ABOUT THE SPEAKER
Sebastian Seung - Computational neuroscientist
Sebastian Seung is a leader in the new field of connectomics, currently the hottest space in neuroscience, which studies, in once-impossible detail, the wiring of the brain.

Why you should listen

In the brain, neurons are connected into a complex network. Sebastian Seung and his lab at MIT are inventing technologies for identifying and describing the connectome, the totality of connections between the brain's neurons -- think of it as the wiring diagram of the brain. We possess our entire genome at birth, but things like memories are not "stored" in the genome; they are acquired through life and accumulated in the brain. Seung's hypothesis is that "we are our connectome," that the connections among neurons is where memories and experiences get stored.

Seung and his collaborators, including Winfried Denk at the Max Planck Institute and Jeff Lichtman at Harvard University, are working on a plan to thin-slice a brain (probably starting with a mouse brain) and trace, from slice to slice, each neural pathway, exposing the wiring diagram of the brain and creating a powerful new way to visualize the workings of the mind. They're not the first to attempt something like this -- Sydney Brenner won a Nobel for mapping all the 7,000 connections in the nervous system of a tiny worm, C. elegans. But that took his team a dozen years, and the worm only had 302 nerve cells. One of Seung's breakthroughs is in using advanced imagining and AI to handle the crushing amount of data that a mouse brain will yield and turn it into richly visual maps that show the passageways of thought and sensation.

More profile about the speaker
Sebastian Seung | Speaker | TED.com
TEDGlobal 2010

Sebastian Seung: I am my connectome

Sebastian Seung: 我是我的连接体

Filmed:
1,131,223 views

Sebastian Seung 正在绘制一组宏大的大脑模型,着重凸显各个神经元之间的连接。他称之为“连接体”。它和我们的基因组一样,是独一无二的-如果能够解开它的奥秘,那么我们就开辟了研究大脑与思维的新途径。
- Computational neuroscientist
Sebastian Seung is a leader in the new field of connectomics, currently the hottest space in neuroscience, which studies, in once-impossible detail, the wiring of the brain. Full bio

Double-click the English transcript below to play the video.

00:17
We live生活 in in a remarkable卓越 time,
0
2000
3000
我们生活在一个伟大的时代
00:20
the age年龄 of genomics基因组学.
1
5000
3000
基因组学时代
00:23
Your genome基因组 is the entire整个 sequence序列 of your DNA脱氧核糖核酸.
2
8000
3000
基因组是你的整套DNA序列
00:26
Your sequence序列 and mine are slightly different不同.
3
11000
3000
你我的序列稍有不同
00:29
That's why we look different不同.
4
14000
2000
所以我们看上去不太一样
00:31
I've got brown棕色 eyes眼睛;
5
16000
2000
我的眼睛是棕色的
00:33
you might威力 have blue蓝色 or gray灰色.
6
18000
3000
你的眼睛可能是蓝色或灰色的
00:36
But it's not just skin-deep肤浅的.
7
21000
2000
但这序列的作用可没这么肤浅
00:38
The headlines新闻头条 tell us
8
23000
2000
新闻头条告诉我们
00:40
that genes基因 can give us scary害怕 diseases疾病,
9
25000
3000
基因可能产生可怕的疾病,
00:43
maybe even shape形状 our personality个性,
10
28000
3000
甚至可能决定了我们的性格
00:46
or give us mental心理 disorders障碍.
11
31000
3000
让我们神经错乱
00:49
Our genes基因 seem似乎 to have
12
34000
3000
我们的基因似乎有着
00:52
awesome真棒 power功率 over our destinies命运.
13
37000
3000
主宰我们命运的神奇力量
00:56
And yet然而, I would like to think
14
41000
3000
但是, 我希望
00:59
that I am more than my genes基因.
15
44000
3000
我胜过我的基因。
01:04
What do you guys think?
16
49000
2000
你们怎么想?
01:06
Are you more than your genes基因?
17
51000
3000
你们认为你们胜过自己的基因吗?
01:09
(Audience听众: Yes.) Yes?
18
54000
2000
(观众:是的)是吗?
01:13
I think some people agree同意 with me.
19
58000
2000
我看有一些人同意我的观点
01:15
I think we should make a statement声明.
20
60000
2000
我觉得我们应该做个声明
01:17
I think we should say it all together一起.
21
62000
2000
我们应该一起大声喊
01:20
All right: "I'm more than my genes基因" -- all together一起.
22
65000
3000
来吧:“我胜过我的基因”-预备起
01:23
Everybody每个人: I am more than my genes基因.
23
68000
4000
众人:我胜过我的基因。
01:27
(Cheering打气)
24
72000
2000
(众人欢呼)
01:30
Sebastian塞巴斯蒂安 Seung: What am I?
25
75000
2000
Sebastian Seung:那我是什么?
01:32
(Laughter笑声)
26
77000
3000
(众人笑)
01:35
I am my connectome连接组.
27
80000
3000
我是我的连接体
01:40
Now, since以来 you guys are really great,
28
85000
2000
现在,既然大家万众一心
01:42
maybe you can humor幽默 me and say this all together一起 too.
29
87000
2000
那么你们一起说这一句话,让我开开心
01:44
(Laughter笑声)
30
89000
2000
(众人笑)
01:46
Right. All together一起 now.
31
91000
2000
来吧,预备起
01:48
Everybody每个人: I am my connectome连接组.
32
93000
3000
众人:我是我的连接体
01:53
SSSS: That sounded满面 great.
33
98000
2000
Sebastian Seung:太棒了!
01:55
You know, you guys are so great, you don't even know what a connectome连接组 is,
34
100000
2000
你们真是太合作了,你们连什么是连接体都不知道
01:57
and you're willing愿意 to play along沿 with me.
35
102000
2000
就愿意听从我的指挥
01:59
I could just go home now.
36
104000
3000
我现在就可以回家歇着了
02:02
Well, so far only one connectome连接组 is known已知,
37
107000
3000
目前我们仅认识了一个连接体
02:05
that of this tiny worm.
38
110000
3000
就是这条小虫
02:08
Its modest谦虚 nervous紧张 system系统
39
113000
2000
它简单的神经系统
02:10
consists of just 300 neurons神经元.
40
115000
2000
仅由300个神经元组成
02:12
And in the 1970s and '80s,
41
117000
2000
二十世纪七八十年代
02:14
a team球队 of scientists科学家们
42
119000
2000
一群科学家
02:16
mapped映射 all 7,000 connections连接
43
121000
2000
绘制了神经元之间的
02:18
between之间 the neurons神经元.
44
123000
2000
7000个连接
02:21
In this diagram, every一切 node节点 is a neuron神经元,
45
126000
2000
在这幅图里,每个结都是一个神经元
02:23
and every一切 line线 is a connection连接.
46
128000
2000
每一条线都是一个连接
02:25
This is the connectome连接组
47
130000
2000
这就是线虫的
02:27
of the worm C. elegans线虫.
48
132000
4000
连接体
02:31
Your connectome连接组 is far more complex复杂 than this
49
136000
3000
你的连接体比这复杂多了
02:34
because your brain
50
139000
2000
因为你的大脑
02:36
contains包含 100 billion十亿 neurons神经元
51
141000
2000
由一千亿个神经元组成
02:38
and 10,000 times as many许多 connections连接.
52
143000
3000
连接数是线虫的一万倍
02:41
There's a diagram like this for your brain,
53
146000
2000
人脑也有类似的一张图
02:43
but there's no way it would fit适合 on this slide滑动.
54
148000
3000
但是这张幻灯片可放不下
02:47
Your connectome连接组 contains包含 one million百万 times more connections连接
55
152000
3000
你连接体中的连接数比你基因组中的字母
02:50
than your genome基因组 has letters.
56
155000
3000
还要多100万倍
02:53
That's a lot of information信息.
57
158000
2000
信息量非常大
02:55
What's in that information信息?
58
160000
3000
里面的信息有什么意义?
02:59
We don't know for sure, but there are theories理论.
59
164000
3000
我们还不得而知,但是有一些相关理论
03:02
Since以来 the 19th century世纪, neuroscientists神经学家 have speculated推测
60
167000
3000
自十九世纪以来,神经元学家们就开始推测
03:05
that maybe your memories回忆 --
61
170000
2000
或许你的记忆-
03:07
the information信息 that makes品牌 you, you --
62
172000
2000
那决定你是谁的信息-
03:09
maybe your memories回忆 are stored存储
63
174000
2000
也许你的记忆就储存在
03:11
in the connections连接 between之间 your brain's大脑的 neurons神经元.
64
176000
2000
你大脑神经元之间的连接里
03:15
And perhaps也许 other aspects方面 of your personal个人 identity身分 --
65
180000
2000
也许你个人身份的其它方面-
03:17
maybe your personality个性 and your intellect智力 --
66
182000
3000
你的个性与智力-
03:20
maybe they're also encoded编码
67
185000
2000
或许它们
03:22
in the connections连接 between之间 your neurons神经元.
68
187000
3000
也被编译在你神经元的连接里
03:26
And so now you can see why I proposed建议 this hypothesis假设:
69
191000
3000
现在你们明白我为什么提出这个假设了:
03:29
I am my connectome连接组.
70
194000
3000
我是我的连接体
03:32
I didn't ask you to chant it because it's true真正;
71
197000
3000
我让大家一起喊并不是因为这是事实
03:35
I just want you to remember记得 it.
72
200000
2000
我只是想让你们记住这句话
03:37
And in fact事实, we don't know if this hypothesis假设 is correct正确,
73
202000
2000
事实上,我们不知道这假设是否正确
03:39
because we have never had technologies技术
74
204000
2000
因为我们的技术还没有发展到
03:41
powerful强大 enough足够 to test测试 it.
75
206000
2000
足以测试其正确与否的程度
03:44
Finding查找 that worm connectome连接组
76
209000
3000
光是找出那条小虫的连接体
03:47
took over a dozen years年份 of tedious乏味 labor劳动.
77
212000
3000
就花了十几年的艰苦劳动
03:50
And to find the connectomesconnectomes of brains大脑 more like our own拥有,
78
215000
3000
而找到人脑的连接体
03:53
we need more sophisticated复杂的 technologies技术, that are automated自动化,
79
218000
3000
我们需要更加精尖的自动化技术
03:56
that will speed速度 up the process处理 of finding发现 connectomesconnectomes.
80
221000
3000
以提高寻找连接体的速度
03:59
And in the next下一个 few少数 minutes分钟, I'll tell you about some of these technologies技术,
81
224000
3000
下面的几分钟里,我将向大家介绍其中一些技术
04:02
which哪一个 are currently目前 under development发展
82
227000
2000
这些技术尚处于研发状态
04:04
in my lab实验室 and the labs实验室 of my collaborators合作者.
83
229000
3000
在我和我同事的实验室里进行
04:08
Now you've probably大概 seen看到 pictures图片 of neurons神经元 before.
84
233000
3000
你们可能已经见过神经元的照片
04:11
You can recognize认识 them instantly即刻
85
236000
2000
你们可以通过它们奇特的形状
04:13
by their fantastic奇妙 shapes形状.
86
238000
3000
一眼就认出它们
04:16
They extend延伸 long and delicate精巧 branches分支机构,
87
241000
3000
它们延伸出长而纤细的枝条
04:19
and in short, they look like trees树木.
88
244000
3000
简单说,它们看起来像树一样
04:22
But this is just a single neuron神经元.
89
247000
3000
而这只是一个神经元
04:25
In order订购 to find connectomesconnectomes,
90
250000
2000
想找到连接体
04:27
we have to see all the neurons神经元 at the same相同 time.
91
252000
3000
我们必须同时看到所有神经元
04:30
So let's meet遇到 Bobby鲍比 Kasthuri卡斯特里,
92
255000
2000
下面我们请出波比. 卡斯特里
04:32
who works作品 in the laboratory实验室 of Jeff杰夫 Lichtman利希特曼
93
257000
2000
他在哈佛大学
04:34
at Harvard哈佛 University大学.
94
259000
2000
利希曼实验室工作
04:36
Bobby鲍比 is holding保持 fantastically飞驰 thin slices
95
261000
2000
波比拿在手里的是一片极薄的
04:38
of a mouse老鼠 brain.
96
263000
2000
小鼠大脑切片
04:40
And we're zooming缩放 in by a factor因子 of 100,000 times
97
265000
3000
我们把它放大了十万倍
04:44
to obtain获得 the resolution解析度,
98
269000
2000
达到所需分辨率
04:46
so that we can see the branches分支机构 of neurons神经元 all at the same相同 time.
99
271000
3000
这样我们就可以同时看到所有神经元的分枝
04:50
Except, you still may可能 not really recognize认识 them,
100
275000
3000
但是,你可能还是无法真正识别它们
04:53
and that's because we have to work in three dimensions尺寸.
101
278000
3000
我们必须在三维的效果下进行工作
04:56
If we take many许多 images图片 of many许多 slices of the brain
102
281000
2000
如果我们给许多大脑切片拍照
04:58
and stack them up,
103
283000
2000
再把它们叠在一起
05:00
we get a three-dimensional三维 image图片.
104
285000
2000
我们会得到一个三维图像
05:02
And still, you may可能 not see the branches分支机构.
105
287000
2000
然而,你可能还是看不到那些分枝
05:04
So we start开始 at the top最佳,
106
289000
2000
我们从上至下
05:06
and we color颜色 in the cross-section横截面 of one branch in red,
107
291000
3000
把一个分枝的交叉部位涂成红色
05:09
and we do that for the next下一个 slice
108
294000
2000
我们对下一张切片进行同样处理
05:11
and for the next下一个 slice.
109
296000
2000
接着再下一张
05:13
And we keep on doing that,
110
298000
2000
我们持续这么处理
05:15
slice after slice.
111
300000
3000
一张接着一张
05:18
If we continue继续 through通过 the entire整个 stack,
112
303000
2000
如果对一整叠切片进行处理
05:20
we can reconstruct重建 the three-dimensional三维 shape形状
113
305000
3000
我们就能重塑这一小段
05:23
of a small fragment分段 of a branch of a neuron神经元.
114
308000
3000
神经元分枝的三维图形
05:26
And we can do that for another另一个 neuron神经元 in green绿色.
115
311000
2000
我们还可以把另一个神经元涂成绿色
05:28
And you can see that the green绿色 neuron神经元 touches触摸 the red neuron神经元
116
313000
2000
你们可以看到绿色神经元与红色神经元
05:30
at two locations地点,
117
315000
2000
在两处接触了
05:32
and these are what are called synapses突触.
118
317000
2000
这两个就是神经突触
05:34
Let's zoom放大 in on one synapse突触,
119
319000
2000
我们把一个神经突触放大
05:36
and keep your eyes眼睛 on the interior室内 of the green绿色 neuron神经元.
120
321000
3000
大家注意看绿色的内部
05:39
You should see small circles --
121
324000
2000
你们可以看到一些小圆圈
05:41
these are called vesicles囊泡.
122
326000
3000
这些被称为囊泡
05:44
They contain包含 a molecule分子 know as a neurotransmitter神经递质.
123
329000
3000
它们包含了被称为神经递质的分子
05:47
And so when the green绿色 neuron神经元 wants to communicate通信,
124
332000
2000
当绿色神经元想进行沟通
05:49
it wants to send发送 a message信息 to the red neuron神经元,
125
334000
2000
想给红色神经元发送信息
05:51
it spits吐奶 out neurotransmitter神经递质.
126
336000
3000
它就释放出神经递质
05:54
At the synapse突触, the two neurons神经元
127
339000
2000
在神经突触处,这两个神经元
05:56
are said to be connected连接的
128
341000
2000
被认为是相互连接起来
05:58
like two friends朋友 talking on the telephone电话.
129
343000
3000
就像两个朋友通过电话聊天
06:02
So you see how to find a synapse突触.
130
347000
2000
你们了解了如何找到一个神经突触
06:04
How can we find an entire整个 connectome连接组?
131
349000
3000
那么我们怎么找到整个完整的连接体呢?
06:07
Well, we take this three-dimensional三维 stack of images图片
132
352000
3000
我们把这个图形重叠形成的三维图像
06:10
and treat对待 it as a gigantic巨大 three-dimensional三维 coloring染色 book.
133
355000
3000
处理成一本巨大的三维填图
06:13
We color颜色 every一切 neuron神经元 in, in a different不同 color颜色,
134
358000
3000
我们把每一个神经元涂成一种颜色
06:16
and then we look through通过 all of the images图片,
135
361000
2000
接着从所有图像中
06:18
find the synapses突触
136
363000
2000
找到神经突触
06:20
and note注意 the colors颜色 of the two neurons神经元 involved参与 in each synapse突触.
137
365000
3000
记录下任意两个组成神经突触的神经元的颜色,
06:23
If we can do that throughout始终 all the images图片,
138
368000
3000
如果我们可以对所有图像进行这样的处理
06:26
we could find a connectome连接组.
139
371000
2000
我们就能找到整个连接体
06:29
Now, at this point,
140
374000
2000
到目前为止
06:31
you've learned学到了 the basics基本 of neurons神经元 and synapses突触.
141
376000
2000
大家已经对神经元和神经突触有了基本了解
06:33
And so I think we're ready准备 to tackle滑车
142
378000
2000
我想我们已经可以解决
06:35
one of the most important重要 questions问题 in neuroscience神经科学:
143
380000
3000
神经学上最重要的问题:
06:39
how are the brains大脑 of men男人 and women妇女 different不同?
144
384000
3000
男性与女性的大脑有何不同?
06:42
(Laughter笑声)
145
387000
2000
(众人笑)
06:44
According根据 to this self-help自救 book,
146
389000
2000
这本自学书上说
06:46
guys brains大脑 are like waffles威化饼;
147
391000
2000
男性的大脑像华孚饼
06:48
they keep their lives生活 compartmentalized条块 in boxes盒子.
148
393000
3000
他们把自己的生活分别独立包装在盒子里
06:51
Girls'少女时代 brains大脑 are like spaghetti意大利面;
149
396000
3000
而女性的大脑像意大利面
06:54
everything in their life is connected连接的 to everything else其他.
150
399000
3000
她们生活中的一切与其它所有东西都联系在一起
06:57
(Laughter笑声)
151
402000
2000
(众人笑)
06:59
You guys are laughing,
152
404000
2000
大家都笑了
07:01
but you know, this book changed my life.
153
406000
2000
但是,你们知道吗,这本书改变了我一生
07:03
(Laughter笑声)
154
408000
2000
(众人笑)
07:07
But seriously认真地, what's wrong错误 with this?
155
412000
3000
说正经的,这错在哪里?
07:10
You already已经 know enough足够 to tell me -- what's wrong错误 with this statement声明?
156
415000
3000
你们已经足以回答这个问题了。这个说法错在哪里?
07:20
It doesn't matter whether是否 you're a guy or girl女孩,
157
425000
3000
不管你是男是女
07:23
everyone's大家的 brains大脑 are like spaghetti意大利面.
158
428000
3000
所有人的大脑都像意大利面
07:26
Or maybe really, really fine capellini卡佩利尼 with branches分支机构.
159
431000
3000
或者说像非常非常优质的、带枝条的细面条
07:30
Just as one strand of spaghetti意大利面
160
435000
2000
正如一条意大利面
07:32
contacts往来 many许多 other strands on your plate盘子,
161
437000
3000
连接着你盘子里的其它面条一样
07:35
one neuron神经元 touches触摸 many许多 other neurons神经元
162
440000
2000
一个神经元与许多其它神经元
07:37
through通过 their entangled纠缠 branches分支机构.
163
442000
2000
通过它们缠绕的枝条相互接触
07:39
One neuron神经元 can be connected连接的 to so many许多 other neurons神经元,
164
444000
3000
一个神经元能够与其它众多神经元连接在一起
07:42
because there can be synapses突触
165
447000
2000
是因为在它们的接触点上
07:44
at these points of contact联系.
166
449000
3000
形成神经突触
07:49
By now, you might威力 have sort分类 of lost丢失 perspective透视
167
454000
3000
现在你们对这个大脑组织块的实际大小
07:52
on how large this cube立方体 of brain tissue组织 actually其实 is.
168
457000
3000
可能已经摸不着头脑了
07:55
And so let's do a series系列 of comparisons对比 to show显示 you.
169
460000
3000
那么我们通过一系列对比给你们做展示
07:58
I assure保证 you, this is very tiny. It's just six microns微米 on a side.
170
463000
3000
我保证,这非常微小,边长仅为6微米
08:03
So, here's这里的 how it stacks up against反对 an entire整个 neuron神经元.
171
468000
3000
看,这就是它与一个完整神经元的对比
08:06
And you can tell that, really, only the smallest最少 fragments片段 of branches分支机构
172
471000
3000
你们可以看到,真的,只有分枝最小的部分
08:09
are contained inside this cube立方体.
173
474000
3000
被包含在这个方块里
08:12
And a neuron神经元, well, that's smaller than brain.
174
477000
3000
而一个神经元,比大脑要小多了
08:17
And that's just a mouse老鼠 brain --
175
482000
2000
而这还只是一只小鼠的脑
08:21
it's a lot smaller than a human人的 brain.
176
486000
3000
比人类的脑小多了
08:25
So when show显示 my friends朋友 this,
177
490000
2000
当我给朋友看这张图
08:27
sometimes有时 they've他们已经 told me,
178
492000
2000
他们有时会劝我
08:29
"You know, Sebastian塞巴斯蒂安, you should just give up.
179
494000
3000
“我说, Sebastian,你应该放弃了
08:32
Neuroscience神经科学 is hopeless绝望."
180
497000
2000
神经科学是没有出路的。”
08:34
Because if you look at a brain with your naked eye,
181
499000
2000
如果你只用肉眼来看一个大脑
08:36
you don't really see how complex复杂 it is,
182
501000
2000
你看不到它有多复杂
08:38
but when you use a microscope显微镜,
183
503000
2000
但是,在显微镜之下
08:40
finally最后 the hidden complexity复杂 is revealed透露.
184
505000
3000
那隐藏的复杂性就最终显现出来了
08:45
In the 17th century世纪,
185
510000
2000
在十七世纪
08:47
the mathematician数学家 and philosopher哲学家, Blaise布莱斯 Pascal帕斯卡尔,
186
512000
2000
数学家兼哲学家布莱士. 帕斯卡
08:49
wrote of his dread恐惧 of the infinite无穷,
187
514000
3000
在冥想浩瀚的外太空时
08:52
his feeling感觉 of insignificance渺小
188
517000
2000
写下了他对无限性的恐惧
08:54
at contemplating考虑 the vast广大 reaches到达 of outer space空间.
189
519000
3000
以及自身的微不足道
08:59
And, as a scientist科学家,
190
524000
2000
而,作为一个科学家
09:01
I'm not supposed应该 to talk about my feelings情怀 --
191
526000
3000
我不应该谈论我的感受
09:04
too much information信息, professor教授.
192
529000
2000
太多隐私啊,教授
09:06
(Laughter笑声)
193
531000
2000
(众人笑)
09:08
But may可能 I?
194
533000
2000
还是让我说说吧?
09:10
(Laughter笑声)
195
535000
2000
(众人笑)
09:12
(Applause掌声)
196
537000
2000
(众人鼓掌)
09:14
I feel curiosity好奇心,
197
539000
2000
我感觉好奇
09:16
and I feel wonder奇迹,
198
541000
2000
我感觉迷惑,
09:18
but at times I have also felt despair绝望.
199
543000
3000
但我也常常感觉绝望
09:22
Why did I choose选择 to study研究
200
547000
2000
为什么我会选择
09:24
this organ器官 that is so awesome真棒 in its complexity复杂
201
549000
3000
学习这个复杂到绝美
09:27
that it might威力 well be infinite无穷?
202
552000
2000
但也复杂到无限的器官呢?
09:29
It's absurd荒诞.
203
554000
2000
太荒唐了
09:31
How could we even dare to think
204
556000
2000
我们怎敢想像
09:33
that we might威力 ever understand理解 this?
205
558000
3000
有一天我们能把大脑了解清楚
09:38
And yet然而, I persist坚持 in this quixotic不切实际 endeavor努力.
206
563000
3000
但是,我坚持进行这项愚侠的事业
09:41
And indeed确实, these days I harbor港口 new hopes希望.
207
566000
3000
而实际上,这些天我见到了一些新希望
09:45
Someday日后,
208
570000
2000
总有一天
09:47
a fleet舰队 of microscopes显微镜 will capture捕获
209
572000
2000
会有一大批显微镜
09:49
every一切 neuron神经元 and every一切 synapse突触
210
574000
2000
能够捕捉到每一个神经元与每一个神经突触
09:51
in a vast广大 database数据库 of images图片.
211
576000
3000
得到一个巨大的图像数据库
09:54
And some day, artificially人为 intelligent智能 supercomputers超级计算机
212
579000
3000
总有一天,人工智能超级计算机
09:57
will analyze分析 the images图片 without human人的 assistance帮助
213
582000
3000
能够对这些图像进行自主分析
10:00
to summarize总结 them in a connectome连接组.
214
585000
3000
把它们总结成连接体
10:04
I do not know, but I hope希望 that I will live生活 to see that day,
215
589000
3000
我不知道,但我希望我能在有生之年看到那一天
10:08
because finding发现 an entire整个 human人的 connectome连接组
216
593000
2000
因为,找到一个完整的人类连接体
10:10
is one of the greatest最大 technological技术性 challenges挑战 of all time.
217
595000
3000
是历史上最重大的技术挑战之一
10:13
It will take the work of generations to succeed成功.
218
598000
3000
这要求许多代人的共同努力才能完成
10:17
At the present当下 time, my collaborators合作者 and I,
219
602000
3000
在现今,我和我的同事们
10:20
what we're aiming瞄准 for is much more modest谦虚 --
220
605000
2000
我们的奋斗目标没有那么远大-
10:22
just to find partial局部 connectomesconnectomes
221
607000
2000
只是力求找到在小鼠大脑
10:24
of tiny chunks of mouse老鼠 and human人的 brain.
222
609000
3000
和人类大脑微小切片中的部分连接体
10:27
But even that will be enough足够 for the first tests测试 of this hypothesis假设
223
612000
3000
而这已经足够用来进行“我是我的连接体”
10:30
that I am my connectome连接组.
224
615000
3000
这个假设的初期测试
10:35
For now, let me try to convince说服 you of the plausibility合理性 of this hypothesis假设,
225
620000
3000
到此,我想告诉大家这个假设的合理性
10:38
that it's actually其实 worth价值 taking服用 seriously认真地.
226
623000
3000
这是值得严肃对待的
10:42
As you grow增长 during childhood童年
227
627000
2000
你在童年时成长
10:44
and age年龄 during adulthood成年,
228
629000
3000
在成年之后逐渐变老
10:47
your personal个人 identity身分 changes变化 slowly慢慢地.
229
632000
3000
你个人身份慢慢地变化
10:50
Likewise同样, every一切 connectome连接组
230
635000
2000
同理,每个连接体
10:52
changes变化 over time.
231
637000
2000
都会随着时间而变化
10:55
What kinds of changes变化 happen发生?
232
640000
2000
发生什么样的变化呢?
10:57
Well, neurons神经元, like trees树木,
233
642000
2000
神经元,像树
10:59
can grow增长 new branches分支机构,
234
644000
2000
能够长出新的枝条
11:01
and they can lose失去 old ones那些.
235
646000
3000
也会换下旧的枝条
11:04
Synapses突触 can be created创建,
236
649000
3000
神经突触会产生
11:07
and they can be eliminated淘汰.
237
652000
3000
也会消失
11:10
And synapses突触 can grow增长 larger,
238
655000
2000
神经突触能够长大
11:12
and they can grow增长 smaller.
239
657000
3000
也能变小
11:15
Second第二 question:
240
660000
2000
第二个问题:
11:17
what causes原因 these changes变化?
241
662000
3000
是什么促成了这些变化?
11:20
Well, it's true真正.
242
665000
2000
如人所说,
11:22
To some extent程度, they are programmed程序 by your genes基因.
243
667000
3000
在某种程度上,它们是由你的基因决定的
11:25
But that's not the whole整个 story故事,
244
670000
2000
但并不完全如此
11:27
because there are signals信号, electrical电动 signals信号,
245
672000
2000
因为有许多信号,电子信号
11:29
that travel旅行 along沿 the branches分支机构 of neurons神经元
246
674000
2000
沿着神经元的枝条游动
11:31
and chemical化学 signals信号
247
676000
2000
还有化学信号
11:33
that jump across横过 from branch to branch.
248
678000
2000
在枝条的交界处跳跃
11:35
These signals信号 are called neural神经 activity活动.
249
680000
3000
这些信号被称为神经活动
11:38
And there's a lot of evidence证据
250
683000
2000
有许多证据证明
11:40
that neural神经 activity活动
251
685000
3000
神经活动
11:43
is encoding编码 our thoughts思念, feelings情怀 and perceptions看法,
252
688000
3000
决定了我们的思想,感受与知觉
11:46
our mental心理 experiences经验.
253
691000
2000
还有我们的精神经历
11:48
And there's a lot of evidence证据 that neural神经 activity活动
254
693000
3000
还有很多证据证明神经活动
11:51
can cause原因 your connections连接 to change更改.
255
696000
3000
能够促使你的连接体发生变化
11:54
And if you put those two facts事实 together一起,
256
699000
3000
如果你把两个因素放在一起
11:57
it means手段 that your experiences经验
257
702000
2000
它就意味着你的经历
11:59
can change更改 your connectome连接组.
258
704000
3000
能够改变你的连接体
12:02
And that's why every一切 connectome连接组 is unique独特,
259
707000
2000
这就是为什么每个人的连接体都是独一无二的
12:04
even those of genetically基因 identical相同 twins双胞胎.
260
709000
3000
即使是同卵双胞胎也不例外
12:08
The connectome连接组 is where nature性质 meets符合 nurture培育.
261
713000
3000
连接体是先天与后天的共同产物
12:12
And it might威力 true真正
262
717000
2000
这很有可能是真的
12:14
that just the mere act法案 of thinking思维
263
719000
2000
一个小小的思维动作
12:16
can change更改 your connectome连接组 --
264
721000
2000
就能改变你的连接体——
12:18
an idea理念 that you may可能 find empowering授权.
265
723000
3000
你可能感觉这个概念很强势。
12:24
What's in this picture图片?
266
729000
2000
这幅图是什么?
12:28
A cool and refreshing清爽 stream of water, you say.
267
733000
3000
你会说是一条清凉的溪流
12:32
What else其他 is in this picture图片?
268
737000
2000
图上还有什么?
12:37
Do not forget忘记 that groove in the Earth地球
269
742000
2000
别忘了那地表的深漕
12:39
called the stream bed.
270
744000
3000
我们叫它河床
12:42
Without没有 it, the water would not know in which哪一个 direction方向 to flow.
271
747000
3000
没有了它,水就不知道往那个方向流了
12:45
And with the stream,
272
750000
2000
对于溪流
12:47
I would like to propose提出 a metaphor隐喻
273
752000
2000
我想做一个暗喻
12:49
for the relationship关系 between之间 neural神经 activity活动
274
754000
2000
来形容神经活动与连接体活动
12:51
and connectivity连接.
275
756000
2000
之间的关系
12:54
Neural神经 activity活动 is constantly经常 changing改变.
276
759000
3000
神经活动不停地在变化
12:57
It's like the water of the stream; it never sits坐镇 still.
277
762000
3000
就像溪流一样;永不停息
13:00
The connections连接
278
765000
2000
而脑部神经网络的
13:02
of the brain's大脑的 neural神经 network网络
279
767000
2000
连接处
13:04
determines确定 the pathways途径
280
769000
2000
决定了神经活动
13:06
along沿 which哪一个 neural神经 activity活动 flows流动.
281
771000
2000
流动的路线
13:08
And so the connectome连接组 is like bed of the stream;
282
773000
3000
所以,连接体就像河床一样
13:13
but the metaphor隐喻 is richer更丰富 than that,
283
778000
3000
但这暗喻的内容比这丰富得多
13:16
because it's true真正 that the stream bed
284
781000
3000
因为尽管河床
13:19
guides导游 the flow of the water,
285
784000
2000
是流水的导向
13:21
but over long timescales时间表,
286
786000
2000
但经过很长的时期
13:23
the water also reshapes重塑 the bed of the stream.
287
788000
3000
流水也会对河床进行重塑
13:26
And as I told you just now,
288
791000
2000
我刚才说过
13:28
neural神经 activity活动 can change更改 the connectome连接组.
289
793000
3000
神经活动能够改变连接体
13:33
And if you'll你会 allow允许 me to ascend
290
798000
2000
如果大家允许我
13:35
to metaphorical隐喻 heights高度,
291
800000
3000
更进一步使用暗喻
13:38
I will remind提醒 you that neural神经 activity活动
292
803000
3000
我会提醒大家,神经活动
13:41
is the physical物理 basis基础 -- or so neuroscientists神经学家 think --
293
806000
2000
至少神经学家是这么认为的-
13:43
of thoughts思念, feelings情怀 and perceptions看法.
294
808000
3000
是思想,感受以及感知的生理基础
13:46
And so we might威力 even speak说话 of
295
811000
2000
这样我们甚至可以探讨
13:48
the stream of consciousness意识.
296
813000
2000
意识的溪流
13:50
Neural神经 activity活动 is its water,
297
815000
3000
神经活动是水
13:53
and the connectome连接组 is its bed.
298
818000
3000
连接体是河床
13:57
So let's return返回 from the heights高度 of metaphor隐喻
299
822000
2000
我们从暗喻中
13:59
and return返回 to science科学.
300
824000
2000
回到科学上
14:01
Suppose假设 our technologies技术 for finding发现 connectomesconnectomes
301
826000
2000
假设我们寻找连接体的技术
14:03
actually其实 work.
302
828000
2000
起到了作用
14:05
How will we go about testing测试 the hypothesis假设
303
830000
2000
我们如何对假设进行测试
14:07
"I am my connectome连接组?"
304
832000
3000
证明“我是我的连接体”呢?
14:10
Well, I propose提出 a direct直接 test测试.
305
835000
3000
我提出一个直接的测试
14:13
Let us attempt尝试
306
838000
2000
我们尝试
14:15
to read out memories回忆 from connectomesconnectomes.
307
840000
3000
通过连接体来解读记忆
14:18
Consider考虑 the memory记忆
308
843000
2000
记忆是
14:20
of long temporal sequences序列 of movements运动,
309
845000
3000
长期有序发生的动作
14:23
like a pianist钢琴家 playing播放 a Beethoven贝多芬 sonata奏鸣曲.
310
848000
3000
就像一个在弹奏贝多芬奏鸣曲的钢琴家
14:26
According根据 to a theory理论 that dates日期 back to the 19th century世纪,
311
851000
3000
根据十九世纪时提出的理论
14:29
such这样 memories回忆 are stored存储
312
854000
2000
这些记忆以神经键链条的形式
14:31
as chains of synaptic突触 connections连接 inside your brain.
313
856000
3000
被储存在你的大脑里
14:35
Because, if the first neurons神经元 in the chain are activated活性,
314
860000
3000
因为,如果链条中第一批神经元被激活
14:38
through通过 their synapses突触 they send发送 messages消息 to the second第二 neurons神经元, which哪一个 are activated活性,
315
863000
3000
它们会通过神经突触向第二批被激活的神经元发出信息
14:41
and so on down the line线,
316
866000
2000
以此类推,一直往下
14:43
like a chain of falling落下 dominoes骨牌.
317
868000
2000
就像是一路倒下的多米诺骨牌
14:45
And this sequence序列 of neural神经 activation激活
318
870000
2000
这有序的神经激活
14:47
is hypothesized假设 to be the neural神经 basis基础
319
872000
3000
被猜想为那些有序动作的
14:50
of those sequence序列 of movements运动.
320
875000
2000
神经基础
14:52
So one way of trying to test测试 the theory理论
321
877000
2000
所以,检验这一理论的一种途径
14:54
is to look for such这样 chains
322
879000
2000
就是在连接体中
14:56
inside connectomesconnectomes.
323
881000
2000
寻找这样的链条
14:58
But it won't惯于 be easy简单, because they're not going to look like this.
324
883000
3000
但这并非易事,因为它们可不像这样
15:01
They're going to be scrambled up.
325
886000
2000
它们会相互纠结成一团
15:03
So we'll have to use our computers电脑
326
888000
2000
所以我们就必须使用我们的计算机
15:05
to try to unscramble解读 the chain.
327
890000
3000
把这些链条解开
15:08
And if we can do that,
328
893000
2000
如果我们成功了
15:10
the sequence序列 of the neurons神经元 we recover恢复 from that unscrambling解读
329
895000
3000
我们解开的神经元序列
15:13
will be a prediction预测 of the pattern模式 of neural神经 activity活动
330
898000
3000
能够预测大脑中记忆回放时
15:16
that is replayed重播 in the brain during memory记忆 recall召回.
331
901000
3000
神经活动的模式
15:19
And if that were successful成功,
332
904000
2000
如果成功了
15:21
that would be the first example of reading a memory记忆 from a connectome连接组.
333
906000
3000
这将是由连接体读取记忆的第一例
15:28
(Laughter笑声)
334
913000
2000
(众人笑)
15:30
What a mess食堂 --
335
915000
2000
真复杂
15:33
have you ever tried试着 to wire线 up a system系统
336
918000
2000
你们有没有尝试过
15:35
as complex复杂 as this?
337
920000
2000
连接一个类似的复杂系统?
15:37
I hope希望 not.
338
922000
2000
但愿没有
15:39
But if you have, you know it's very easy简单 to make a mistake错误.
339
924000
3000
但是如果尝试过,你知道这很容易出错
15:45
The branches分支机构 of neurons神经元 are like the wires电线 of the brain.
340
930000
2000
神经元的枝条就像是大脑的电线一样
15:47
Can anyone任何人 guess猜测: what's the total length长度 of wires电线 in your brain?
341
932000
4000
谁能猜一猜:你大脑里神经元的总长有多少?
15:54
I'll give you a hint暗示. It's a big number.
342
939000
2000
给你一个提示:这个数字很大
15:56
(Laughter笑声)
343
941000
2000
(众人笑)
15:59
I estimate估计, millions百万 of miles英里,
344
944000
3000
我估计,有几百万英里
16:02
all packed打包 in your skull头骨.
345
947000
3000
全部装在你头颅里
16:05
And if you appreciate欣赏 that number,
346
950000
2000
如果你惊叹于这个数字
16:07
you can easily容易 see
347
952000
2000
你不难看到
16:09
there is huge巨大 potential潜在 for mis-wiring误接线 of the brain.
348
954000
2000
大脑中接错线的可能性极大
16:11
And indeed确实, the popular流行 press loves headlines新闻头条 like,
349
956000
3000
确实,大众媒体特别青睐这样的头版头条
16:14
"Anorexic厌食症 brains大脑 are wired有线 differently不同,"
350
959000
2000
“”厌食症患者大脑结构与众不同
16:16
or "Autistic自闭症 brains大脑 are wired有线 differently不同."
351
961000
2000
或者“孤独症患者大脑结构与众不同”
16:18
These are plausible似是而非 claims索赔,
352
963000
2000
这听起来似乎有道理
16:20
but in truth真相,
353
965000
2000
但事实上
16:22
we can't see the brain's大脑的 wiring接线 clearly明确地 enough足够
354
967000
2000
我们不能够清楚地看到大脑中的连接情况
16:24
to tell if these are really true真正.
355
969000
2000
来证实这些说法正确与否
16:26
And so the technologies技术 for seeing眼看 connectomesconnectomes
356
971000
3000
因此,显示连接体的科技
16:29
will allow允许 us to finally最后
357
974000
2000
最终能够让我们
16:31
read mis-wiring误接线 of the brain,
358
976000
2000
解读大脑中的连接错误
16:33
to see mental心理 disorders障碍 in connectomesconnectomes.
359
978000
3000
看到连接体中的精神错乱
16:40
Sometimes有时 the best最好 way to test测试 a hypothesis假设
360
985000
3000
有时候,检验假设的最佳方式
16:43
is to consider考虑 its most extreme极端 implication意义.
361
988000
3000
是考虑最极端的情况
16:46
Philosophers哲学家 know this game游戏 very well.
362
991000
3000
哲学家对这一招特别在行
16:50
If you believe that I am my connectome连接组,
363
995000
3000
如果你相信我是我的连接体
16:53
I think you must必须 also accept接受 the idea理念
364
998000
3000
我认为你就必须接受这个观点
16:56
that death死亡 is the destruction毁坏
365
1001000
2000
那就是:死亡就是
16:58
of your connectome连接组.
366
1003000
3000
你连接体的消亡
17:02
I mention提到 this because there are prophets先知 today今天
367
1007000
3000
我提出这一点是因为现今有一些预言家
17:05
who claim要求 that technology技术
368
1010000
3000
声称科技
17:08
will fundamentally从根本上 alter改变 the human人的 condition条件
369
1013000
3000
将会从根本上改变人类的身体条件
17:11
and perhaps也许 even transform转变 the human人的 species种类.
370
1016000
3000
甚至使人类发生变异
17:14
One of their most cherished珍爱的 dreams
371
1019000
3000
他们最崇高的梦想之一
17:17
is to cheat作弊 death死亡
372
1022000
2000
就是躲避死亡
17:19
by that practice实践 known已知 as cryonics人体冷冻.
373
1024000
2000
使用一种叫做人体冷冻的做法
17:21
If you pay工资 100,000 dollars美元,
374
1026000
2000
如果你出十万美元
17:23
you can arrange安排 to have your body身体 frozen冻结的 after death死亡
375
1028000
3000
你就可以安排在你死后把你的身体冷冻起来
17:26
and stored存储 in liquid液体 nitrogen
376
1031000
2000
储存在液态氮中
17:28
in one of these tanks坦克 in an Arizona亚利桑那 warehouse仓库,
377
1033000
2000
装进这样一个罐子里保存在亚利桑那州的一个仓库里
17:30
awaiting等待 a future未来 civilization文明
378
1035000
2000
等待未来的先进文明
17:32
that is advanced高级 to resurrect复活 you.
379
1037000
3000
来为你解冻
17:36
Should we ridicule嘲笑 the modern现代 seekers求职者 of immortality不朽,
380
1041000
2000
我们应对这种寻求永生的现代人嗤之以鼻
17:38
calling调用 them fools傻瓜?
381
1043000
2000
叫他们疯子?
17:40
Or will they someday日后 chuckle暗笑
382
1045000
2000
还是他们有朝一日
17:42
over our graves坟墓?
383
1047000
2000
对着我们的墓碑发笑
17:45
I don't know --
384
1050000
2000
我不知道
17:47
I prefer比较喜欢 to test测试 their beliefs信仰, scientifically科学.
385
1052000
3000
我更想通过科学的方法检验他们的信仰
17:50
I propose提出 that we attempt尝试 to find a connectome连接组
386
1055000
2000
我提议我们争取找到
17:52
of a frozen冻结的 brain.
387
1057000
2000
一个冷冻大脑的连接体
17:54
We know that damage损伤 to the brain
388
1059000
2000
我们知道脑部的损伤
17:56
occurs发生 after death死亡 and during freezing冷冻.
389
1061000
2000
是在死后以及冷冻期间发生的
17:58
The question is: has that damage损伤 erased擦除 the connectome连接组?
390
1063000
3000
问题是:这种损伤是否已将连接体抹去?
18:01
If it has, there is no way that any future未来 civilization文明
391
1066000
3000
若果真如此,那么任何未来先进文明
18:04
will be able能够 to recover恢复 the memories回忆 of these frozen冻结的 brains大脑.
392
1069000
3000
都无法使这些冷冻大脑的记忆复原
18:07
Resurrection复活 might威力 succeed成功 for the body身体,
393
1072000
2000
复活术也许能对身体奏效
18:09
but not for the mind心神.
394
1074000
2000
但对思想却无能为力
18:11
On the other hand, if the connectome连接组 is still intact完整,
395
1076000
3000
另一方面,如果连接体依旧完整
18:14
we cannot不能 ridicule嘲笑 the claims索赔 of cryonics人体冷冻 so easily容易.
396
1079000
3000
我们就不能轻易说人体冷冻术是谬论了
18:20
I've described描述 a quest寻求
397
1085000
2000
我已经描述了
18:22
that begins开始 in the world世界 of the very small,
398
1087000
3000
在微观世界开始的探视
18:25
and propels推动 us to the world世界 of the far future未来.
399
1090000
3000
并驱使我们去探寻未来的世界
18:28
ConnectomesConnectomes will mark标记 a turning车削 point in human人的 history历史.
400
1093000
3000
连接体会成为人类历史的转折点
18:32
As we evolved进化 from our ape-like类人猿 ancestors祖先
401
1097000
2000
我们是从非洲大草原上的
18:34
on the African非洲人 savanna稀树草原,
402
1099000
2000
人猿祖先进化而来的
18:36
what distinguished杰出的 us was our larger brains大脑.
403
1101000
3000
而我们与他们之间的不同之处在于我们的脑体积更大
18:40
We have used our brains大脑 to fashion时尚
404
1105000
2000
我们已经利用大脑
18:42
ever more amazing惊人 technologies技术.
405
1107000
3000
创造了更为辉煌的科技成果
18:45
Eventually终于, these technologies技术 will become成为 so powerful强大
406
1110000
3000
最后,这些科技的力量变得如此强大
18:48
that we will use them to know ourselves我们自己
407
1113000
3000
以至于我们能利用它们
18:51
by deconstructing解构 and reconstructing重建
408
1116000
3000
来拆析并重组我们的大脑
18:54
our own拥有 brains大脑.
409
1119000
3000
以此了解我们自身
18:57
I believe that this voyage航程 of self-discovery自我发现
410
1122000
3000
我相信这一自我发现的旅程
19:00
is not just for scientists科学家们,
411
1125000
3000
不仅只为了科学家
19:03
but for all of us.
412
1128000
2000
更为了我们所有人
19:05
And I'm grateful感激 for the opportunity机会 to share分享 this voyage航程 with you today今天.
413
1130000
3000
我很感谢能有这次机会与大家共享这一旅程
19:08
Thank you.
414
1133000
2000
感谢大家
19:10
(Applause掌声)
415
1135000
8000
(热烈鼓掌)
Translated by Lili Liang
Reviewed by Alison Xiaoqiao Xie

▲Back to top

ABOUT THE SPEAKER
Sebastian Seung - Computational neuroscientist
Sebastian Seung is a leader in the new field of connectomics, currently the hottest space in neuroscience, which studies, in once-impossible detail, the wiring of the brain.

Why you should listen

In the brain, neurons are connected into a complex network. Sebastian Seung and his lab at MIT are inventing technologies for identifying and describing the connectome, the totality of connections between the brain's neurons -- think of it as the wiring diagram of the brain. We possess our entire genome at birth, but things like memories are not "stored" in the genome; they are acquired through life and accumulated in the brain. Seung's hypothesis is that "we are our connectome," that the connections among neurons is where memories and experiences get stored.

Seung and his collaborators, including Winfried Denk at the Max Planck Institute and Jeff Lichtman at Harvard University, are working on a plan to thin-slice a brain (probably starting with a mouse brain) and trace, from slice to slice, each neural pathway, exposing the wiring diagram of the brain and creating a powerful new way to visualize the workings of the mind. They're not the first to attempt something like this -- Sydney Brenner won a Nobel for mapping all the 7,000 connections in the nervous system of a tiny worm, C. elegans. But that took his team a dozen years, and the worm only had 302 nerve cells. One of Seung's breakthroughs is in using advanced imagining and AI to handle the crushing amount of data that a mouse brain will yield and turn it into richly visual maps that show the passageways of thought and sensation.

More profile about the speaker
Sebastian Seung | Speaker | TED.com

Data provided by TED.

This site was created in May 2015 and the last update was on January 12, 2020. It will no longer be updated.

We are currently creating a new site called "eng.lish.video" and would be grateful if you could access it.

If you have any questions or suggestions, please feel free to write comments in your language on the contact form.

Privacy Policy

Developer's Blog

Buy Me A Coffee