Cathy O'Neil: The era of blind faith in big data must end
Keti O'Nil (Cathy O'Neil): Doba slepe vere u masovne podatke mora se okončati
Data skeptic Cathy O’Neil uncovers the dark secrets of big data, showing how our "objective" algorithms could in fact reinforce human bias. Full bio
Double-click the English transcript below to play the video.
the winners from the losers.
pobednike od gubitnika.
koje ne razumemo,
that we don't understand
sistemi za podnošenje žalbe.
potrebne su vam dve stvari:
and often hoping for.
posmatranjem i zaključivanjem.
by looking, figuring out.
what is associated with success.
in written code.
da napravim porodici doručak.
to make a meal for my family.
ona mala pakovanja instant špageta.
of ramen noodles as food.
if my kids eat vegetables.
da se moj sin pita.
from if my youngest son were in charge.
he gets to eat lots of Nutella.
Moje mišljenje je važno.
da većina ljudi misli o algoritmima.
most people think of algorithms.
and true and scientific.
objektivni, istiniti i naučni.
i da se plašite algoritama
kada slepo verujemo u masovne podatke.
blind faith in big data.
direktor srednje škole u Bruklinu.
She's a high school principal in Brooklyn.
da njen kolektiv ocenjuju
her teachers were being scored
koja je formula i pokaži mi je.
what the formula is, show it to me.
to get the formula,
mi je rekla da je to matematika
told me it was math
na osnovu zakona o slobodi informacija,
a Freedom of Information Act request,
and all their scores
sramoćenja nastavnika.
as an act of teacher-shaming.
do formula, do izvornog kôda,
the source code, through the same means,
nema podatke o toj formuli.
had access to that formula.
veoma bistar, Geri Rubenstajn.
got involved, Gary Rubenstein.
iz onog članka u Njujork Postu
from that New York Post data
matematiku u sedmom i osmom razredu.
za individualne procene.
for individual assessment.
with 205 other teachers,
recommendations from her principal
of you guys are thinking,
stručnjaci za veštačku inteligenciju.
the AI experts here.
an algorithm that inconsistent."
tako nedosledan algoritam.“
sa dobrom namerama.
with good intentions.
that's designed badly
i tiho praviti ogromnu štetu.
silently wreaking havoc.
na seksualno uznemiravanje.
about sexual harassment.
nije dozvoljen uspeh.
to succeed at Fox News.
but we've seen recently
da problemi još nisu rešeni.
da okrene novi list.
to turn over another leaf?
their hiring process
tokom poslednjih 21 godina.
21 years of applications to Fox News.
bila četiri godine
stayed there for four years
da uči šta je vodilo ka uspehu,
to learn what led to success,
vodile ka uspehu
historically led to success
na trenutne kandidate.
to a current pool of applicants.
koje su bile uspešne u prošlosti.
who were successful in the past.
i slepo primenjujete.
blindly apply algorithms.
svetu to bi bilo sjajno,
if we had a perfect world,
nema sramne parnice,
don't have embarrassing lawsuits,
u tim kompanijama
da će možda kodifikovati seksizam
it means they could be codifying sexism
all neighborhoods
samo u delove gde živi manjina
only to the minority neighborhoods
bili bi veoma pristrasni.
pronašli naučnike za podatke
we found the data scientists
where the next crime would occur?
da predvide mesto sledećeg zločina?
ko će sledeći biti kriminalac?
criminal would be?
svojim sjajnim i tačnim modelom,
about how great and how accurate
ali postoje ozbiljne podele
but we do have severe segregations
u sistemu policije i pravosuđa.
and justice system data.
pojedinačni kriminalitet,
the individual criminality,
nedavno je proverila
recently looked into
u presudama na Floridi.
during sentencing by judges.
dobio je 10 od 10 poena.
was scored a 10 out of 10.
Tri od deset, nizak rizik.
3 out of 10, low risk.
zbog posedovanja droge.
for drug possession.
the higher score you are,
a longer sentence.
sakrivaju ružnu istinu
technologists hide ugly truths
important and destructive,
„oružje za matematičko uništenje“.
and it's not a mistake.
koje prave privatne algoritme
building private algorithms
za nastavnike i policiju,
for teachers and the public police,
koji se ne može proveriti.
the authority of the inscrutable.
pošto je ovo privatno,
since all this stuff is private
will solve this problem.
to be made in unfairness.
ekonomski racionalni činioci.
onako kako ne želimo biti
in ways that we wish we weren't,
have consistently demonstrated this
of applications to jobs out,
imena koja zvuče belački
have white-sounding names
the results -- always.
into the algorithms
da ne mislim o instant-špagetama;
about ramen noodles --
koji otkrivaju praksu iz prošlosti
picking up on past practices
da algoritmi ostanu neoštećeni?
to emerge unscathed?
proveriti jesu li pravični.
we can check them for fairness.
the truth every time.
Možemo ih poboljšati.
We can make them better.
o kojem sam govorila,
algorithm I talked about,
značila bi prihvatanje činjenice
we'd have to come to terms with the fact
podjednako puše travu
smoke pot at the same rate
šanse da budu uhapšeni -
to be arrested --
depending on the area.
u drugim kriminalnim oblastima,
in other crime categories,
o definiciji uspeha,
the definition of success,
koji smo spomenuli.
algorithm? We talked about it.
i unapređena je jednom?
and is promoted once?
u skladu sa njihovom kulturom.
that is supported by their culture.
slepe audicije za orkestar kao primer.
the blind orchestra audition
are behind a sheet.
odlučuju šta je bitno
have decided what's important
distracted by that.
slepe audicije za orkestre,
auditions started,
povećao se pet puta.
went up by a factor of five.
za nastavnike odmah raspao.
for teachers would fail immediately.
greške svakog algoritma.
the errors of every algorithm.
i za koga ovaj model ne funkcioniše?
and for whom does this model fail?
koje se stvaraju.
to uzeli u obzir
had considered that
samo postove naših prijatelja.
only things that our friends had posted.
jednu za naučnike koji se bave podacima.
one for the data scientists out there.
da budemo sudije istine.
not be the arbiters of truth.
prevodioci etičkih rasprava
of ethical discussions that happen
moramo zahtevati odgovornost.
for our algorithmic overlords.
mora se okončati.
in big data must end.
ABOUT THE SPEAKER
Cathy O'Neil - Mathematician, data scientistData skeptic Cathy O’Neil uncovers the dark secrets of big data, showing how our "objective" algorithms could in fact reinforce human bias.
Why you should listen
In 2008, as a hedge-fund quant, mathematician Cathy O’Neil saw firsthand how really really bad math could lead to financial disaster. Disillusioned, O’Neil became a data scientist and eventually joined Occupy Wall Street’s Alternative Banking Group.
With her popular blog mathbabe.org, O’Neil emerged as an investigative journalist. Her acclaimed book Weapons of Math Destruction details how opaque, black-box algorithms rely on biased historical data to do everything from sentence defendants to hire workers. In 2017, O’Neil founded consulting firm ORCAA to audit algorithms for racial, gender and economic inequality.
Cathy O'Neil | Speaker | TED.com