Joseph Redmon: How computers learn to recognize objects instantly
Joseph Redmon: Kako računalo uči trenutačno prepoznavati objekte
Joseph Redmon works on the YOLO algorithm, which combines the simple face detection of your phone camera with a cloud-based AI -- in real time. Full bio
Double-click the English transcript below to play the video.
da je naučiti računalo
thought that getting a computer
between a cat and a dog
in the state of artificial intelligence.
u razvoju umjetne inteligencije.
greater than 99 percent accuracy.
s više od 99 posto točnosti.
put a label to that image --
thousands of other categories as well.
i tisuće drugih kategorija.
at the University of Washington,
na Sveučilištu u Washingtonu
computer vision models.
modela računalnog vida.
a prediction of dog or cat,
je li to pas ili mačka,
specific breed predictions.
of granularity we have now.
in image classification,
u klasifikaciji slike,
pokrenemo klasifikator
when we run our classifier
with a pretty similar prediction.
uz prilično slična predviđanja.
there is a malamute in the image,
we don't actually know that much
ne znamo mnogo
called object detection,
otkrivanje objekta,
and try to find all of the objects,
pokušavamo pronaći sve objekte,
when we run a detector on this image.
detektor na ovoj slici.
s algoritmima računalnog vida.
with our computer vision algorithms.
that there's a cat and a dog.
on top of computer vision,
na osnovi računalnog vida,
or a robotic system,
ili robotski sustav,
of information that you want.
you can interact with the physical world.
komunicirati s fizičkim svijetom.
on object detection,
prepoznavanju objekata,
to process a single image.
za obradu jedne slike.
speed is so important in this domain,
brzina ovdje tako važna,
to process an image.
20 sekundi po slici,
dok on učini predviđanja,
it makes predictions,
by another factor of 10,
još jednom za faktor 10,
at five frames per second.
na pet sličica u sekundi.
like this driving my car.
vozi moj auto.
running in real time on my laptop.
u realnom vremenu na mom laptopu.
as I move around the frame,
of changes in size,
on top of computer vision.
na osnovi računalnog vida,
a thousand times faster.
tisuću puta brže.
object detection systems
on each of these regions,
na svakom od tih područja.
detections in the image.
thousands of times over an image,
tisuće puta na slici,
to produce detection.
kako bi dobili detekciju.
to do all of detection for us.
da učini sve detekcije za nas.
and class probabilities simultaneously.
i klase vjerojatnosti.
at an image thousands of times
gledate sliku tisuće puta
the YOLO method of object detection.
za detekciju objekta.
we're not just limited to images;
nismo ograničeni samo na slike;
that cat and dog,
and interact with each other.
i međusobno komuniciraju.
like spoon and fork, bowl,
i vilice, zdjele,
out into the audience
our threshold for detection a little bit,
out in the audience.
ove znakove STOP.
is happening in real time
opće namjene,
object detection system,
kako bi pronašli stanice raka
already using this technology
koriste ovu tehnologiju
like medicine, robotics.
of animals in Nairobi National Park
Nacionalnom parku Nairobi
of this detection system.
free for anyone to use.
svakomu za korištenje.
even more accessible and usable,
još dostupnijom i korisnijom
of model optimization,
running on a phone.
koja radi na mobitelu.
now we have a pretty powerful solution
jer sada imamo moćno rješenje
na osnovnoj razini,
and build something with it.
i graditi nešto njime.
with access to this software,
s pristupom tom softveru,
will build with this technology.
ljudi učiniti s ovom tehnologijom.
ABOUT THE SPEAKER
Joseph Redmon - Computer scientistJoseph Redmon works on the YOLO algorithm, which combines the simple face detection of your phone camera with a cloud-based AI -- in real time.
Why you should listen
Computer scientist Joseph Redmon is working on the YOLO (You Only Look Once) algorithm, which has a simple goal: to deliver image recognition and object detection at a speed that would seem science-fictional only a few years ago. The algorithm looks like the simple face detection of a camera app but with the level complexity of systems like Google's Deep Mind Cloud Vision, using Convolutional Deep Neural Networks to crunch object detection in realtime. It's the kind of technology that will be embedded on all smartphones in the next few years.
Redmon is also internet-famous for his resume.
Joseph Redmon | Speaker | TED.com