ABOUT THE SPEAKER
Garik Israelian - Astrophysicist
Garik Israelian's stargazing on the Canary Islands has led to high-profile discoveries about space's big disasters -- including the first evidence that supernova explosions make black holes.

Why you should listen

Garik Israelian studies the spectral signatures of stars and other bodies as an astrophysicist at the Gran Telescopio Canarias, home of the world's largest optical-infrared telescope mirror, part of the Institute of Astrophysics on the Canary Islands. He has published more than 150 articles on topics such as extra-solar planets and black hole binary systems, and his observational work --  poring over the spectral data that points to the composition of distant stars -- has led to the discovery of a lithium signature that suggests Sun-sized stars gobble up their planets.

In 1999, Israelian led a collaboration that found the first observational evidence that supernova explosions are responsible for the formation of black holes. He's on the verge of announcing more big news. (And he is one of the astronomers whom Brian May, the guitarist of Queen, credits with persuading him to finish his PhD after 30 years as a rock star.)

More profile about the speaker
Garik Israelian | Speaker | TED.com
TEDGlobal 2009

Garik Israelian: How spectroscopy could reveal alien life

Garik Israelian: 恒星里面有什么?

Filmed:
659,672 views

Garik Israelian是一个光谱学家,通过研究一颗恒星发出的光谱来理解这颗星的组成和它的运行。这是个罕见但可触及的学科,这可能让人类更容易寻找到适宜生命的行星。
- Astrophysicist
Garik Israelian's stargazing on the Canary Islands has led to high-profile discoveries about space's big disasters -- including the first evidence that supernova explosions make black holes. Full bio

Double-click the English transcript below to play the video.

00:18
I have a very difficult task任务.
0
0
3000
我有一个非常困难的任务.
00:21
I'm a spectroscopist波谱.
1
3000
3000
我是一个光谱学家.
00:24
I have to talk about astronomy天文学 without showing展示 you
2
6000
2000
我需要向你们解释什么是天文学
00:26
any single image图片 of nebulae星云 or galaxies星系, etc等等.
3
8000
4000
但不能用任何星云或星系之类的图片。
00:30
because my job工作 is spectroscopy光谱.
4
12000
2000
因为我是从事光谱学的。
00:32
I never deal合同 with images图片.
5
14000
3000
我从不与图片打交道。
00:35
But I'll try to convince说服 you
6
17000
2000
但我会说服你
00:37
that spectroscopy光谱 is actually其实 something which哪一个 can
7
19000
2000
光谱学这个学科其实可以
00:39
change更改 this world世界.
8
21000
3000
改变这个世界.
00:42
Spectroscopy光谱 can probably大概 answer回答 the question,
9
24000
3000
光谱学很可能解答如下问题,
00:45
"Is there anybody任何人 out there?"
10
27000
2000
"在地球之外有任何生命存在吗?"
00:47
Are we alone单独? SETISETI.
11
29000
2000
人类是孤独的吗? SETI(搜寻地外文明)
00:49
It's not very fun开玩笑 to do spectroscopy光谱.
12
31000
3000
从事光谱学并不是很好玩.
00:52
One of my colleagues同事 in Bulgaria保加利亚,
13
34000
2000
我有一个在保加利亚的同事,
00:54
Nevena内韦娜 Markova是Markova, spent花费 about 20 years年份
14
36000
2000
Neviana Markova, 花了近20年的时间
00:56
studying研究 these profiles型材.
15
38000
3000
来研究这些资料。
00:59
And she published发表 42 articles用品
16
41000
2000
并且她发表了42篇文章
01:01
just dedicated专用 to the subject学科.
17
43000
2000
仅仅致力于这个题目。
01:03
Can you imagine想像? Day and night, thinking思维,
18
45000
2000
你能想像吗?没日没夜地思考、
01:05
observing观察, the same相同 star for 20 years年份
19
47000
3000
花20年时间去观察去研究同一颗恒星
01:08
is incredible难以置信.
20
50000
2000
太不可思议了。
01:10
But we are crazy. We do these things.
21
52000
2000
但我们疯了。我们做这些事。
01:12
(Laughter笑声)
22
54000
2000
(笑声)
01:14
And I'm not that far.
23
56000
2000
我没有那么疯狂.
01:16
I spent花费 about eight months个月 working加工 on these profiles型材.
24
58000
3000
我花了大概八个月的时间去研究这些资料.
01:19
Because I've noticed注意到
25
61000
2000
我注意到
01:21
a very small symmetry对称
26
63000
2000
一些小的对称性
01:23
in the profile轮廓 of one of the planet行星 host主办 stars明星.
27
65000
2000
存在于一个行星的主恒星的资料里。
01:25
And I thought, well maybe there is Lithium-锂-6 in this star,
28
67000
4000
我认为,可能这颗恒星存在着锂6(Lithium-6)这种物质,
01:29
which哪一个 is an indication迹象 that this star
29
71000
2000
这表明了这颗恒星
01:31
has swallowed吞食 a planet行星.
30
73000
2000
曾经吞没过一颗行星.
01:33
Because apparently显然地 you can't have this fragile脆弱 isotope同位素
31
75000
3000
因为很明显,这种不稳定的锂6同位素不可能
01:36
of Lithium-锂-6 in the atmospheres气氛 of sun-like阳光般的 stars明星.
32
78000
4000
存在于那种类太阳的恒星的大气层中.
01:40
But you have it in planets行星 and asteroids小行星.
33
82000
3000
但这种同位素存在于行星或者小行星中.
01:43
So if you engulf吞噬 planet行星 or large number of asteroids小行星,
34
85000
6000
所以,如果吞没了行星或者大数量的小行星.
01:49
you will have this Lithium-锂-6 isotope同位素
35
91000
3000
就会有锂6同位素
01:52
in the spectrum光谱 of the star.
36
94000
2000
出现在这颗星的光谱里。
01:54
So I invested投资 more than eight months个月
37
96000
4000
所以我投入了八个多月的时间
01:58
just studying研究 the profile轮廓 of this star.
38
100000
2000
全部用于研究这颗星关于锂的数据.
02:00
And actually其实 it's amazing惊人,
39
102000
2000
事实上这件事是相当神奇.
02:02
because I got phone电话 calls电话 from many许多 reporters记者 asking,
40
104000
2000
因为我接到一些记者的电话采访,
02:04
"Have you actually其实 seen看到 the planet行星 going into a star?"
41
106000
3000
"你有没有亲眼看到这颗行星撞击到一颗恒星里?"
02:07
Because they thought that if you are having a telescope望远镜,
42
109000
4000
因为他们认为如果你有一个天文望远镜,
02:11
you are an astronomer天文学家 so what you are doing
43
113000
2000
你是一个天文学家,那么你要做的
02:13
is actually其实 looking in a telescope望远镜.
44
115000
2000
就是用天文望远镜去实际观察.
02:15
And you might威力 have seen看到 the planet行星 going into a star.
45
117000
4000
所以你可能看到过行星撞击进入颗恒星.
02:19
And I was saying, "No, excuse借口 me.
46
121000
2000
可我只能说, "不,抱歉,
02:21
What I see is this one."
47
123000
2000
其实我所看到的是这个"
02:23
(Laughter笑声)
48
125000
1000
(笑声)
02:24
It's just incredible难以置信. Because nobody没有人 understood了解 really.
49
126000
3000
这确实令人难以置信. 因为没人真正理解.
02:27
I bet赌注 that there were very few少数 people
50
129000
2000
我打赌只有非常少的一部分人
02:29
who really understood了解 what I'm talking about.
51
131000
3000
真正理解我现在讲的东西.
02:32
Because this is the indication迹象 that the planet行星 went into the star.
52
134000
4000
因为这是一颗行星撞击进入恒星的迹象.
02:36
It's amazing惊人.
53
138000
3000
太神奇了.
02:39
The power功率 of spectroscopy光谱
54
141000
2000
光谱学的力量
02:41
was actually其实 realized实现
55
143000
2000
其实曾经在1973年
02:43
by Pink Floyd弗洛伊德 already已经 in 1973.
56
145000
4000
被Pink Floyd (歌手)提及过.
02:47
(Laughter笑声)
57
149000
1000
(笑声)
02:48
Because they actually其实 said that
58
150000
3000
因为他们曾经说过
02:51
you can get any color颜色 you like
59
153000
2000
任何一种你喜欢的颜色
02:53
in a spectrum光谱.
60
155000
2000
都可以从光谱中获得.
02:55
And all you need is time and money
61
157000
2000
但你所需要的是时间和钱
02:57
to make your spectrograph摄谱仪.
62
159000
2000
来制作你的光谱图像.
02:59
This is the number one high resolution解析度,
63
161000
3000
这是高清解析度之王,
03:02
most precise精确 spectrograph摄谱仪 on this planet行星, called HARPSHARPS,
64
164000
3000
这个星球上最精确的光谱仪,叫HARPS.
03:05
which哪一个 is actually其实 used to detect检测
65
167000
2000
实际上是用来探测
03:07
extrasolar太阳系 planets行星 and sound声音 waves波浪
66
169000
2000
外太阳系行星
03:09
in the atmospheres气氛 of stars明星.
67
171000
2000
和恒星大气层中的声波.
03:11
How we get spectra?
68
173000
3000
我们如何得到光谱呢?
03:14
I'm sure most of you know from school学校 physics物理
69
176000
3000
我相信你们大部分人都从高中物理中了解过,
03:17
that it's basically基本上 splitting分裂 a white白色 light
70
179000
4000
基本上就是从一束白光折射分解成
03:21
into colors颜色.
71
183000
2000
不同的颜色.
03:23
And if you have a liquid液体 hot mass,
72
185000
3000
如果你有一个热液体物质,
03:26
it will produce生产 something which哪一个 we call a continuous连续 spectrum光谱.
73
188000
4000
将会产生我们所谓的连续谱。
03:30
A hot gas加油站 is producing生产 emission排放 lines线 only,
74
192000
3000
热气体会仅产生出发射谱线,
03:33
no continuum连续.
75
195000
2000
并不连续。
03:35
And if you place地点 a cool gas加油站 in front面前 of a
76
197000
4000
如果你将一些冷气体
03:39
hot source资源,
77
201000
2000
放在一个热源前面,
03:41
you will see certain某些 patterns模式
78
203000
2000
你将会看到特定的图案
03:43
which哪一个 we call absorption吸收 lines线.
79
205000
2000
我们称之为吸收谱线.
03:45
Which哪一个 is used actually其实 to identify鉴定 chemical化学 elements分子
80
207000
3000
实际上它用于鉴定化学元素
03:48
in a cool matter,
81
210000
2000
在冷却的物质中,
03:50
which哪一个 is absorbing吸收 exactly究竟 at those frequencies频率.
82
212000
3000
因为这种化学元素完全吸收掉这些频段.
03:53
Now, what we can do with the spectra?
83
215000
3000
现在,我们可以研究光谱,
03:56
We can actually其实 study研究 line-of-sight线的视线 velocities速度
84
218000
3000
我们实际上研究的是宇宙天体的
03:59
of cosmic宇宙的 objects对象.
85
221000
2000
视向速度。
04:01
And we can also study研究 chemical化学 composition组成
86
223000
3000
并且我们还可以研究化学成分
04:04
and physical物理 parameters参数 of stars明星,
87
226000
2000
和物理参数. 这些来自恒星以及
04:06
galaxies星系, nebulae星云.
88
228000
2000
星系和星云.
04:08
A star is the most simple简单 object目的.
89
230000
2000
恒星是一个最简单的对象.
04:10
In the core核心, we have thermonuclear热核 reactions反应 going on,
90
232000
4000
在内核我们有持续的热核反应
04:14
creating创建 chemical化学 elements分子.
91
236000
2000
创造着化学元素.
04:16
And we have a cool atmosphere大气层.
92
238000
2000
并且我们有低温的气体.
04:18
It's cool for me.
93
240000
2000
对我来说是低温,
04:20
Cool in my terms条款 is three or four or five thousand degrees.
94
242000
4000
低温在我的术语里意味着三千,或者四五千度。
04:24
My colleagues同事 in infra-red红外线 astronomy天文学
95
246000
2000
我有些红外线天文学的同事们
04:26
call minus减去 200 Kelvin is cool for them.
96
248000
5000
把所有零下200K 的温度叫低温.
04:31
But you know, everything is relative相对的.
97
253000
2000
但你知道,任何事物都是相对的.
04:33
So for me 5,000 degrees is pretty漂亮 cool.
98
255000
3000
所以对我来说5000度是相当的低温呐.
04:36
(Laughter笑声)
99
258000
1000
(笑声)
04:37
This is the spectrum光谱 of the Sun太阳 --
100
259000
3000
这是太阳的光谱.
04:40
24,000 spectral光谱 lines线,
101
262000
3000
两万四千条光谱线,
04:43
and about 15 percent百分 of these lines线 is not yet然而 identified确定.
102
265000
4000
大约有15%的线条还没有被识别出来.
04:47
It is amazing惊人. So we are in the 21stST century世纪,
103
269000
3000
这是惊人的. 那么我们处在21世纪,
04:50
and we still cannot不能 properly正确 understand理解
104
272000
2000
我们依然没有完全的理解
04:52
the spectrum光谱 of the sun太阳.
105
274000
2000
太阳的光谱.
04:54
Sometimes有时 we have to deal合同 with
106
276000
2000
有些时候我们不得不
04:56
just one tiny, weak spectral光谱 line线
107
278000
3000
跟一些细小的,微弱的光谱线条打交道.
04:59
to measure测量 the composition组成 of that chemical化学 element元件 in the atmosphere大气层.
108
281000
4000
来测量大气的化学元素构成.
05:03
For instance, you see the spectral光谱 line线 of the gold
109
285000
3000
举个例子,你看这些金元素的光谱线
05:06
is the only spectral光谱 line线 in the spectrum光谱 of the Sun太阳.
110
288000
3000
是太阳光谱中仅有的光谱线
05:09
And we use this weak feature特征
111
291000
2000
我们用这个微弱的特征
05:11
to measure测量 the composition组成
112
293000
2000
来测量
05:13
of gold in the atmosphere大气层 of the Sun太阳.
113
295000
3000
太阳大气中金元素的构成.
05:16
And now this is a work in progress进展.
114
298000
3000
现在,这项工作取得了很大的进展.
05:19
We have been dealing交易 with a similarly同样 very weak feature特征,
115
301000
4000
我们已经论述了一个相似的,也是非常微弱的特征,
05:23
which哪一个 belongs属于 to osmium.
116
305000
2000
是锇元素.
05:25
It's a heavy element元件 produced生成 in thermonuclear热核
117
307000
4000
这种重元素产生于
05:29
explosions爆炸 of supernovae超新星.
118
311000
2000
超新星的热核爆炸.
05:31
It's the only place地点 where you can produce生产, actually其实, osmium.
119
313000
3000
实际上这是唯一能产生锇元素的地方.
05:34
Just comparing比较 the composition组成 of osmium
120
316000
4000
将锇元素的构成
05:38
in one of the planet行星 host主办 stars明星,
121
320000
2000
与这颗行星所在的主恒星相比,
05:40
we want to understand理解 why there is so much
122
322000
2000
我们试图理解那里为什么存在如此多的
05:42
of this element元件.
123
324000
2000
这种元素.
05:44
Perhaps也许 we even think that maybe
124
326000
3000
我们甚至想过,
05:47
supernova超新星 explosions爆炸 trigger触发 formations编队 of planets行星 and stars明星.
125
329000
4000
也许超新星爆炸触发了行星和恒星的形成.
05:51
It can be an indication迹象.
126
333000
3000
这可以算一个迹象.
05:54
The other day, my colleague同事 from Berkeley伯克利,
127
336000
2000
有天伯克利(Berkeley)的一个同事,
05:56
GiborGibor Basri巴斯里, emailed电子邮件 me
128
338000
2000
Gibor Basri,发给我一个电子邮件
05:58
a very interesting有趣 spectrum光谱,
129
340000
2000
一个非常有趣的光谱,
06:00
asking me, "Can you have a look at this?"
130
342000
2000
问我,"看看这是什么吗?"
06:02
And I couldn't不能 sleep睡觉, next下一个 two weeks,
131
344000
4000
接下来的两周,我就睡不着觉了.
06:06
when I saw the huge巨大 amount of oxygen
132
348000
3000
我看到了大量的氧
06:09
and other elements分子 in the spectrum光谱 of the stars明星.
133
351000
2000
和其它元素排列在这颗恒星的光谱中.
06:11
I knew知道 that there is nothing like that observed观察到的 in the galaxy星系.
134
353000
4000
我知道从银河系中没有这样的光谱.
06:15
It was incredible难以置信. The only conclusion结论 we could make from this
135
357000
4000
难以置信! 从这个清晰的证据只能得出
06:19
is clear明确 evidence证据 that there was a supernova超新星 explosion爆炸
136
361000
3000
这个系统中曾经发生过一次超新星爆炸
06:22
in this system系统, which哪一个 polluted污染 the atmosphere大气层
137
364000
3000
污染了这颗恒星的
06:25
of this star.
138
367000
2000
大气层
06:27
And later后来 a black黑色 hole was formed形成
139
369000
2000
后来,一个黑洞
06:29
in a binary二进制 system系统,
140
371000
2000
在这个两元体系中形成了.
06:31
which哪一个 is still there with a mass of about
141
373000
2000
现在仍然在那里,集中了大约
06:33
five solar太阳能 masses群众.
142
375000
2000
五个太阳质量.
06:35
This was considered考虑 as first evidence证据 that actually其实 black黑色 holes
143
377000
3000
这被认为是第一个证明黑洞的形成
06:38
come from supernovae超新星 explosions爆炸.
144
380000
4000
是来自超新星热核爆炸.
06:42
My colleagues同事, comparing比较 composition组成 of chemical化学 elements分子
145
384000
2000
我的同事们,将不同星系的化学元素的构成
06:44
in different不同 galactic stars明星,
146
386000
2000
进行了对比
06:46
actually其实 discovered发现 alien外侨 stars明星 in our galaxy星系.
147
388000
4000
便在银河系中发现了许多陌生恒星。
06:50
It's amazing惊人 that you can go so far
148
392000
3000
这太神奇了,你能了解这么多
06:53
simply只是 studying研究 the chemical化学 composition组成 of stars明星.
149
395000
4000
仅仅靠分析这些星球的化学元素的构成.
06:57
They actually其实 said that one of the stars明星 you see in the spectra
150
399000
3000
他们实际上说过,你看到这些光谱中的恒星之一
07:00
is an alien外侨. It comes from a different不同 galaxy星系.
151
402000
3000
来自于另外一个星系。
07:03
There is interaction相互作用 of galaxies星系. We know this.
152
405000
3000
不同星际之间存在着相互作用. 我们了解这一点.
07:06
And sometimes有时 they just capture捕获 stars明星.
153
408000
5000
有时他们也会捕获其它恒星.
07:11
You've heard听说 about solar太阳能 flares喇叭裤.
154
413000
3000
你曾经听说过太阳耀斑.
07:14
We were very surprised诧异 to discover发现
155
416000
2000
我们曾非常惊讶的发现
07:16
a super flare闪光,
156
418000
2000
一个超级耀斑,
07:18
a flare闪光 which哪一个 is thousands数千 of millions百万 of times
157
420000
4000
这个耀斑的能量比我们看到太阳的耀斑
07:22
more powerful强大 than those we see in the Sun太阳.
158
424000
2000
要强烈上百万倍.
07:24
In one of the binary二进制 stars明星 in our galaxy星系
159
426000
3000
在银河系中
07:27
called FHFH Leo狮子座,
160
429000
2000
有一个叫FH Leo的双星体系,
07:29
we discovered发现 the super flare闪光.
161
431000
2000
我们发现过一次超级耀斑.
07:31
And later后来 we went to study研究 the spectral光谱 stars明星
162
433000
4000
后来我们去研究它的光谱
07:35
to see is there anything strange奇怪 with these objects对象.
163
437000
2000
去理解这些对象之间有没有任何诡异的联系.
07:37
And we found发现 that everything is normal正常.
164
439000
3000
然后我们发现,所有事情都很正常.
07:40
These stars明星 are normal正常 like the Sun太阳. Age年龄, everything was normal正常.
165
442000
3000
这些恒星像太阳一样普通. 年龄, 所有东西都是正常的.
07:43
So this is a mystery神秘.
166
445000
2000
所以这是一个谜.
07:45
It's one of the mysteries奥秘 we still have, super flares喇叭裤.
167
447000
3000
我们仍然未解的一个谜, 超级耀斑.
07:48
And there are six or seven similar类似 cases
168
450000
3000
并且还有六到七个相同的案例
07:51
reported报道 in the literature文学.
169
453000
2000
在文献中记载着.
07:53
Now to go ahead with this,
170
455000
2000
现在, 开始讲这个前
07:55
we really need to understand理解 chemical化学 evolution演化 of the universe宇宙.
171
457000
4000
我们需要去理解宇宙化学的演变.
07:59
It's very complicated复杂. I don't really want you to
172
461000
2000
这超级复杂. 我当然不并是真的要你去理解
08:01
try to understand理解 what is here.
173
463000
4000
表上的这些东西.
08:05
(Laughter笑声)
174
467000
1000
(笑声)
08:06
But it's to show显示 you how complicated复杂 is the whole整个 story故事
175
468000
3000
但这是为了告诉你,要多复杂的一个过程
08:09
of the production生产 of chemical化学 elements分子.
176
471000
2000
才能产生出这些化学元素.
08:11
You have two channels渠道 --
177
473000
2000
你有两种方法--
08:13
the massive大规模的 stars明星 and low-mass低质量 stars明星 --
178
475000
2000
大质量恒星和低质量恒星 --
08:15
producing生产 and recycling回收 matter and chemical化学 elements分子 in the universe宇宙.
179
477000
3000
产生并回收宇宙中的物质和化学元素.
08:18
And doing this for 14 billion十亿 years年份,
180
480000
3000
并且已经做了140亿年,
08:21
we end结束 up with this picture图片,
181
483000
2000
我们用这张图做结尾.
08:23
which哪一个 is a very important重要 graph图形,
182
485000
2000
这是一个很重要的图片,
08:25
showing展示 relative相对的 abundances丰度 of chemical化学 elements分子
183
487000
3000
展示出丰富的化学元素
08:28
in sun-like阳光般的 stars明星
184
490000
2000
存在于类太阳的恒星中
08:30
and in the interstellar星际 medium.
185
492000
3000
和星际介质中.
08:33
So which哪一个 means手段 that it's really impossible不可能
186
495000
2000
这就意味着, 你不可能找到一个物体
08:35
to find an object目的 where you find about 10 times more sulfur than silicon,
187
497000
5000
里面的硫元素比硅元素的10倍还多,
08:40
five times more calcium than oxygen. It's just impossible不可能.
188
502000
4000
钙比氧元素的5倍还多. 这就是不可能的.
08:44
And if you find one, I will say that
189
506000
2000
如果你真找到了,我会说
08:46
this is something related有关 to SETISETI,
190
508000
3000
这跟搜寻地外文明(SETI)有关.
08:49
because naturally自然 you can't do it.
191
511000
4000
但自然产生的,你找不到.
08:53
Doppler多普勒 Effect影响 is something very important重要
192
515000
2000
多普勒效应是非常重要的
08:55
from fundamental基本的 physics物理.
193
517000
2000
来自于基础物理.
08:57
And this is related有关 to the change更改 of the frequency频率
194
519000
2000
这是关于移动源的频率的变化.
08:59
of a moving移动 source资源.
195
521000
2000
这是关于移动源的频率的变化.
09:01
The Doppler多普勒 Effect影响 is used to discover发现 extrasolar太阳系 planets行星.
196
523000
5000
多普勒效曾用于发现太阳系外行星.
09:06
The precision精确 which哪一个 we need
197
528000
2000
我们需要的精确数据
09:08
to discover发现 a Jupiter-like木星般的 planet行星
198
530000
2000
可以帮我们发现类木星的行星
09:10
around a sun-like阳光般的 star
199
532000
2000
围绕着类太阳的恒星
09:12
is something like 28.4 meters per second第二.
200
534000
4000
即是以每秒钟28.4米的速度公转.
09:16
And we need nine centimeters公分 per second第二
201
538000
2000
并且我们需要每秒9厘米的速度
09:18
to detect检测 an Earth-like类似地球 planet行星.
202
540000
3000
去探测一个类地球的行星.
09:21
This can be doneDONE with the future未来 spectrographs光谱仪.
203
543000
3000
未来的光谱学可以完成这种任务.
09:24
I, myself, I'm actually其实 involved参与 in the team球队
204
546000
4000
事实上, 我自己参加了这个团队
09:28
which哪一个 is developing发展 a CODEX法典,
205
550000
2000
这个团队正在开发一种规则,
09:30
high resolution解析度, future未来 generation spectrograph摄谱仪
206
552000
2000
高解析度,下一代的光谱分析机
09:32
for the 42 meter仪表 E-ELTE-ELT telescope望远镜.
207
554000
4000
42米长的E-ELT望远镜.
09:36
And this is going to be an instrument仪器
208
558000
3000
这个仪器将用于
09:39
to detect检测 Earth-like类似地球 planets行星
209
561000
2000
探测围绕类太阳恒星的
09:41
around sun-like阳光般的 stars明星.
210
563000
2000
类地行星.
09:43
It is an amazing惊人 tool工具 called astroseismology星震学
211
565000
3000
这个很棒的工具叫天文地震仪
09:46
where we can detect检测 sound声音 waves波浪
212
568000
3000
可以用来探测
09:49
in the atmospheres气氛 of stars明星.
213
571000
2000
来自于恒星的大气层的声波.
09:51
This is the sound声音 of an AlphaΑ Cen.
214
573000
3000
这是半人马座阿尔法星的声音.
09:54
We can detect检测 sound声音 waves波浪
215
576000
2000
我们可以探测到
09:56
in the atmospheres气氛 of sun-like阳光般的 stars明星.
216
578000
2000
来自于类太阳恒星的大气层的声波.
09:58
Those waves波浪 have frequencies频率
217
580000
3000
这些有频率的声波
10:01
in infrasound domain, the sound声音 actually其实 nobody没有人 knows知道, domain.
218
583000
4000
在一个固定的声域,这种声音实际上没人听的懂.
10:05
Coming未来 back to the most important重要 question,
219
587000
2000
回归到我们最重要的问题,
10:07
"Is there anybody任何人 out there?"
220
589000
2000
"在地球之外有任何生命存在吗?"
10:09
This is closely密切 related有关
221
591000
2000
这其实与行星的构造运动
10:11
to tectonic构造 and volcanic火山 activity活动 of planets行星.
222
593000
4000
和火山运动密切相关.
10:15
Connection连接 between之间 life
223
597000
2000
生命
10:17
and radioactive放射性的 nuclei原子核
224
599000
2000
和放射性原子核之间的联系
10:19
is straightforward直截了当.
225
601000
2000
很简单直观.
10:21
No life without tectonic构造 activity活动,
226
603000
3000
没有构造活动、火山活动
10:24
without volcanic火山 activity活动.
227
606000
2000
就没有生命.
10:26
And we know very well that geothermal地热 energy能源
228
608000
2000
并且我们知道地热能量
10:28
is mostly大多 produced生成 by decay衰变 of uranium, thorium, and potassium.
229
610000
5000
是铀,钍和钾元素进行衰减产生的.
10:33
How to measure测量, if we have planets行星
230
615000
4000
怎么去测量,如果有某些行星
10:37
where the amount of those elements分子 is small,
231
619000
4000
这些元素含量非常低,
10:41
so those planets行星 are tectonically构造上 dead,
232
623000
3000
这些行星基本上是构造性死亡,
10:44
there cannot不能 be life.
233
626000
2000
不可能有生命存在.
10:46
If there is too much uranium or potassium or thorium,
234
628000
3000
如果那里有太多的铀,钍或者钾元素存在,
10:49
probably大概, again, there would be no life.
235
631000
3000
大概,同样,那里也不会有生命存在.
10:52
Because can you imagine想像 everything boiling沸腾?
236
634000
2000
因为你可以想像所有东西都沸腾吗?
10:54
It's too much energy能源 on a planet行星.
237
636000
2000
那是因为有太多能量在行星上.
10:56
Now, we have been measuring测量 abundance丰富
238
638000
2000
现在我们可以通过
10:58
of thorium in one of the stars明星 with extrasolar太阳系 planets行星.
239
640000
4000
从其它恒星和太阳系外行星测量各种元素或钍元素.
11:02
It's exactly究竟 the same相同 game游戏. A very tiny feature特征.
240
644000
4000
这些规则是一样的. 很小的一个特点。
11:06
We are actually其实 trying to measure测量 this profile轮廓
241
648000
2000
我们实际上正在衡量这些资料.
11:08
and to detect检测 thorium.
242
650000
2000
并且在探测钍.
11:10
It's very tough强硬. It's very tough强硬.
243
652000
2000
这非常难. 实在太难了.
11:12
And you have to, first you have to convince说服 yourself你自己.
244
654000
2000
但这不得不做,首先你得说服你自己.
11:14
Then you have to convince说服 your colleagues同事.
245
656000
2000
然后你必须去说服你的同事.
11:16
And then you have to convince说服 the whole整个 world世界
246
658000
3000
再然后你还得去说服整个世界
11:19
that you have actually其实 detected检测 something like this
247
661000
3000
你探测到一些
11:22
in the atmosphere大气层 of an extrasolar太阳系 planet行星
248
664000
2000
类太阳主星的大气层中存在着某些东西
11:24
host主办 star somewhere某处 in 100 parsec秒差距 away from here.
249
666000
3000
但这颗星离我们大概距离320光年(100秒差距).
11:27
It's really difficult.
250
669000
2000
这太难了.
11:29
But if you want to know about a life on extrasolar太阳系 planets行星,
251
671000
5000
但如果你想了解外太阳系有没有生命,
11:34
you have to do this job工作.
252
676000
2000
你就必须做这些工作.
11:36
Because you have to know how much of radioactive放射性的 element元件 you have
253
678000
3000
因为你必须知道有多少放射性元素
11:39
in those systems系统.
254
681000
2000
存在于那些系统中.
11:41
The one way to discover发现 about aliens外星人
255
683000
3000
发现外星生命的一个方法
11:44
is to tune your radio无线电 telescope望远镜 and listen to the signals信号.
256
686000
4000
就是调节你的射电望远镜并收听信号.
11:48
If you receive接收 something interesting有趣,
257
690000
3000
如果你接收到一些有趣的东西,
11:51
well that's what SETISETI does actually其实,
258
693000
2000
其实那是搜寻地外文明组织(SETI)去做的,
11:53
what SETISETI has been doing for many许多 years年份.
259
695000
3000
他们一直做了很多年了.
11:56
I think the most promising有希望 way
260
698000
2000
我认为最有希望的方法
11:58
is to go for biomarkers生物标记物.
261
700000
3000
就是用生物标志物.
12:01
You can see the spectrum光谱 of the Earth地球, this Earthshine地球反照 spectrum光谱,
262
703000
3000
你可以看一下地球的光谱,地球光线分析频谱.
12:04
and that is a very clear明确 signal信号.
263
706000
3000
你能看到一个非常明确的信号.
12:07
The slope which哪一个 is coming未来, which哪一个 we call a Red Edge边缘,
264
709000
3000
这个倾斜的地方我们称之为红边(Red Edge),
12:10
is a detection发现 of vegetated植被 area.
265
712000
4000
是植被区域的探测.
12:14
It's amazing惊人 that we can detect检测 vegetation植被
266
716000
4000
这太神奇了,我们能从光谱中
12:18
from a spectrum光谱.
267
720000
2000
检测出植物.
12:20
Now imagine想像 doing this test测试
268
722000
2000
现在来想像一下探测
12:22
for other planets行星.
269
724000
3000
其他行星.
12:25
Now very recently最近, very recently最近,
270
727000
3000
最近,就在最近,
12:28
I'm talking about last six, seven, eight months个月,
271
730000
3000
我是说过去的七八个月,
12:31
water, methane甲烷, carbon dioxide二氧化碳
272
733000
4000
水,甲烷,二氧化碳
12:35
have been detected检测 in the spectrum光谱
273
737000
2000
已经在外太星系行星
12:37
of a planet行星 outside the solar太阳能 system系统.
274
739000
3000
的光谱中被发现.
12:40
It's amazing惊人. So this is the power功率 of spectroscopy光谱.
275
742000
4000
这太棒了,这就是光谱的力量.
12:44
You can actually其实 go and detect检测
276
746000
3000
你可以去探测
12:47
and study研究 a chemical化学 composition组成 of planets行星
277
749000
3000
去研究行星的化学构成,
12:50
far, far, far from solar太阳能 system系统.
278
752000
3000
既使离太阳系很远很远的地方.
12:53
We have to detect检测 oxygen or ozone臭氧
279
755000
3000
我们还要检测氧气或者臭氧的含量
12:56
to make sure that we have all necessary必要 conditions条件
280
758000
3000
来确定那里有所有必需条件
12:59
to have life.
281
761000
4000
有生命存在.
13:03
Cosmic宇宙的 miracles奇迹 are something
282
765000
2000
宇宙的奇迹
13:05
which哪一个 can be related有关 to SETISETI.
283
767000
2000
与搜寻地外文明(SETI)紧密相关.
13:07
Now imagine想像 an object目的, amazing惊人 object目的,
284
769000
2000
现在,想像有一个天体,神奇的天体,
13:09
or something which哪一个 we cannot不能 explain说明
285
771000
2000
或一些我们无法解释的天体
13:11
when we just stand up and say,
286
773000
2000
我们只是站起来说,
13:13
"Look, we give up. Physics物理 doesn't work."
287
775000
2000
"好吧,我们放弃,物理学根本无法解释."
13:15
So it's something which哪一个 you can always refer参考 to SETISETI and say,
288
777000
3000
所以这就是你可以永远想着SETI说,
13:18
"Well, somebody must必须 be doing this, somehow不知何故."
289
780000
5000
"好吧,肯定有某些人在用某种方法做这件事."
13:23
And with the known已知 physics物理 etc等等,
290
785000
2000
对于已知的物理学
13:25
it's something actually其实 which哪一个 has been pointed out
291
787000
2000
其实已经被一个学者指出来了
13:27
by Frank坦率 Drake,
292
789000
2000
是Frank Drake,
13:29
many许多 years年份 ago, and Shklovsky什克洛夫斯基.
293
791000
2000
很多年以前.他就这么认为
13:31
If you see, in the spectrum光谱 of a planet行星 host主办 star,
294
793000
3000
如果你在一个主恒星系统中的行星的光谱中,
13:34
if you see strange奇怪 chemical化学 elements分子,
295
796000
4000
如果看到陌生的化学元素,
13:38
it can be a signal信号 from a civilization文明
296
800000
3000
这可能是一个地外文明的发出的信号
13:41
which哪一个 is there and they want to signal信号 about it.
297
803000
3000
并且他们想要这个信号在那里存在.
13:44
They want to actually其实 signal信号 their presence存在
298
806000
4000
他们实际上想把他们的存在
13:48
through通过 these spectral光谱 lines线,
299
810000
2000
的信号存储在光谱条纹里,
13:50
in the spectrum光谱 of a star, in different不同 ways方法.
300
812000
3000
用不同的方式表现在恒星的光谱中.
13:53
There can be different不同 ways方法 doing this.
301
815000
2000
他们可以用不同的方式去做这件事.
13:55
One is, for instance, technetium
302
817000
2000
举个例子, 例如锝元素
13:57
is a radioactive放射性的 element元件
303
819000
2000
是一个放射性元素
13:59
with a decay衰变 time of 4.2 million百万 years年份.
304
821000
3000
衰减周期大概是420万年.
14:02
If you suddenly突然 observe technetium
305
824000
3000
如果你突然发现有锝元素存在于
14:05
in a sun-like阳光般的 star,
306
827000
2000
一个类太阳恒星中,
14:07
you can be sure that somebody has put this
307
829000
2000
你可以肯定是有人将这种元素放进了
14:09
element元件 in the atmosphere大气层,
308
831000
2000
这个大气层。
14:11
because in a natural自然 way it is impossible不可能 to do this.
309
833000
4000
因为在自然界中不可能发生.
14:15
Now we are reviewing回顾 the spectra of about
310
837000
3000
现在我们正在查看光谱资料,
14:18
300 stars明星 with extrasolar太阳系 planets行星.
311
840000
3000
是关于300颗外太星系带行星的恒星.
14:21
And we are doing this job工作 since以来 2000
312
843000
4000
我们从2000年就开始这项工作
14:25
and it's a very heavy project项目.
313
847000
3000
这是一项很复杂的工程.
14:28
We have been working加工 very hard.
314
850000
2000
一直以为我们全力以赴.
14:30
And we have some interesting有趣 cases,
315
852000
4000
并且我们已经发现了一些有趣的例子,
14:34
candidates候选人, so on, things which哪一个 we can't really explain说明.
316
856000
4000
案例以及我们无法完全解释的东西.
14:38
And I hope希望 in the near future未来
317
860000
3000
我希望在不久的将来
14:41
we can confirm确认 this.
318
863000
2000
我们可以确定这些东西.
14:43
So the main主要 question: "Are we alone单独?"
319
865000
2000
现在回到主要问题,"人类是孤独的吗?"
14:45
I think it will not come from UFOs不明飞行物.
320
867000
3000
我认为答案不会来自不明飞行物(UFO).
14:48
It will not come from radio无线电 signals信号.
321
870000
4000
也不是来自无线电信号.
14:52
I think it will come from a spectrum光谱 like this.
322
874000
4000
我认为答案将会从这些光谱中得到.
14:56
It is the spectrum光谱 of a planet行星 like Earth地球,
323
878000
5000
这是一个类地行星的光谱
15:01
showing展示 a presence存在 of nitrogen dioxide二氧化碳,
324
883000
3000
有大量的氮氧化物
15:04
as a clear明确 signal信号 of life,
325
886000
3000
是生命存在的明显的信号,
15:07
and oxygen and ozone臭氧.
326
889000
2000
以及氧气和臭氧.
15:09
If, one day, and I think it will be
327
891000
2000
如果有这么一天,我想这一天将会是
15:11
within 15 years年份 from now, or 20 years年份.
328
893000
3000
从现在开始的15年之内,或者20年之内.
15:14
If we discover发现 a spectrum光谱 like this
329
896000
3000
如果我们发现有这样的光谱存在,
15:17
we can be sure that there is life on that planet行星.
330
899000
2000
可以肯定,那颗行星上存在生命.
15:19
In about five years年份 we will discover发现
331
901000
3000
未来大约5年的时间我们将发现一些
15:22
planets行星 like Earth地球, around sun-like阳光般的 stars明星,
332
904000
3000
类地行星环绕着类太阳恒星,
15:25
the same相同 distance距离 as the Earth地球 from the Sun太阳.
333
907000
3000
它们的距离相当于地球与太阳的距离.
15:28
It will take about five years年份.
334
910000
2000
大概花费五年的时间.
15:30
And then we will need another另一个 10, 15 years年份
335
912000
2000
然后我们需要另外的10到15年时间
15:32
with space空间 projects项目
336
914000
2000
通过空间工程
15:34
to get the spectra of Earth-like类似地球 planets行星 like the one I showed显示 you.
337
916000
3000
来获得类地行星的光谱,如我刚展示给你的那张一样.
15:37
And if we see the nitrogen dioxide二氧化碳
338
919000
2000
如果我们看到有大量的氮氧化物
15:39
and oxygen,
339
921000
2000
和氧气存在,
15:41
I think we have the perfect完善 E.T.
340
923000
2000
我认为我们就完美的找到了外星生命(E.T.)
15:43
Thank you very much.
341
925000
2000
非常感谢.
15:45
(Applause掌声)
342
927000
4000
(掌声)
Translated by Chunlei Chang
Reviewed by dahong zhang

▲Back to top

ABOUT THE SPEAKER
Garik Israelian - Astrophysicist
Garik Israelian's stargazing on the Canary Islands has led to high-profile discoveries about space's big disasters -- including the first evidence that supernova explosions make black holes.

Why you should listen

Garik Israelian studies the spectral signatures of stars and other bodies as an astrophysicist at the Gran Telescopio Canarias, home of the world's largest optical-infrared telescope mirror, part of the Institute of Astrophysics on the Canary Islands. He has published more than 150 articles on topics such as extra-solar planets and black hole binary systems, and his observational work --  poring over the spectral data that points to the composition of distant stars -- has led to the discovery of a lithium signature that suggests Sun-sized stars gobble up their planets.

In 1999, Israelian led a collaboration that found the first observational evidence that supernova explosions are responsible for the formation of black holes. He's on the verge of announcing more big news. (And he is one of the astronomers whom Brian May, the guitarist of Queen, credits with persuading him to finish his PhD after 30 years as a rock star.)

More profile about the speaker
Garik Israelian | Speaker | TED.com