
And on MondayMandag, they announcedannonsert
85
195684
1787
Og sist mandag ble det annonsert
03:29
that they had foundfunnet it.
86
197471
1744
at dem hadde funnet det.
03:31
And the thing that's so spectacularspektakulære about that to me
87
199215
2427
Og det som er så spektakulært ved det,
for meg
03:33
is not just the ringingringer, thoughselv om that is awesomeRått.
88
201642
2748
er ikke bare ringingen,
selv om det er utrolig kult.
03:36
The thing that's totallyhelt klart amazingfantastisk,
89
204390
1358
Det som er helt utrolig for meg,
03:37
the reasongrunnen til I'm on this stagescene, is because
90
205748
2102
grunnen til at jeg står på scenen, er fordi
03:39
what that tellsforteller us is something
deepdyp about the earlytidlig universeunivers.
91
207850
3468
det forteller oss noe om det tidlige universet.
03:43
It tellsforteller us that we
92
211318
1664
Det forteller oss at vi
og alt rundt oss
03:44
and everything we see around us
93
212982
1436
03:46
are basicallyi utgangspunktet one largestor bubbleboble --
94
214418
2954
er egentlig en stor boble --
og dette er idéen bak (kosmisk-)inflasjon—
03:49
and this is the ideaidé of inflationinflasjon
95
217372
1756
03:51
one largestor bubbleboble surroundedomgitt by something elseellers.
96
219128
3892
en stor boble omsluttet av noe annet.
03:55
This isn't conclusiveavgjørende evidencebevis for inflationinflasjon,
97
223020
2130
Dette er ikke et avgjørende bevis for inflasjon,
03:57
but anything that isn't inflationinflasjon that explainsforklarer this
98
225150
2174
men alt som ikke er inflasjon som forklarer dette
03:59
will look the samesamme.
99
227324
1317
vil se likt ut.
04:00
This is a theoryteori, an ideaidé,
100
228641
1645
Dette er en teori, en idé,
04:02
that has been around for a while,
101
230286
1224
som har vært kjent lenge,
og vi trodde ikke vi noen gang ville få se det.
04:03
and we never thought we we'dvi vil really see it.
102
231510
1725
For gode grunner, trodde vi ikke at vi ville se
04:05
For good reasonsgrunner, we thought we'dvi vil never see
103
233235
1838
04:07
killermorder evidencebevis, and this is killermorder evidencebevis.
104
235073
2248
gode beviser, og dette er gode beviser.
04:09
But the really crazygal ideaidé
105
237321
2010
Men den sprøe idéen er at
04:11
is that our bubbleboble is just one bubbleboble
106
239331
3032
vår boble er bare en boble
04:14
in a much largerstørre, roilingroiling potgryte of universaluniversell stuffting.
107
242363
4626
i en mye større, turbulent kokekar av universgreier.
04:18
We're never going to see the stuffting outsideutenfor,
108
246989
1826
Vi kommer aldri til å se det som er utenfor,
men ved å gå til sydpolen
04:20
but by going to the SouthSør PolePole
and spendingutgifter threetre yearsår
109
248815
2574
og tilbringe tre år til å studere
strukturen av nattehimmelen,
04:23
looking at the detaileddetaljert structurestruktur of the night skyhimmel,
110
251389
2560
04:25
we can figurefigur out
111
253949
1856
kan vi kanskje oppdage
04:27
that we're probablysannsynligvis in a universeunivers
that looksutseende kindsnill of like that.
112
255805
3090
at vi antakeligvis er i et univers
som ser litt slik ut.
04:30
And that amazesforundrer me.
113
258895
2422
Og det er utrolig for meg.
04:33
Thankstakk a lot.
114
261317
1336
Tusen takk.
04:34
(ApplauseApplaus)
115
262653
2936
(Applaus)
Translated by Emma Vartdal
Reviewed by Victoria Heby

▲Back to top

ABOUT THE SPEAKER
Allan Adams - Theoretical physicist
Allan Adams is a theoretical physicist working at the intersection of fluid dynamics, quantum field theory and string theory.

Why you should listen

Allan Adams is a theoretical physicist working at the intersection of fluid dynamics, quantum field theory and string theory. His research in theoretical physics focuses on string theory both as a model of quantum gravity and as a strong-coupling description of non-gravitational systems.

Like water, string theory enjoys many distinct phases in which the low-energy phenomena take qualitatively different forms. In its most familiar phases, string theory reduces to a perturbative theory of quantum gravity. These phases are useful for studying, for example, the resolution of singularities in classical gravity, or the set of possibilities for the geometry and fields of spacetime. Along these lines, Adams is particularly interested in microscopic quantization of flux vacua, and in the search for constraints on low-energy physics derived from consistency of the stringy UV completion.

In other phases, when the gravitational interactions become strong and a smooth spacetime geometry ceases to be a good approximation, a more convenient description of string theory may be given in terms of a weakly-coupled non-gravitational quantum field theory. Remarkably, these two descriptions—with and without gravity—appear to be completely equivalent, with one remaining weakly-coupled when its dual is strongly interacting. This equivalence, known as gauge-gravity duality, allows us to study strongly-coupled string and quantum field theories by studying perturbative features of their weakly-coupled duals. Gauge-gravity duals have already led to interesting predictions for the quark-gluon plasma studied at RHIC. A major focus of Adams's present research is to use such dualities to find weakly-coupled descriptions of strongly-interacting condensed matter systems which can be realized in the lab.
More profile about the speaker
Allan Adams | Speaker | TED.com