ABOUT THE SPEAKER
Blaise Agüera y Arcas - Software architect
Blaise Agüera y Arcas works on machine learning at Google. Previously a Distinguished Engineer at Microsoft, he has worked on augmented reality, mapping, wearable computing and natural user interfaces.

Why you should listen

Blaise Agüera y Arcas is principal scientist at Google, where he leads a team working on machine intelligence for mobile devices. His group works extensively with deep neural nets for machine perception and distributed learning, and it also investigates so-called "connectomics" research, assessing maps of connections within the brain.

Agüera y Arcas' background is as multidimensional as the visions he helps create. In the 1990s, he authored patents on both video compression and 3D visualization techniques, and in 2001, he made an influential computational discovery that cast doubt on Gutenberg's role as the father of movable type.

He also created Seadragon (acquired by Microsoft in 2006), the visualization technology that gives Photosynth its amazingly smooth digital rendering and zoom capabilities. Photosynth itself is a vastly powerful piece of software capable of taking a wide variety of images, analyzing them for similarities, and grafting them together into an interactive three-dimensional space. This seamless patchwork of images can be viewed via multiple angles and magnifications, allowing us to look around corners or “fly” in for a (much) closer look. Simply put, it could utterly transform the way we experience digital images.

He joined Microsoft when Seadragon was acquired by Live Labs in 2006. Shortly after the acquisition of Seadragon, Agüera y Arcas directed his team in a collaboration with Microsoft Research and the University of Washington, leading to the first public previews of Photosynth several months later. His TED Talk on Seadragon and Photosynth in 2007 is rated one of TED's "most jaw-dropping." He returned to TED in 2010 to demo Bing’s augmented reality maps.

Fun fact: According to the author, Agüera y Arcas is the inspiration for the character Elgin in the 2012 best-selling novel Where'd You Go, Bernadette?

More profile about the speaker
Blaise Agüera y Arcas | Speaker | TED.com
TED@BCG Paris

Blaise Agüera y Arcas: How computers are learning to be creative

布莱斯 · 阿尔卡斯: 计算机如何学习具有创造力

Filmed:
1,934,067 views

我们站在了艺术和创造力的前沿——而做到这一点的并不是人类。谷歌首席科学家,布莱斯 · 阿尔卡斯,致力于研究机器的感知和分布式学习的深度神经网络。在这个视屏中,他将会展示可以识别图片的神经网络如何反向运行。结果显示:壮观,梦幻的拼贴画(还有诗歌!)很难被归类。布莱斯 · 阿尔卡斯说:“感知和创造力联系的特别紧密。任何生物,任何可以感知行动的事物,都可以进行创造。”
- Software architect
Blaise Agüera y Arcas works on machine learning at Google. Previously a Distinguished Engineer at Microsoft, he has worked on augmented reality, mapping, wearable computing and natural user interfaces. Full bio

Double-click the English transcript below to play the video.

00:12
So, I lead a team球队 at Google谷歌
that works作品 on machine intelligence情报;
0
800
3124
我在谷歌领导着一个
机器智能的项目组,
00:15
in other words, the engineering工程 discipline学科
of making制造 computers电脑 and devices设备
1
3948
4650
换句话说,利用工程学原理制造出
00:20
able能够 to do some of the things
that brains大脑 do.
2
8622
2419
能够像人脑一样
完成某些任务的电脑和设备。
00:23
And this makes品牌 us
interested有兴趣 in real真实 brains大脑
3
11439
3099
这也使我们对人类的
大脑以及神经科学
00:26
and neuroscience神经科学 as well,
4
14562
1289
产生了兴趣,
00:27
and especially特别 interested有兴趣
in the things that our brains大脑 do
5
15875
4172
尤其在那些大脑的表现
00:32
that are still far superior优越
to the performance性能 of computers电脑.
6
20071
4042
比电脑强太多的领域。
00:37
Historically历史, one of those areas
has been perception知觉,
7
25209
3609
长期以来,我们研究的
其中一个领域便是感知,
00:40
the process处理 by which哪一个 things
out there in the world世界 --
8
28842
3039
一种将外界事物——
比如图像或声音—
00:43
sounds声音 and images图片 --
9
31905
1584
00:45
can turn into concepts概念 in the mind心神.
10
33513
2178
转化为大脑内概念的过程。
00:48
This is essential必要 for our own拥有 brains大脑,
11
36235
2517
这对我们的大脑很重要,
00:50
and it's also pretty漂亮 useful有用 on a computer电脑.
12
38776
2464
对计算机的作用也非同小可。
00:53
The machine perception知觉 algorithms算法,
for example, that our team球队 makes品牌,
13
41636
3350
例如,我们团队开发的机器感知算法
会根据图片的内容
让你在谷歌相册的图片
00:57
are what enable启用 your pictures图片
on Google谷歌 Photos相片 to become成为 searchable搜索,
14
45010
3874
01:00
based基于 on what's in them.
15
48908
1397
出现在搜索结果中。
01:03
The flip翻动 side of perception知觉 is creativity创造力:
16
51594
3493
感知的另一方面是创意:
01:07
turning车削 a concept概念 into something
out there into the world世界.
17
55111
3038
将概念变成现实。
01:10
So over the past过去 year,
our work on machine perception知觉
18
58173
3555
因此,这些年我们
在机器感知能力方面的工作
01:13
has also unexpectedly不料 connected连接的
with the world世界 of machine creativity创造力
19
61752
4859
也意外地跟机器创意以及机器艺术
01:18
and machine art艺术.
20
66635
1160
联系在了一起。
01:20
I think Michelangelo米开朗基罗
had a penetrating入木三分 insight眼光
21
68556
3284
我觉得米开朗基罗对感知和创意
01:23
into to this dual relationship关系
between之间 perception知觉 and creativity创造力.
22
71864
3656
之间的双重关系有着深刻的见解。
01:28
This is a famous著名 quote引用 of his:
23
76023
2006
他有一句名言:
01:30
"Every一切 block of stone
has a statue雕像 inside of it,
24
78053
3323
“每一块石头里都藏着一尊雕像,
01:34
and the job工作 of the sculptor雕塑家
is to discover发现 it."
25
82036
3002
而雕塑家的工作就是去发现它。”
01:38
So I think that what
Michelangelo米开朗基罗 was getting得到 at
26
86029
3216
我想米开朗基罗意思是
01:41
is that we create创建 by perceiving感知,
27
89269
3180
我们通过感知来创造,
01:44
and that perception知觉 itself本身
is an act法案 of imagination想像力
28
92473
3023
而感知本身是想象力的表现,
01:47
and is the stuff东东 of creativity创造力.
29
95520
2461
以及创意的来源。
01:50
The organ器官 that does all the thinking思维
and perceiving感知 and imagining想象,
30
98691
3925
而进行思考、感知和想象的器官,
01:54
of course课程, is the brain.
31
102640
1588
毫无疑问,就是大脑。
01:57
And I'd like to begin开始
with a brief简要 bit of history历史
32
105089
2545
我想先简单地谈一谈
01:59
about what we know about brains大脑.
33
107658
2302
我们对大脑的了解。
02:02
Because unlike不像, say,
the heart or the intestines,
34
110496
2446
因为不像心脏或其它内脏,
02:04
you really can't say very much
about a brain by just looking at it,
35
112966
3144
你无法仅仅通过观察
就能看出点什么来,
02:08
at least最小 with the naked eye.
36
116134
1412
至少仅凭肉眼看不出来。
02:09
The early anatomists解剖学家 who looked看着 at brains大脑
37
117983
2416
早期的解剖学家看着大脑,
02:12
gave the superficial structures结构
of this thing all kinds of fanciful撒娇的 names,
38
120423
3807
给它的表面结构
取了各种充满想象力的名字。
02:16
like hippocampus海马, meaning含义 "little shrimp."
39
124254
2433
比如说海马体,意思是“小虾子”。
02:18
But of course课程 that sort分类 of thing
doesn't tell us very much
40
126711
2764
但这些并不能告诉我们
大脑里面究竟是怎样工作的。
02:21
about what's actually其实 going on inside.
41
129499
2318
02:24
The first person who, I think, really
developed发达 some kind of insight眼光
42
132780
3613
我认为第一个真正对大脑的工作方式
02:28
into what was going on in the brain
43
136417
1930
有所洞悉的人,
02:30
was the great Spanish西班牙语 neuroanatomist神经解剖学家,
Santiago圣地亚哥 Ram内存ón y Cajal卡哈尔,
44
138371
3920
是19世纪西班牙
伟大的神经解剖学家
02:34
in the 19th century世纪,
45
142315
1544
圣地亚哥 · 拉蒙 · 卡哈尔
(Santiago Ramón y Cajal),
他使用了显微镜以及某种特殊染色剂,
02:35
who used microscopy显微镜 and special特别 stains
46
143883
3755
02:39
that could selectively选择 fill in
or render给予 in very high contrast对比
47
147662
4170
有选择性地将大脑中的
单个细胞填充或者渲染上
02:43
the individual个人 cells细胞 in the brain,
48
151856
2008
高对比度的颜色,
以便了解它们的形态。
02:45
in order订购 to start开始 to understand理解
their morphologies形态.
49
153888
3154
02:49
And these are the kinds of drawings图纸
that he made制作 of neurons神经元
50
157972
2891
这些就是他在19世纪
完成的的神经元手绘图。
02:52
in the 19th century世纪.
51
160887
1209
这是一只鸟的大脑。
02:54
This is from a bird brain.
52
162120
1884
02:56
And you see this incredible难以置信 variety品种
of different不同 sorts排序 of cells细胞,
53
164028
3057
能看到这些形态各异的细胞,
甚至在当时对细胞学说
本身还是新鲜事物。
02:59
even the cellular细胞的 theory理论 itself本身
was quite相当 new at this point.
54
167109
3435
而这些结构,
03:02
And these structures结构,
55
170568
1278
像树枝一样分岔,
03:03
these cells细胞 that have these arborizationsarborizations,
56
171870
2259
03:06
these branches分支机构 that can go
very, very long distances距离 --
57
174153
2608
能够延伸到很长的距离——
这些在当时都是闻所未闻。
03:08
this was very novel小说 at the time.
58
176785
1616
03:10
They're reminiscent让人联想起, of course课程, of wires电线.
59
178779
2903
他们让人联想到的,当然是电线。
03:13
That might威力 have been obvious明显
to some people in the 19th century世纪;
60
181706
3457
这对于很多19世纪的人
来说是显而易见的,
03:17
the revolutions革命 of wiring接线 and electricity电力
were just getting得到 underway进行.
61
185187
4314
因为那时电线和电力革命刚刚兴起。
03:21
But in many许多 ways方法,
62
189964
1178
但是在许多方面
03:23
these microanatomical显微解剖 drawings图纸
of Ram内存ón y Cajal'sCajal 的, like this one,
63
191166
3313
拉蒙 · 卡哈尔的神经解剖学
绘画,比如这一张,
从某些方面来说是很卓越的。
03:26
they're still in some ways方法 unsurpassed卓绝.
64
194503
2332
03:28
We're still more than a century世纪 later后来,
65
196859
1854
一个多世纪后的我们,仍然在继续
03:30
trying to finish the job工作
that Ram内存ón y Cajal卡哈尔 started开始.
66
198737
2825
尝试完成拉蒙 · 卡哈尔开启的事业。
03:33
These are raw生的 data数据 from our collaborators合作者
67
201586
3134
提供这些原始数据的,是我们来自
03:36
at the Max马克斯 Planck普朗克 Institute研究所
of Neuroscience神经科学.
68
204744
2881
马克斯 · 普朗克
神经科学研究所的合作者。
03:39
And what our collaborators合作者 have doneDONE
69
207649
1790
他们的工作
是对那些小块的脑组织进行成像。
03:41
is to image图片 little pieces of brain tissue组织.
70
209463
5001
03:46
The entire整个 sample样品 here
is about one cubic立方体 millimeter毫米 in size尺寸,
71
214488
3326
这一整个样品的大小
是1立方毫米左右,
03:49
and I'm showing展示 you a very,
very small piece of it here.
72
217838
2621
而我展示的只是它上面
很小很小的一块区域。
03:52
That bar酒吧 on the left is about one micron微米.
73
220483
2346
左边那段比例尺的长度是1微米。
03:54
The structures结构 you see are mitochondria线粒体
74
222853
2409
你看到的这个结构
是一个细菌大小的线粒体。
03:57
that are the size尺寸 of bacteria.
75
225286
2044
03:59
And these are consecutive连续 slices
76
227354
1551
这些是利用这个非常微小的组织
04:00
through通过 this very, very
tiny block of tissue组织.
77
228929
3148
所制作成的连续的切片。
04:04
Just for comparison's比较的 sake清酒,
78
232101
2403
我们来做个对比。
04:06
the diameter直径 of an average平均 strand
of hair头发 is about 100 microns微米.
79
234528
3792
通常一根头发的直径是
100微米左右。
04:10
So we're looking at something
much, much smaller
80
238344
2274
所以我们看到的东西
比一根头发丝还要细很多。
04:12
than a single strand of hair头发.
81
240642
1398
通过这些连续的电子显微镜切片,
04:14
And from these kinds of serial串行
electron电子 microscopy显微镜 slices,
82
242064
4031
人们可以重构出类似这样的
神经元三维图像。
04:18
one can start开始 to make reconstructions重建
in 3D of neurons神经元 that look like these.
83
246119
5008
04:23
So these are sort分类 of in the same相同
style样式 as Ram内存ón y Cajal卡哈尔.
84
251151
3157
某种程度上,这跟拉蒙 · 卡哈尔
所用的方式是一样的。
04:26
Only a few少数 neurons神经元 lit发光的 up,
85
254332
1492
我们只对少量的神经元进行了突出显示,
04:27
because otherwise除此以外 we wouldn't不会
be able能够 to see anything here.
86
255848
2781
否则我们不可能看到任何东西,
因为那样一来画面会很拥挤,
04:30
It would be so crowded,
87
258653
1312
04:31
so full充分 of structure结构体,
88
259989
1330
充满了组织结构,
04:33
of wiring接线 all connecting
one neuron神经元 to another另一个.
89
261343
2724
充满了各个神经元间
纵横交错的通路。
04:37
So Ram内存ón y Cajal卡哈尔 was a little bit
ahead of his time,
90
265293
2804
显然,拉蒙 · 卡哈尔
有一点超前于他的时代,
04:40
and progress进展 on understanding理解 the brain
91
268121
2555
接下来的几十年间
04:42
proceeded继续 slowly慢慢地
over the next下一个 few少数 decades几十年.
92
270700
2271
人们对大脑的理解进展非常缓慢。
04:45
But we knew知道 that neurons神经元 used electricity电力,
93
273455
2853
但是我们已经知道,
神经元通过电流传导信息,
而到二战时,我们的技术
已取得了长足的进步,
04:48
and by World世界 War战争 IIII, our technology技术
was advanced高级 enough足够
94
276332
2936
04:51
to start开始 doing real真实 electrical电动
experiments实验 on live生活 neurons神经元
95
279292
2806
可以开始在活的
神经元细胞上做电流实验,
04:54
to better understand理解 how they worked工作.
96
282122
2106
以便更好地理解它们的工作原理。
04:56
This was the very same相同 time
when computers电脑 were being存在 invented发明,
97
284631
4356
而电脑也正是在
这个时候被发明了出来,
05:01
very much based基于 on the idea理念
of modeling造型 the brain --
98
289011
3100
它的发明是基于对大脑的模拟——
05:04
of "intelligent智能 machinery机械,"
as Alan艾伦 Turing图灵 called it,
99
292135
3085
也就是阿兰 · 图灵
所称的“智能机器”理念,
05:07
one of the fathers父亲 of computer电脑 science科学.
100
295244
1991
图灵是计算机科学的开创者之一。
05:09
Warren养兔场 McCulloch麦卡洛克 and Walter沃尔特 Pitts皮茨
looked看着 at Ram内存ón y Cajal'sCajal 的 drawing画画
101
297923
4632
沃伦 · 麦卡洛克(Warren McCulloch)和
沃尔特 · 皮兹(Walter Pitts)看到了
拉蒙 · 卡哈尔所画的
大脑视觉皮层,
05:14
of visual视觉 cortex皮质,
102
302579
1317
05:15
which哪一个 I'm showing展示 here.
103
303920
1562
就是我给你们看的这个。
05:17
This is the cortex皮质 that processes流程
imagery意象 that comes from the eye.
104
305506
4442
这是负责处理我们视觉信息的大脑皮层。
05:22
And for them, this looked看着
like a circuit电路 diagram.
105
310424
3508
对他们来说,这看起来像一个电路图。
05:26
So there are a lot of details细节
in McCulloch麦卡洛克 and Pitts's皮特的 circuit电路 diagram
106
314353
3835
在麦卡洛克和皮兹的电路图上,
05:30
that are not quite相当 right.
107
318212
1352
有许多细节并不是那么正确。
但基本概念是对的,
05:31
But this basic基本 idea理念
108
319588
1235
05:32
that visual视觉 cortex皮质 works作品 like a series系列
of computational计算 elements分子
109
320847
3992
他们认为视觉皮层工作起来
就像一系列计算机元件
05:36
that pass通过 information信息
one to the next下一个 in a cascade级联,
110
324863
2746
在同一个层级中传递信息,
05:39
is essentially实质上 correct正确.
111
327633
1602
这一点是对的。
05:41
Let's talk for a moment时刻
112
329259
2350
我们再聊一聊
05:43
about what a model模型 for processing处理
visual视觉 information信息 would need to do.
113
331633
4032
视觉信息处理模型需要做些什么。
05:48
The basic基本 task任务 of perception知觉
114
336228
2741
感知的基本任务就是
05:50
is to take an image图片 like this one and say,
115
338993
4194
抓取这样的图像并且告诉我们
“这是一只鸟”,
05:55
"That's a bird,"
116
343211
1176
这对我们的大脑来说非常简单。
05:56
which哪一个 is a very simple简单 thing
for us to do with our brains大脑.
117
344411
2874
05:59
But you should all understand理解
that for a computer电脑,
118
347309
3421
但对一台电脑来说,
06:02
this was pretty漂亮 much impossible不可能
just a few少数 years年份 ago.
119
350754
3087
在几年前,这还是完全不可能的事。
06:05
The classical古典 computing计算 paradigm范例
120
353865
1916
传统的计算模式
06:07
is not one in which哪一个
this task任务 is easy简单 to do.
121
355805
2507
很难完成这个任务。
06:11
So what's going on between之间 the pixels像素,
122
359366
2552
像素、鸟的图像以及“鸟”这个词,
06:13
between之间 the image图片 of the bird
and the word "bird,"
123
361942
4028
这三者之间所产生的联系,
本质上是在一个神经网络中各神经元
06:17
is essentially实质上 a set of neurons神经元
connected连接的 to each other
124
365994
2814
相互连接的结果,
06:20
in a neural神经 network网络,
125
368832
1155
正如这张图所示。
06:22
as I'm diagramming图表 here.
126
370011
1223
06:23
This neural神经 network网络 could be biological生物,
inside our visual视觉 cortices皮层,
127
371258
3272
这种神经网络可能是生物学上的,
存在于我们大脑视觉皮层里,
06:26
or, nowadays如今, we start开始
to have the capability能力
128
374554
2162
或者,现如今我们开始有能力
06:28
to model模型 such这样 neural神经 networks网络
on the computer电脑.
129
376740
2454
在电脑上模拟这种神经网络。
06:31
And I'll show显示 you what
that actually其实 looks容貌 like.
130
379834
2353
我们来看一下它的工作原理。
06:34
So the pixels像素 you can think
about as a first layer of neurons神经元,
131
382211
3416
可以将像素想像成第一层的神经元,
06:37
and that's, in fact事实,
how it works作品 in the eye --
132
385651
2239
这实际上就是在
眼睛内部的工作原理——
是视网膜上的神经元。
06:39
that's the neurons神经元 in the retina视网膜.
133
387914
1663
06:41
And those feed饲料 forward前锋
134
389601
1500
然后这些前馈信息
06:43
into one layer after another另一个 layer,
after another另一个 layer of neurons神经元,
135
391125
3403
通过一层层神经元往下传递,
这些神经元通过突触彼此连接。
06:46
all connected连接的 by synapses突触
of different不同 weights权重.
136
394552
3033
06:49
The behavior行为 of this network网络
137
397609
1335
这个神经网络的行为
06:50
is characterized特征 by the strengths优势
of all of those synapses突触.
138
398968
3284
是通过所有这些突触的强度来表达的,
06:54
Those characterize表征 the computational计算
properties性能 of this network网络.
139
402276
3288
也塑造了这个网络的计算性能。
06:57
And at the end结束 of the day,
140
405588
1470
最终,
一个或者一小群神经元
06:59
you have a neuron神经元
or a small group of neurons神经元
141
407082
2447
07:01
that light up, saying, "bird."
142
409553
1647
会亮起来,说,“鸟”。
07:03
Now I'm going to represent代表
those three things --
143
411824
3132
接下来我会将这三部分——
07:06
the input输入 pixels像素 and the synapses突触
in the neural神经 network网络,
144
414980
4696
输入的像素,神经网络中的突触,
07:11
and bird, the output产量 --
145
419700
1585
以及“鸟”,这个输出结果——
07:13
by three variables变量: x, w and y.
146
421309
3057
用三个变量来表示:x、w和y。
07:16
There are maybe a million百万 or so x'sX的 --
147
424853
1811
在那张图片上可能会有一百万个x——
07:18
a million百万 pixels像素 in that image图片.
148
426688
1953
代表一百万个像素点。
然后有几十亿或几万亿的w,
07:20
There are billions数十亿 or trillions万亿 of w'sW公司,
149
428665
2446
07:23
which哪一个 represent代表 the weights权重 of all
these synapses突触 in the neural神经 network网络.
150
431135
3421
代表着神经网络中所有突触的权重。
只有很少数量的y,
07:26
And there's a very small number of y'sY's,
151
434580
1875
07:28
of outputs输出 that that network网络 has.
152
436479
1858
代表整个网络的输出结果。
07:30
"Bird" is only four letters, right?
153
438361
1749
“Bird(鸟)"这个单词
只有四个字母,对吧?
07:33
So let's pretend假装 that this
is just a simple简单 formula,
154
441088
3426
我们假定这只是一个很简单的公式
07:36
x "x" w = y.
155
444538
2163
x 乘以 w 等于 y。
我把乘号打上了引号,
07:38
I'm putting the times in scare quotes报价
156
446725
2036
因为实际的过程要复杂得多。
07:40
because what's really
going on there, of course课程,
157
448785
2280
07:43
is a very complicated复杂 series系列
of mathematical数学的 operations操作.
158
451089
3046
牵涉到一系列非常复杂的数学运算。
07:47
That's one equation方程.
159
455172
1221
这是一个方程式,
07:48
There are three variables变量.
160
456417
1672
有三个变量。
07:50
And we all know
that if you have one equation方程,
161
458113
2726
而我们知道在一个方程式中
07:52
you can solve解决 one variable变量
by knowing会心 the other two things.
162
460863
3642
通过两个已知数
你就能算出另一个未知数。
07:57
So the problem问题 of inference推理,
163
465158
3380
所以这道推论题,
08:00
that is, figuring盘算 out
that the picture图片 of a bird is a bird,
164
468562
2873
即判断出图中是一只鸟,
08:03
is this one:
165
471459
1274
可以这样来描述:
08:04
it's where y is the unknown未知
and w and x are known已知.
166
472757
3459
y是未知数,w跟x都是已知数。
08:08
You know the neural神经 network网络,
you know the pixels像素.
167
476240
2459
也就是神经网络和像素是已知的。
08:10
As you can see, that's actually其实
a relatively相对 straightforward直截了当 problem问题.
168
478723
3327
实际上这是一个相当简单的问题。
你只需要用2乘以3,就完事儿了。
08:14
You multiply two times three
and you're doneDONE.
169
482074
2186
08:16
I'll show显示 you an artificial人造 neural神经 network网络
170
484862
2123
我会给你们展示我们最近
完成的人工神经网络,
08:19
that we've我们已经 built内置 recently最近,
doing exactly究竟 that.
171
487009
2296
它的工作原理正是如此。
08:21
This is running赛跑 in real真实 time
on a mobile移动 phone电话,
172
489634
2860
这是在一台在手机上
实时运行的神经网络,
08:24
and that's, of course课程,
amazing惊人 in its own拥有 right,
173
492518
3313
当然,令人惊叹的是它自身的运算能力,
08:27
that mobile移动 phones手机 can do so many许多
billions数十亿 and trillions万亿 of operations操作
174
495855
3468
每秒钟可以进行
几十亿甚至几万亿次的
运算。
08:31
per second第二.
175
499347
1248
08:32
What you're looking at is a phone电话
176
500619
1615
你所看到的是一台手机的
08:34
looking at one after another另一个
picture图片 of a bird,
177
502258
3547
相机对准了一张张含有鸟的图片,
08:37
and actually其实 not only saying,
"Yes, it's a bird,"
178
505829
2715
并且它不只能判断出,
“是的,这是一只鸟”,
而且还能用这种网络
来判断这些鸟的种类。
08:40
but identifying识别 the species种类 of bird
with a network网络 of this sort分类.
179
508568
3411
08:44
So in that picture图片,
180
512890
1826
因此在这张图片中,
08:46
the x and the w are known已知,
and the y is the unknown未知.
181
514740
3802
x和w是已知的,y是未知的。
08:50
I'm glossing上光 over the very
difficult part部分, of course课程,
182
518566
2508
当然,我省略了非常复杂的那一部分,
08:53
which哪一个 is how on earth地球
do we figure数字 out the w,
183
521098
3861
也就是我们如何判断出w?
为什么大脑能做出这样的判断?
08:56
the brain that can do such这样 a thing?
184
524983
2187
08:59
How would we ever learn学习 such这样 a model模型?
185
527194
1834
我们是如何学会这种模式的?
09:01
So this process处理 of learning学习,
of solving for w,
186
529418
3233
在学习以及解出w的过程中,
如果我们使用简单的等式
09:04
if we were doing this
with the simple简单 equation方程
187
532675
2647
09:07
in which哪一个 we think about these as numbers数字,
188
535346
2000
将这些都想象成数字,
那这道题就简单了: 6 = 2 x W,
09:09
we know exactly究竟 how to do that: 6 = 2 x w,
189
537370
2687
那么,用6除以2就可以得出答案。
09:12
well, we divide划分 by two and we're doneDONE.
190
540081
3312
09:16
The problem问题 is with this operator操作者.
191
544001
2220
现在的问题就是这个运算符号。
09:18
So, division --
192
546823
1151
除法——
我们用除法是因为它是乘法的逆运算。
09:19
we've我们已经 used division because
it's the inverse to multiplication乘法,
193
547998
3121
但就像我刚才说的,
09:23
but as I've just said,
194
551143
1440
乘法表述在这里其实不太准确。
09:24
the multiplication乘法 is a bit of a lie谎言 here.
195
552607
2449
09:27
This is a very, very complicated复杂,
very non-linear非线性 operation手术;
196
555080
3326
这是一个非常非常
复杂的非线性运算,
它没有逆运算。
09:30
it has no inverse.
197
558430
1704
09:32
So we have to figure数字 out a way
to solve解决 the equation方程
198
560158
3150
所以我们要找出一个不使用除号
09:35
without a division operator操作者.
199
563332
2024
就能解出这个方程式的方法。
09:37
And the way to do that
is fairly相当 straightforward直截了当.
200
565380
2343
其实非常简单。
只需要使用一点代数上的小技巧,
09:39
You just say, let's play
a little algebra代数 trick,
201
567747
2671
09:42
and move移动 the six over
to the right-hand右手 side of the equation方程.
202
570442
2906
将6移到等式的右边。
09:45
Now, we're still using运用 multiplication乘法.
203
573372
1826
现在我们仍然使用乘法。
09:47
And that zero -- let's think
about it as an error错误.
204
575675
3580
而这个0——我们就当它是一个误差。
09:51
In other words, if we've我们已经 solved解决了
for w the right way,
205
579279
2515
换句话说,如果我们
能用正确的方法解出w,
09:53
then the error错误 will be zero.
206
581818
1656
那么这个误差就为0。
09:55
And if we haven't没有 gotten得到 it quite相当 right,
207
583498
1938
如果我们没有找到正确的答案,
那么这个误差就会大于0。
09:57
the error错误 will be greater更大 than zero.
208
585460
1749
所以现在我们可以通过
假设去缩小这个误差,
09:59
So now we can just take guesses猜测
to minimize最小化 the error错误,
209
587233
3366
10:02
and that's the sort分类 of thing
computers电脑 are very good at.
210
590623
2687
而这正是电脑所擅长的。
比如你最开始假设:
10:05
So you've taken采取 an initial初始 guess猜测:
211
593334
1593
如果w = 0呢?
10:06
what if w = 0?
212
594951
1156
那么误差就为6。
如果w = 1呢?误差就变成了4。
10:08
Well, then the error错误 is 6.
213
596131
1240
10:09
What if w = 1? The error错误 is 4.
214
597395
1446
然后电脑就像玩游戏一样不断测试,
10:10
And then the computer电脑 can
sort分类 of play Marco马尔科 Polo马球,
215
598865
2367
10:13
and drive驾驶 down the error错误 close to zero.
216
601256
2367
将误差降低到接近于0。
10:15
As it does that, it's getting得到
successive连续 approximations近似值 to w.
217
603647
3374
这样就逐步逼近了w的值。
通常来说,它不可能获得完全精确的值,
但是经过很多步运算以后,
10:19
Typically通常, it never quite相当 gets得到 there,
but after about a dozen steps脚步,
218
607045
3656
10:22
we're up to w = 2.999,
which哪一个 is close enough足够.
219
610725
4624
我们得到了 w = 2.999,
已经足够精确了。
10:28
And this is the learning学习 process处理.
220
616302
1814
以上就是这个学习过程。
10:30
So remember记得 that what's been going on here
221
618140
2730
大家回想一下刚刚我们所做的,
10:32
is that we've我们已经 been taking服用
a lot of known已知 x'sX的 and known已知 y'sY's
222
620894
4378
我们用了很多已知的x和y的值,
10:37
and solving for the w in the middle中间
through通过 an iterative迭代 process处理.
223
625296
3454
通过迭代法去解出中间的w,
10:40
It's exactly究竟 the same相同 way
that we do our own拥有 learning学习.
224
628774
3556
这也正是我们自己
在学习时所使用的方法。
在我们很小的时候,
会看到很多很多图像,
10:44
We have many许多, many许多 images图片 as babies婴儿
225
632354
2230
10:46
and we get told, "This is a bird;
this is not a bird."
226
634608
2633
然后有人告诉我们:
“这个是鸟,这个不是鸟。”
10:49
And over time, through通过 iteration迭代,
227
637714
2098
经过一段时间的重复,
我们解出了w,建立起了
神经元之间的连接。
10:51
we solve解决 for w, we solve解决
for those neural神经 connections连接.
228
639836
2928
10:55
So now, we've我们已经 held保持
x and w fixed固定 to solve解决 for y;
229
643460
4086
那么现在,我们有了确定的
x和w。再要去解出Y
10:59
that's everyday每天, fast快速 perception知觉.
230
647570
1847
就会非常快了。
我们找到解出w的方法,
11:01
We figure数字 out how we can solve解决 for w,
231
649441
1763
这是一种学习,要困难得多,
11:03
that's learning学习, which哪一个 is a lot harder更难,
232
651228
1903
11:05
because we need to do error错误 minimization最小化,
233
653155
1985
因为我们要用很多的训练样本,
去将误差最小化。
11:07
using运用 a lot of training训练 examples例子.
234
655164
1687
一年前,我们团队的
亚历克斯 · 莫尔德温采夫
11:08
And about a year ago,
Alex亚历克斯 MordvintsevMordvintsev, on our team球队,
235
656875
3187
决定做一个实验,
看如果给定已知的w和y,
11:12
decided决定 to experiment实验
with what happens发生 if we try solving for x,
236
660086
3550
去解出x,会发生什么。
11:15
given特定 a known已知 w and a known已知 y.
237
663660
2037
11:18
In other words,
238
666124
1151
换句话说,
你已经知道那是一只鸟
11:19
you know that it's a bird,
239
667299
1352
11:20
and you already已经 have your neural神经 network网络
that you've trained熟练 on birds鸟类,
240
668675
3303
并且也有一个接受过
鸟类识别训练的神经网络,
那么一只鸟的图像是怎样的呢?
11:24
but what is the picture图片 of a bird?
241
672002
2344
11:27
It turns out that by using运用 exactly究竟
the same相同 error-minimization误差最小化 procedure程序,
242
675034
5024
我们发现,通过运用相同的
将误差最小化的步骤,
11:32
one can do that with the network网络
trained熟练 to recognize认识 birds鸟类,
243
680082
3430
加上一个受过鸟类识别
训练的神经网络,
11:35
and the result结果 turns out to be ...
244
683536
3388
我们就可以得到
11:42
a picture图片 of birds鸟类.
245
690400
1305
一张含有鸟的图片。
11:44
So this is a picture图片 of birds鸟类
generated产生 entirely完全 by a neural神经 network网络
246
692814
3737
这是一张由一个进行过
鸟类识别训练的
神经网络所生成的鸟的图片,
11:48
that was trained熟练 to recognize认识 birds鸟类,
247
696575
1826
11:50
just by solving for x
rather than solving for y,
248
698425
3538
仅仅是通过解出x,而不是y,
并且重复不断的运行。
11:53
and doing that iteratively迭代.
249
701987
1288
11:55
Here's这里的 another另一个 fun开玩笑 example.
250
703732
1847
这是另外一个有趣的例子
11:57
This was a work made制作
by Mike麦克风 TykaTyka in our group,
251
705603
3437
是我们团队的迈克 · 泰卡制作的 ,
他称之为“动物大游行”。
12:01
which哪一个 he calls电话 "Animal动物 Parade游行."
252
709064
2308
12:03
It reminds提醒 me a little bit
of William威廉 Kentridge's肯特里奇的 artworks艺术品,
253
711396
2876
这让我想起了威廉 ·肯特里奇的作品,
12:06
in which哪一个 he makes品牌 sketches素描, rubs them out,
254
714296
2489
他先画一些素描,然后擦掉,
12:08
makes品牌 sketches素描, rubs them out,
255
716809
1460
再画一些素描,再擦掉,
用这种方法创作了一部影片。
12:10
and creates创建 a movie电影 this way.
256
718293
1398
在我们这个案例中,
12:11
In this case案件,
257
719715
1151
迈克在一个旨在识别和辨认
12:12
what Mike麦克风 is doing is varying不同 y
over the space空间 of different不同 animals动物,
258
720890
3277
不同种类动物的神经网络中
12:16
in a network网络 designed设计
to recognize认识 and distinguish区分
259
724191
2382
将y变换成各种不同的动物。
12:18
different不同 animals动物 from each other.
260
726597
1810
这样你就得到了这个奇特的
动物图像的埃舍尔式变换效果。
12:20
And you get this strange奇怪, Escher-like艾雪
morph变形 from one animal动物 to another另一个.
261
728431
3751
12:26
Here he and Alex亚历克斯 together一起
have tried试着 reducing减少
262
734221
4614
他和亚历克斯还一起尝试了
将这些y降低到一个二维空间内,
12:30
the y'sY's to a space空间 of only two dimensions尺寸,
263
738859
2759
从而将被该神经网络识别出来的
12:33
thereby从而 making制造 a map地图
out of the space空间 of all things
264
741642
3438
12:37
recognized认可 by this network网络.
265
745104
1719
所有对象放到一张图上来。
通过这样的合成
12:38
Doing this kind of synthesis合成
266
746847
2023
12:40
or generation of imagery意象
over that entire整个 surface表面,
267
748894
2382
或者在整个表面上生成图像,
在表面上不断的变换y,
你就创造出了一种图像——
12:43
varying不同 y over the surface表面,
you make a kind of map地图 --
268
751300
2846
一个包含该神经网络能够
分辨出来的所有对象的视觉图像。
12:46
a visual视觉 map地图 of all the things
the network网络 knows知道 how to recognize认识.
269
754170
3141
所有的动物都在这儿,
犰狳在那个点上。
12:49
The animals动物 are all here;
"armadillo犰狳" is right in that spot.
270
757335
2865
12:52
You can do this with other kinds
of networks网络 as well.
271
760919
2479
你也可以用其它的神经网络
实现类似的目的。
这是一个为识别和分辨出不同面孔
12:55
This is a network网络 designed设计
to recognize认识 faces面孔,
272
763422
2874
而设计的神经网络。
12:58
to distinguish区分 one face面对 from another另一个.
273
766320
2000
这里,我们输入一个y值,代表“我”,
13:00
And here, we're putting
in a y that says, "me,"
274
768344
3249
我自己的面部参数。
13:03
my own拥有 face面对 parameters参数.
275
771617
1575
13:05
And when this thing solves解决了 for x,
276
773216
1706
当它在解出x的时候,
13:06
it generates生成 this rather crazy,
277
774946
2618
就生成了这张集不同视角
于一体,相当不可思议的,
立体的、超现实的、迷幻版本的
13:09
kind of cubist立体主义, surreal超现实主义,
psychedelic迷幻 picture图片 of me
278
777588
4428
我的面部图像。
13:14
from multiple points of view视图 at once一旦.
279
782040
1806
它之所以看起来像是集不同视角于一体,
13:15
The reason原因 it looks容貌 like
multiple points of view视图 at once一旦
280
783870
2734
是因为这个神经网络被设计成将一张脸
13:18
is because that network网络 is designed设计
to get rid摆脱 of the ambiguity歧义
281
786628
3687
在不同姿势、不同光线之间产生的
13:22
of a face面对 being存在 in one pose提出
or another另一个 pose提出,
282
790339
2476
13:24
being存在 looked看着 at with one kind of lighting灯光,
another另一个 kind of lighting灯光.
283
792839
3376
模棱两可的地方抹掉了。
因此当你开始这项复原工作时,
13:28
So when you do
this sort分类 of reconstruction重建,
284
796239
2085
如果不利用某种影像引导,
13:30
if you don't use some sort分类 of guide指南 image图片
285
798348
2304
13:32
or guide指南 statistics统计,
286
800676
1211
或者统计引导,
13:33
then you'll你会 get a sort分类 of confusion混乱
of different不同 points of view视图,
287
801911
3765
那么你就会得到一种
令人困惑的多视角的图像,
因为它是模棱两可的。
13:37
because it's ambiguous暧昧.
288
805700
1368
13:39
This is what happens发生 if Alex亚历克斯 uses使用
his own拥有 face面对 as a guide指南 image图片
289
807786
4223
这就是亚历克斯在复原
我的面部的优化流程中,
用他自己的脸作为
影像引导时所得到的图像。
13:44
during that optimization优化 process处理
to reconstruct重建 my own拥有 face面对.
290
812033
3321
13:48
So you can see it's not perfect完善.
291
816284
2328
你可以看到它还不是十分完美。
我们在完善这个优化流程方面
13:50
There's still quite相当 a lot of work to do
292
818636
1874
还有许多的工作要做。
13:52
on how we optimize优化
that optimization优化 process处理.
293
820534
2453
但是通过将我自己的脸
作为渲染过程中的引导,
13:55
But you start开始 to get something
more like a coherent相干 face面对,
294
823011
2827
13:57
rendered呈现 using运用 my own拥有 face面对 as a guide指南.
295
825862
2014
你已经可以得到一个
更清晰的面孔了。
14:00
You don't have to start开始
with a blank空白 canvas帆布
296
828892
2501
你不需要完全从一块空白的画布
或白噪音开始。
14:03
or with white白色 noise噪声.
297
831417
1156
当你在解出x时,
14:04
When you're solving for x,
298
832597
1304
你可以从一个本身已经是
别的图像的x开始。
14:05
you can begin开始 with an x,
that is itself本身 already已经 some other image图片.
299
833925
3889
正如这个小小的展示那样。
14:09
That's what this little demonstration示范 is.
300
837838
2556
这是一个设计为用来将所有物品——
14:12
This is a network网络
that is designed设计 to categorize分类
301
840418
4122
人造结构、动物等进行分类的神经网络。
14:16
all sorts排序 of different不同 objects对象 --
man-made人造 structures结构, animals动物 ...
302
844564
3119
我们从一张云图开始,
14:19
Here we're starting开始
with just a picture图片 of clouds,
303
847707
2593
在优化过程中,
14:22
and as we optimize优化,
304
850324
1671
这个神经网络正在不停地计算
它在云中看到了什么。
14:24
basically基本上, this network网络 is figuring盘算 out
what it sees看到 in the clouds.
305
852019
4486
14:28
And the more time
you spend looking at this,
306
856931
2320
你花越多的时间盯着这张图,
14:31
the more things you also
will see in the clouds.
307
859275
2753
你就会在云中看到越多的东西。
14:35
You could also use the face面对 network网络
to hallucinate产生幻觉 into this,
308
863004
3375
你也可以使用面部识别
神经网络去产生迷幻效果,
然后就可以得到这种不可思议的东西。
14:38
and you get some pretty漂亮 crazy stuff东东.
309
866403
1812
(观众笑声)
14:40
(Laughter笑声)
310
868239
1150
14:42
Or, Mike麦克风 has doneDONE some other experiments实验
311
870401
2744
或者可以像迈克做的另外一个实验那样,
他还是利用那张云图,
14:45
in which哪一个 he takes that cloud image图片,
312
873169
3905
使它幻化、再放大,
幻化再放大,幻化再放大.
14:49
hallucinates出现幻觉, zooms缩放, hallucinates出现幻觉,
zooms缩放 hallucinates出现幻觉, zooms缩放.
313
877098
3507
这样一来,
14:52
And in this way,
314
880629
1151
我想你就可以得到
这个网络的神游状态,
14:53
you can get a sort分类 of fugue遁走曲 state
of the network网络, I suppose假设,
315
881804
3675
或者某种自由联想,
14:57
or a sort分类 of free自由 association协会,
316
885503
3680
仿佛这个网络正在吞噬自己的尾巴。
15:01
in which哪一个 the network网络
is eating its own拥有 tail尾巴.
317
889207
2227
15:03
So every一切 image图片 is now the basis基础 for,
318
891458
3421
因此每一张图都是
下一张图的基础,决定了
“我觉得接下来会看到什么?
15:06
"What do I think I see next下一个?
319
894903
1421
接下来又会看到什么?
接下来还会看到什么?”
15:08
What do I think I see next下一个?
What do I think I see next下一个?"
320
896348
2803
15:11
I showed显示 this for the first time in public上市
321
899487
2936
我第一次公开展示这些是在西雅图,
15:14
to a group at a lecture演讲 in Seattle西雅图
called "Higher更高 Education教育" --
322
902447
5437
为一个团队做的一次名为
“高等教育”的讲座上——
15:19
this was right after
marijuana大麻 was legalized合法化.
323
907908
2437
刚好就在大麻合法化之后。
15:22
(Laughter笑声)
324
910369
2415
(观众笑声)
15:26
So I'd like to finish up quickly很快
325
914627
2104
在结束我的演讲前,
15:28
by just noting注意 that this technology技术
is not constrained受限.
326
916755
4255
我想再提醒各位,
这种技术是不受限的。
15:33
I've shown显示 you purely纯粹 visual视觉 examples例子
because they're really fun开玩笑 to look at.
327
921034
3665
我给你们看了一些纯粹的视觉实例,
因为它们看起来真的很有趣。
它不是一种纯粹的视觉技术。
15:36
It's not a purely纯粹 visual视觉 technology技术.
328
924723
2451
15:39
Our artist艺术家 collaborator合作者, Ross罗斯 Goodwin古德温,
329
927198
1993
我们的合作者,艺术家罗斯 · 古德温
做了一个实验,他用相机拍了一张照片,
15:41
has doneDONE experiments实验 involving涉及
a camera相机 that takes a picture图片,
330
929215
3671
15:44
and then a computer电脑 in his backpack背包
writes a poem using运用 neural神经 networks网络,
331
932910
4234
然后他背包里的电脑
基于这张照片的内容,
15:49
based基于 on the contents内容 of the image图片.
332
937168
1944
用神经网络作了一首诗。
15:51
And that poetry诗歌 neural神经 network网络
has been trained熟练
333
939136
2947
这个作诗的神经网络已经接受过
15:54
on a large corpus文集 of 20th-centuryTH-世纪 poetry诗歌.
334
942107
2234
大量的20世纪诗歌的训练。
15:56
And the poetry诗歌 is, you know,
335
944365
1499
其实我觉得
那首诗还不赖。
15:57
I think, kind of not bad, actually其实.
336
945888
1914
(观众笑声)
15:59
(Laughter笑声)
337
947826
1384
下面,
16:01
In closing关闭,
338
949234
1159
16:02
I think that per Michelangelo米开朗基罗,
339
950417
2132
再回到米开朗基罗那句名言,
我想他是对的,
16:04
I think he was right;
340
952573
1234
16:05
perception知觉 and creativity创造力
are very intimately密切 connected连接的.
341
953831
3436
感知和创意是密不可分的。
16:09
What we've我们已经 just seen看到 are neural神经 networks网络
342
957611
2634
我们刚刚所看到的是一些
16:12
that are entirely完全 trained熟练 to discriminate辨析,
343
960269
2303
完全被训练成去区分,
16:14
or to recognize认识 different不同
things in the world世界,
344
962596
2242
或辨别世上的不同物品,
能够逆向运行、成生图像的神经网络。
16:16
able能够 to be run in reverse相反, to generate生成.
345
964862
3161
16:20
One of the things that suggests提示 to me
346
968047
1783
我从中受到的启发之一就是,
不仅米开朗基罗真的看到了
16:21
is not only that
Michelangelo米开朗基罗 really did see
347
969854
2398
石头中的雕像,
16:24
the sculpture雕塑 in the blocks of stone,
348
972276
2452
而且任何的生物、任何人、任何外星人,
16:26
but that any creature生物,
any being存在, any alien外侨
349
974752
3638
只要能够有这样的感知,
16:30
that is able能够 to do
perceptual知觉的 acts行为 of that sort分类
350
978414
3657
也就能够创造,
16:34
is also able能够 to create创建
351
982095
1375
16:35
because it's exactly究竟 the same相同
machinery机械 that's used in both cases.
352
983494
3224
因为它们都运用了截然相同的机制。
16:38
Also, I think that perception知觉
and creativity创造力 are by no means手段
353
986742
4532
另外,我想感知和创意决不是
人类所特有的。
16:43
uniquely独特地 human人的.
354
991298
1210
16:44
We start开始 to have computer电脑 models楷模
that can do exactly究竟 these sorts排序 of things.
355
992532
3708
我们开始有了可以
完成这些事的电脑模型。
这应当不足为奇,因为大脑会运算。
16:48
And that ought应该 to be unsurprising令人吃惊;
the brain is computational计算.
356
996264
3328
16:51
And finally最后,
357
999616
1657
最后,
电脑运算最开始是作为
设计智能机器的一种练习。
16:53
computing计算 began开始 as an exercise行使
in designing设计 intelligent智能 machinery机械.
358
1001297
4668
16:57
It was very much modeled仿照 after the idea理念
359
1005989
2462
它在很大程度上仿照了我们如何
17:00
of how could we make machines intelligent智能.
360
1008475
3013
让机器变得智能这一理念。
17:03
And we finally最后 are starting开始 to fulfill履行 now
361
1011512
2162
而我们也终于开始能够实现
图灵、冯 · 诺依曼、
17:05
some of the promises许诺
of those early pioneers开拓者,
362
1013698
2406
17:08
of Turing图灵 and von Neumann诺伊曼
363
1016128
1713
麦卡洛克和皮兹
17:09
and McCulloch麦卡洛克 and Pitts皮茨.
364
1017865
2265
这些先驱的一些期望了。
17:12
And I think that computing计算
is not just about accounting会计
365
1020154
4098
我觉得电脑不仅仅是拿来计算,
17:16
or playing播放 Candy糖果 Crush粉碎 or something.
366
1024276
2147
或者玩游戏的。
17:18
From the beginning开始,
we modeled仿照 them after our minds头脑.
367
1026447
2578
从一开始,我们就是
仿照大脑来制造它们的。
而它们也赋予了我们能够
更好的理解我们的大脑,
17:21
And they give us both the ability能力
to understand理解 our own拥有 minds头脑 better
368
1029049
3269
并且拓展其潜力的能力。
17:24
and to extend延伸 them.
369
1032342
1529
17:26
Thank you very much.
370
1034627
1167
非常感谢。
(观众掌声)
17:27
(Applause掌声)
371
1035818
5939
Translated by chunhua zhang
Reviewed by Chen Zou

▲Back to top

ABOUT THE SPEAKER
Blaise Agüera y Arcas - Software architect
Blaise Agüera y Arcas works on machine learning at Google. Previously a Distinguished Engineer at Microsoft, he has worked on augmented reality, mapping, wearable computing and natural user interfaces.

Why you should listen

Blaise Agüera y Arcas is principal scientist at Google, where he leads a team working on machine intelligence for mobile devices. His group works extensively with deep neural nets for machine perception and distributed learning, and it also investigates so-called "connectomics" research, assessing maps of connections within the brain.

Agüera y Arcas' background is as multidimensional as the visions he helps create. In the 1990s, he authored patents on both video compression and 3D visualization techniques, and in 2001, he made an influential computational discovery that cast doubt on Gutenberg's role as the father of movable type.

He also created Seadragon (acquired by Microsoft in 2006), the visualization technology that gives Photosynth its amazingly smooth digital rendering and zoom capabilities. Photosynth itself is a vastly powerful piece of software capable of taking a wide variety of images, analyzing them for similarities, and grafting them together into an interactive three-dimensional space. This seamless patchwork of images can be viewed via multiple angles and magnifications, allowing us to look around corners or “fly” in for a (much) closer look. Simply put, it could utterly transform the way we experience digital images.

He joined Microsoft when Seadragon was acquired by Live Labs in 2006. Shortly after the acquisition of Seadragon, Agüera y Arcas directed his team in a collaboration with Microsoft Research and the University of Washington, leading to the first public previews of Photosynth several months later. His TED Talk on Seadragon and Photosynth in 2007 is rated one of TED's "most jaw-dropping." He returned to TED in 2010 to demo Bing’s augmented reality maps.

Fun fact: According to the author, Agüera y Arcas is the inspiration for the character Elgin in the 2012 best-selling novel Where'd You Go, Bernadette?

More profile about the speaker
Blaise Agüera y Arcas | Speaker | TED.com