ABOUT THE SPEAKER
Danny Hillis - Computer theorist
Inventor, scientist, author, engineer -- over his broad career, Danny Hillis has turned his ever-searching brain on an array of subjects, with surprising results.

Why you should listen

Danny Hillis is an inventor, scientist, author and engineer. While completing his doctorate at MIT, he pioneered the concept of parallel computers that is now the basis for graphics processors and cloud computing. He holds more than 300 US patents, covering parallel computers, disk arrays, forgery prevention methods, various electronic and mechanical devices, and the pinch-to-zoom display interface. He has recently been working on problems in medicine as well. He is also the designer of a 10,000-year mechanical clock, and he gave a TED Talk in 1994 that is practically prophetic. Throughout his career, Hillis has worked at places like Disney, and now MIT and Applied Invention, always looking for the next fascinating problem.

More profile about the speaker
Danny Hillis | Speaker | TED.com
TEDMED 2010

Danny Hillis: Understanding cancer through proteomics

Danny Hillis:從蛋白質體學的觀點來瞭解癌症

Filmed:
465,363 views

Danny Hillis談癌症研究的新趨向:蛋白質體學--研究身體中的蛋白質。他解釋基因體就像身體組成的原料清單,而蛋白質體則顯示了這些原料產生了什麼。瞭解身體中的蛋白含量可能引領我們進入瞭解癌症如何發生的新領域。
- Computer theorist
Inventor, scientist, author, engineer -- over his broad career, Danny Hillis has turned his ever-searching brain on an array of subjects, with surprising results. Full bio

Double-click the English transcript below to play the video.

00:15
I admit承認 that I'm a little bit nervous緊張 here
0
0
3000
我承認我有一點點緊張,
00:18
because I'm going to say some radical激進 things,
1
3000
3000
因為我要說一些極端的東西,
00:21
about how we should think about cancer癌症 differently不同,
2
6000
3000
談要如何以不同的角度看癌症,
00:24
to an audience聽眾 that contains包含 a lot of people
3
9000
2000
但在座有很多人
00:26
who know a lot more about cancer癌症 than I do.
4
11000
3000
卻比我還瞭解癌症。
00:30
But I will also contest比賽 that I'm not as nervous緊張 as I should be
5
15000
3000
但我也要說我其實沒有我應當的那麼緊張
00:33
because I'm pretty漂亮 sure I'm right about this.
6
18000
2000
因為我很確定我是對的。
00:35
(Laughter笑聲)
7
20000
2000
(笑聲)
00:37
And that this, in fact事實, will be
8
22000
2000
而且這個,事實上,
00:39
the way that we treat對待 cancer癌症 in the future未來.
9
24000
3000
會是我們未來治療癌症的方法。
00:43
In order訂購 to talk about cancer癌症,
10
28000
2000
要談癌症,
00:45
I'm going to actually其實 have to --
11
30000
3000
我們必須先談這個--
00:48
let me get the big slide滑動 here.
12
33000
3000
讓我用這張大投影片。
00:53
First, I'm going to try to give you a different不同 perspective透視 of genomics基因組學.
13
38000
3000
首先,我要讓你們從另一個角度看基因體。
00:56
I want to put it in perspective透視 of the bigger picture圖片
14
41000
2000
我想要以一個更廣的角度
00:58
of all the other things that are going on --
15
43000
3000
來看整件事情,
01:01
and then talk about something you haven't沒有 heard聽說 so much about, which哪一個 is proteomics蛋白質組學.
16
46000
3000
然後談一下你們沒那麼常聽到的東西,也就是蛋白質體學。
01:04
Having explained解釋 those,
17
49000
2000
解釋了這些後,
01:06
that will set up for what I think will be a different不同 idea理念
18
51000
3000
我便可以談我認為和現今不同的
01:09
about how to go about treating治療 cancer癌症.
19
54000
2000
治療癌症的方式。
01:11
So let me start開始 with genomics基因組學.
20
56000
2000
所以讓我從基因體講起。
01:13
It is the hot topic話題.
21
58000
2000
它是個熱門的話題。
01:15
It is the place地點 where we're learning學習 the most.
22
60000
2000
它是我們學到最多的地方。
01:17
This is the great frontier邊境.
23
62000
2000
它是先驅。
01:19
But it has its limitations限制.
24
64000
3000
但它有它的極限。
01:22
And in particular特定, you've probably大概 all heard聽說 the analogy比喻
25
67000
3000
尤其是:你們可能聽過
01:25
that the genome基因組 is like the blueprint藍圖 of your body身體,
26
70000
3000
基因就像是身體的藍圖。
01:28
and if that were only true真正, it would be great,
27
73000
2000
如果這是正確的,那就太好了,
01:30
but it's not.
28
75000
2000
但這不是正確的。
01:32
It's like the parts部分 list名單 of your body身體.
29
77000
2000
基因像是你身體組成表。
01:34
It doesn't say how things are connected連接的,
30
79000
2000
它沒有解釋這中間如何串聯,
01:36
what causes原因 what and so on.
31
81000
3000
什麼引起什麼之類的事。
01:39
So if I can make an analogy比喻,
32
84000
2000
所以如果我要來比喻,
01:41
let's say that you were trying to tell the difference區別
33
86000
2000
想像你要分辨一個好餐廳、
01:43
between之間 a good restaurant餐廳, a healthy健康 restaurant餐廳
34
88000
3000
一個健康的餐廳
01:46
and a sick生病 restaurant餐廳,
35
91000
2000
和一個壞餐廳,
01:48
and all you had was the list名單 of ingredients配料
36
93000
2000
而且你所有的只是一張他們庫存的
01:50
that they had in their larder儲藏室.
37
95000
3000
食材表。
01:53
So it might威力 be that, if you went to a French法國 restaurant餐廳
38
98000
3000
所以有可能是,你去一家法式餐廳
01:56
and you looked看著 through通過 it and you found發現
39
101000
2000
你發現他們只有人造黃油
01:58
they only had margarine人造黃油 and they didn't have butter牛油,
40
103000
2000
沒有奶油,
02:00
you could say, "Ah, I see what's wrong錯誤 with them.
41
105000
2000
你會說:「喔!我知道哪裡出錯了。
02:02
I can make them healthy健康."
42
107000
2000
我可以讓他們變健康。」
02:04
And there probably大概 are special特別 cases of that.
43
109000
2000
而且有可能有一些像那樣的特殊例子。
02:06
You could certainly當然 tell the difference區別
44
111000
2000
你當然可以從他們食品室有的東西中
02:08
between之間 a Chinese中文 restaurant餐廳 and a French法國 restaurant餐廳
45
113000
2000
輕易分辨
02:10
by what they had in a larder儲藏室.
46
115000
2000
中式餐廳和法式餐廳。
02:12
So the list名單 of ingredients配料 does tell you something,
47
117000
3000
所以食材表是能夠告訴你一些東西的,
02:15
and sometimes有時 it tells告訴 you something that's wrong錯誤.
48
120000
3000
而且有時候會告訴你哪裡出問題了。
02:19
If they have tons of salt,
49
124000
2000
如果他們有很多鹽,
02:21
you might威力 guess猜測 they're using運用 too much salt, or something like that.
50
126000
3000
你可能會猜他們放太多鹽之類的。
02:24
But it's limited有限,
51
129000
2000
但知道的是有限的,
02:26
because really to know if it's a healthy健康 restaurant餐廳,
52
131000
2000
因為要真正知道一家餐聽好壞,
02:28
you need to taste味道 the food餐飲, you need to know what goes on in the kitchen廚房,
53
133000
3000
你需要吃吃看他們做的食物,你需要知道廚房中發生了什麼事,
02:31
you need the product產品 of all of those ingredients配料.
54
136000
3000
你需要食材的最終產物。
02:34
So if I look at a person
55
139000
2000
所以你如果看一個人,
02:36
and I look at a person's人的 genome基因組, it's the same相同 thing.
56
141000
3000
看他的基因,這是相同的道理。
02:39
The part部分 of the genome基因組 that we can read
57
144000
2000
我們看得懂的基因部份
02:41
is the list名單 of ingredients配料.
58
146000
2000
就像是食材表。
02:43
And so indeed確實,
59
148000
2000
所以,
02:45
there are times when we can find ingredients配料
60
150000
2000
是有些時候我們可以看到
02:47
that [are] bad.
61
152000
2000
不好的食材。
02:49
Cystic囊性 fibrosis纖維化 is an example of a disease疾病
62
154000
2000
囊胞性纖維症就是一個
02:51
where you just have a bad ingredient成分 and you have a disease疾病,
63
156000
3000
你可以看組成就知道會有疾病,
02:54
and we can actually其實 make a direct直接 correspondence對應
64
159000
3000
且我們可以直接建立
02:57
between之間 the ingredient成分 and the disease疾病.
65
162000
3000
這些組成和疾病的關連。
03:00
But most things, you really have to know what's going on in the kitchen廚房,
66
165000
3000
但大部份時候,你需要知道在廚房發生了什麼事,
03:03
because, mostly大多, sick生病 people used to be healthy健康 people --
67
168000
2000
因為,大部份生病的人之前是健康的,
03:05
they have the same相同 genome基因組.
68
170000
2000
但他們有一樣的基因組。
03:07
So the genome基因組 really tells告訴 you much more
69
172000
2000
所以基因組只是告訴你
03:09
about predisposition傾向.
70
174000
2000
預先的定位。
03:11
So what you can tell
71
176000
2000
所以你可以知道的是
03:13
is you can tell the difference區別 between之間 an Asian亞洲 person and a European歐洲的 person
72
178000
2000
你可以從組成成分表中
03:15
by looking at their ingredients配料 list名單.
73
180000
2000
看出亞州人和歐洲人的差別。
03:17
But you really for the most part部分 can't tell the difference區別
74
182000
3000
但大部份的時候你沒有辦法看出
03:20
between之間 a healthy健康 person and a sick生病 person --
75
185000
3000
一個健康的人和不健康的人的差別--
03:23
except in some of these special特別 cases.
76
188000
2000
除了在很特殊的例子上。
03:25
So why all the big deal合同
77
190000
2000
既然如此,為什麼基因學
03:27
about genetics遺傳學?
78
192000
2000
這麼重要?
03:29
Well first of all,
79
194000
2000
首先,
03:31
it's because we can read it, which哪一個 is fantastic奇妙.
80
196000
3000
我們可以讀它,這很棒。
03:34
It is very useful有用 in certain某些 circumstances情況.
81
199000
3000
在某些情況下非常有用。
03:37
It's also the great theoretical理論 triumph勝利
82
202000
3000
它也是生物理論上
03:40
of biology生物學.
83
205000
2000
非常重要的榮耀。
03:42
It's the one theory理論
84
207000
2000
這是一個生物學家們
03:44
that the biologists生物學家 ever really got right.
85
209000
2000
一直想搞對的理論。
03:46
It's fundamental基本的 to Darwin達爾文
86
211000
2000
基因同時也是是達爾文
03:48
and Mendel孟德爾 and so on.
87
213000
2000
和孟德爾和其他人理論的基礎。
03:50
And so it's the one thing where they predicted預料到的 a theoretical理論 construct構造.
88
215000
3000
所以它是唯一一個他們預測且建構的理論。
03:54
So Mendel孟德爾 had this idea理念 of a gene基因
89
219000
2000
孟德爾有點抽象地
03:56
as an abstract抽象 thing,
90
221000
3000
說明基因這個概念。
03:59
and Darwin達爾文 built內置 a whole整個 theory理論
91
224000
2000
然後達爾文在這個基礎上
04:01
that depended依賴 on them existing現有,
92
226000
2000
建立了一整個理論。
04:03
and then Watson沃森 and Crick克里克
93
228000
2000
然後華生和克力克
04:05
actually其實 looked看著 and found發現 one.
94
230000
2000
真的去找且找到了基因。
04:07
So this happens發生 in physics物理 all the time.
95
232000
2000
這在物理學上常常發生。
04:09
You predict預測 a black黑色 hole,
96
234000
2000
你預期會有黑洞,
04:11
and you look out the telescope望遠鏡 and there it is, just like you said.
97
236000
3000
你去找然後透過望遠鏡去看,真的找到了。
04:14
But it rarely很少 happens發生 in biology生物學.
98
239000
2000
但在生物上這很少發生。
04:16
So this great triumph勝利 -- it's so good,
99
241000
3000
所以這個大榮耀--重要到
04:19
there's almost幾乎 a religious宗教 experience經驗
100
244000
2000
幾乎成爲生物學上的
04:21
in biology生物學.
101
246000
2000
信仰教條。
04:23
And Darwinian達爾文 evolution演化
102
248000
2000
且達爾文演化論
04:25
is really the core核心 theory理論.
103
250000
3000
就是核心理論。
04:30
So the other reason原因 it's been very popular流行
104
255000
2000
另外一個讓基因這麼受喜愛的原因是
04:32
is because we can measure測量 it, it's digital數字.
105
257000
3000
我們可以測量它。它是數位的。
04:35
And in fact事實,
106
260000
2000
事實上,
04:37
thanks謝謝 to Kary雨霏 Mullis穆利斯,
107
262000
2000
感謝Kary Mullis,
04:39
you can basically基本上 measure測量 your genome基因組 in your kitchen廚房
108
264000
4000
你基本上只需要比你廚房再多一點用具
04:43
with a few少數 extra額外 ingredients配料.
109
268000
3000
就可以測量你的基因組。
04:46
So for instance, by measuring測量 the genome基因組,
110
271000
3000
舉例來說,透過測量基因組,
04:49
we've我們已經 learned學到了 a lot about how we're related有關 to other kinds of animals動物
111
274000
4000
我們從其間的相似性
04:53
by the closeness親近 of our genome基因組,
112
278000
3000
學到很多關於我們和其他動物的關係、
04:56
or how we're related有關 to each other -- the family家庭 tree,
113
281000
3000
或是我們跟其他人的關係--像家族表,
04:59
or the tree of life.
114
284000
2000
或是生命表。
05:01
There's a huge巨大 amount of information信息 about the genetics遺傳學
115
286000
3000
僅僅只是比對基因間的相似情況,
05:04
just by comparing比較 the genetic遺傳 similarity相似.
116
289000
3000
我們可以得到很多資訊。
05:07
Now of course課程, in medical application應用,
117
292000
2000
當然在醫學上
05:09
that is very useful有用
118
294000
2000
這是非常有用的,
05:11
because it's the same相同 kind of information信息
119
296000
3000
因為醫生可以得到
05:14
that the doctor醫生 gets得到 from your family家庭 medical history歷史 --
120
299000
3000
與瞭解家庭病史相同的資訊。
05:17
except probably大概,
121
302000
2000
事實上,
05:19
your genome基因組 knows知道 much more about your medical history歷史 than you do.
122
304000
3000
你的基因比你還瞭解你的家庭病史。
05:22
And so by reading the genome基因組,
123
307000
2000
所以利用解讀基因組,
05:24
we can find out much more about your family家庭 than you probably大概 know.
124
309000
3000
我們可以瞭解更多你不知道的關於你的家庭的資訊。
05:27
And so we can discover發現 things
125
312000
2000
我們可以發現一些
05:29
that probably大概 you could have found發現
126
314000
2000
你如果看夠多你的親戚
05:31
by looking at enough足夠 of your relatives親戚們,
127
316000
2000
將可能會找到的資訊,
05:33
but they may可能 be surprising奇怪.
128
318000
3000
但這些可能是驚人的。
05:36
I did the 23andMe和我 thing
129
321000
2000
我做了「二十三和我」(基因檢測)的測驗,
05:38
and was very surprised詫異 to discover發現 that I am fat脂肪 and bald禿.
130
323000
3000
且驚人地發現我是又胖又禿頭的。
05:41
(Laughter笑聲)
131
326000
7000
(笑聲)
05:48
But sometimes有時 you can learn學習 much more useful有用 things about that.
132
333000
3000
但有時候你會學到一些更有用的東西。
05:51
But mostly大多
133
336000
3000
但大部份時候
05:54
what you need to know, to find out if you're sick生病,
134
339000
2000
當你生病時你需要知道的
05:56
is not your predispositions傾向,
135
341000
2000
不是你的體質,
05:58
but it's actually其實 what's going on in your body身體 right now.
136
343000
3000
而是現在在你身上發生了什麼事。
06:01
So to do that, what you really need to do,
137
346000
2000
要瞭解這個,你需要做的是
06:03
you need to look at the things
138
348000
2000
你需要看這些基因
06:05
that the genes基因 are producing生產
139
350000
2000
製造的東西
06:07
and what's happening事件 after the genetics遺傳學,
140
352000
2000
和基因背後發生的事情。
06:09
and that's what proteomics蛋白質組學 is about.
141
354000
2000
而那正是蛋白質體學。
06:11
Just like genome基因組 mixes混合 the study研究 of all the genes基因,
142
356000
3000
就像基因體學是研究所有的基因
06:14
proteomics蛋白質組學 is the study研究 of all the proteins蛋白質.
143
359000
3000
蛋白質體學就是研究所有的蛋白質。
06:17
And the proteins蛋白質 are all of the little things in your body身體
144
362000
2000
蛋白質是所有在你身上
06:19
that are signaling發信號 between之間 the cells細胞 --
145
364000
3000
在不同細胞間傳遞訊息的小東西。
06:22
actually其實, the machines that are operating操作 --
146
367000
2000
而細胞則是體內工作的機器。
06:24
that's where the action行動 is.
147
369000
2000
那是事情的發生地。
06:26
Basically基本上, a human人的 body身體
148
371000
3000
基本上,
06:29
is a conversation會話 going on,
149
374000
3000
人體是一場正在進行的對話,
06:32
both within the cells細胞 and between之間 the cells細胞,
150
377000
3000
是正在細胞內和細胞間進行的對話,
06:35
and they're telling告訴 each other to grow增長 and to die,
151
380000
3000
細胞互相告訴對方該生長還是死亡。
06:38
and when you're sick生病,
152
383000
2000
當你生病時,
06:40
something's什麼是 gone走了 wrong錯誤 with that conversation會話.
153
385000
2000
這樣的對話出現問題。
06:42
And so the trick is --
154
387000
2000
所以訣竅是--
06:44
unfortunately不幸, we don't have an easy簡單 way to measure測量 these
155
389000
3000
不幸的,我們沒有像測量基因一樣
06:47
like we can measure測量 the genome基因組.
156
392000
2000
有個簡單的方式可以測量蛋白質。
06:49
So the problem問題 is that measuring測量 --
157
394000
3000
所以測量是個大問題--
06:52
if you try to measure測量 all the proteins蛋白質, it's a very elaborate闡述 process處理.
158
397000
3000
如果你試著測量所有的蛋白質,這是非常複雜的過程。
06:55
It requires要求 hundreds數以百計 of steps腳步,
159
400000
2000
需要好幾百個步驟,
06:57
and it takes a long, long time.
160
402000
2000
而且需要花很久很久的時間。
06:59
And it matters事項 how much of the protein蛋白 it is.
161
404000
2000
而且蛋白質含量也有關係的
07:01
It could be very significant重大 that a protein蛋白 changed by 10 percent百分,
162
406000
3000
十分之一的含量差異可以有嚴重的影響,
07:04
so it's not a nice不錯 digital數字 thing like DNA脫氧核糖核酸.
163
409000
3000
所以不是像DNA那樣有數位性的。
07:07
And basically基本上 our problem問題 is somebody's某人的 in the middle中間
164
412000
2000
而且基本上我們的問題是
07:09
of this very long stage階段,
165
414000
2000
如果有人在一個很長的過程的中間,
07:11
they pause暫停 for just a moment時刻,
166
416000
2000
他們停下來一下下,
07:13
and they leave離開 something in an enzyme for a second第二,
167
418000
2000
且他們把東西留在生物酶中一秒鐘,
07:15
and all of a sudden突然 all the measurements測量 from then on
168
420000
2000
突然所有從那時後開始的測量值
07:17
don't work.
169
422000
2000
就都不對了。
07:19
And so then people get very inconsistent不符 results結果
170
424000
2000
當他們這麼做時,
07:21
when they do it this way.
171
426000
2000
人們會得到非常不一致的結果。
07:23
People have tried試著 very hard to do this.
172
428000
2000
有人很努力做這個。
07:25
I tried試著 this a couple一對 of times
173
430000
2000
我試了幾次,
07:27
and looked看著 at this problem問題 and gave up on it.
174
432000
2000
看了這個問題然後放棄。
07:29
I kept不停 getting得到 this call from this oncologist腫瘤科醫生
175
434000
2000
我一直接到一個癌症學家的電話
07:31
named命名 David大衛 Agus阿古斯.
176
436000
2000
他叫大維艾格斯。
07:33
And Applied應用的 Minds頭腦 gets得到 a lot of calls電話
177
438000
3000
在Applied Minds的人常常接到很多電話,
07:36
from people who want help with their problems問題,
178
441000
2000
來自於需要幫忙解決他們的問題的人,
07:38
and I didn't think this was a very likely容易 one to call back,
179
443000
3000
而我不覺得這個是我會想要回電的人,
07:41
so I kept不停 on giving him to the delay延遲 list名單.
180
446000
3000
所以我一直把他放到晚點再回的名單。
07:44
And then one day,
181
449000
2000
直到有一天,
07:46
I get a call from John約翰 Doerr杜爾, Bill法案 Berkman伯克曼
182
451000
2000
我接到約翰杜爾、比爾貝客門、
07:48
and Al Gore血塊 on the same相同 day
183
453000
2000
高爾打來的電話,
07:50
saying return返回 David大衛 Agus's阿古斯的 phone電話 call.
184
455000
2000
都叫我要回大衛艾格斯的電話。
07:52
(Laughter笑聲)
185
457000
2000
(笑聲)
07:54
So I was like, "Okay. This guy's傢伙 at least最小 resourceful足智多謀."
186
459000
2000
所以我想「好吧,至少這個人人脈豐富。」
07:56
(Laughter笑聲)
187
461000
4000
(笑聲)
08:00
So we started開始 talking,
188
465000
2000
所以我們開始談,
08:02
and he said, "I really need a better way to measure測量 proteins蛋白質."
189
467000
3000
然後他說:「我們很需要一個更好的測量蛋白質的方式。」
08:05
I'm like, "Looked看著 at that. Been there.
190
470000
2000
我說:「我都看過了、做過了。
08:07
Not going to be easy簡單."
191
472000
2000
一點都不容易。」
08:09
He's like, "No, no. I really need it.
192
474000
2000
他說:「不不,我真的很需要。
08:11
I mean, I see patients耐心 dying垂死 every一切 day
193
476000
4000
我的意思是,我每天看到病人死亡
08:15
because we don't know what's going on inside of them.
194
480000
3000
因為我們不知道病人體內發生什麼事。
08:18
We have to have a window窗口 into this."
195
483000
2000
我們必須想個辦法。」
08:20
And he took me through通過
196
485000
2000
然後他給我看一些例子
08:22
specific具體 examples例子 of when he really needed需要 it.
197
487000
3000
和為什麼他很需要這個技術。
08:25
And I realized實現, wow, this would really make a big difference區別,
198
490000
2000
然後我瞭解到,哇,如果我們做得到的話
08:27
if we could do it,
199
492000
2000
這會是很大的改變。
08:29
and so I said, "Well, let's look at it."
200
494000
2000
所以我說:「好,讓我們來看看。」
08:31
Applied應用的 Minds頭腦 has enough足夠 play money
201
496000
2000
Applied Minds有一些閒錢
08:33
that we can go and just work on something
202
498000
2000
可以讓我們不需要跟任何人要錢獲取得許可
08:35
without getting得到 anybody's任何人的 funding資金 or permission允許 or anything.
203
500000
3000
就可以做些事情。
08:38
So we started開始 playing播放 around with this.
204
503000
2000
所以我們開始試試這件事情。
08:40
And as we did it, we realized實現 this was the basic基本 problem問題 --
205
505000
3000
當我們在做的時候,我們瞭解到這是很基本的問題--
08:43
that taking服用 the sip of coffee咖啡 --
206
508000
2000
就像喝一口咖啡--
08:45
that there were humans人類 doing this complicated複雜 process處理
207
510000
2000
就是有很多人在做這個複雜的事
08:47
and that what really needed需要 to be doneDONE
208
512000
2000
但事實上我們需要的
08:49
was to automate自動化 this process處理 like an assembly部件 line
209
514000
3000
是自動化的流程
08:52
and build建立 robots機器人
210
517000
2000
然後建造機器人
08:54
that would measure測量 proteomics蛋白質組學.
211
519000
2000
來測量蛋白質體。
08:56
And so we did that,
212
521000
2000
所以我們這麼做了。
08:58
and working加工 with David大衛,
213
523000
2000
與大衛合作,
09:00
we made製作 a little company公司 called Applied應用的 Proteomics蛋白質組學 eventually終於,
214
525000
3000
我們創立了一個叫做「Applied Proteomics」的公司,
09:03
which哪一個 makes品牌 this robotic機器人 assembly部件 line,
215
528000
3000
專門建造這樣的機器流程線,
09:06
which哪一個, in a very consistent一貫 way, measures措施 the protein蛋白.
216
531000
3000
這樣可以很穩定的測量蛋白質。
09:09
And I'll show顯示 you what that protein蛋白 measurement測量 looks容貌 like.
217
534000
3000
且我會給你們看蛋白質測量是怎麼做的。
09:13
Basically基本上, what we do
218
538000
2000
基本上,我們做的是
09:15
is we take a drop下降 of blood血液
219
540000
2000
我們從病人身上
09:17
out of a patient患者,
220
542000
2000
取一滴血,
09:19
and we sort分類 out the proteins蛋白質
221
544000
2000
然後我們將這滴血中的蛋白質
09:21
in the drop下降 of blood血液
222
546000
2000
依照它們的
09:23
according根據 to how much they weigh稱重,
223
548000
2000
重量、
09:25
how slippery they are,
224
550000
2000
它們的光滑程度來分類,
09:27
and we arrange安排 them in an image圖片.
225
552000
3000
然後將它們放在一張圖上。
09:30
And so we can look at literally按照字面
226
555000
2000
然後我們可以同時
09:32
hundreds數以百計 of thousands數千 of features特徵 at once一旦
227
557000
2000
看到這滴血當中
09:34
out of that drop下降 of blood血液.
228
559000
2000
千百種的特色。
09:36
And we can take a different不同 one tomorrow明天,
229
561000
2000
隔天我們可以取另一滴血,
09:38
and you will see your proteins蛋白質 tomorrow明天 will be different不同 --
230
563000
2000
然後你會發現你隔天的蛋白質是不一樣的--
09:40
they'll他們會 be different不同 after you eat or after you sleep睡覺.
231
565000
3000
蛋白質在你吃過食物或睡過覺後都會不一樣。
09:43
They really tell us what's going on there.
232
568000
3000
他們真的告訴我們發生了什麼事。
09:46
And so this picture圖片,
233
571000
2000
所以這張圖,
09:48
which哪一個 looks容貌 like a big smudge弄髒 to you,
234
573000
2000
對你們來說看起來像是一團大污點,
09:50
is actually其實 the thing that got me really thrilled高興 about this
235
575000
4000
但卻是讓我對這件事感到興奮的原因
09:54
and made製作 me feel like we were on the right track跟踪.
236
579000
2000
而且讓我們覺得我們是往對的方向前進。
09:56
So if I zoom放大 into that picture圖片,
237
581000
2000
所以如果我們把這張圖放大,
09:58
I can just show顯示 you what it means手段.
238
583000
2000
我可以給你們看這是什麼意思。
10:00
We sort分類 out the proteins蛋白質 -- from left to right
239
585000
3000
我們整理了這些蛋白質--從左至右
10:03
is the weight重量 of the fragments片段 that we're getting得到,
240
588000
3000
是這些片段的重量。
10:06
and from top最佳 to bottom底部 is how slippery they are.
241
591000
3000
由上至下則是他們的光滑程度。
10:09
So we're zooming縮放 in here just to show顯示 you a little bit of it.
242
594000
3000
所以我們把他放大讓你們可以看清楚一些。
10:12
And so each of these lines
243
597000
2000
這邊每一條線
10:14
represents代表 some signal信號 that we're getting得到 out of a piece of a protein蛋白.
244
599000
3000
就是我們在看一個蛋白質時得到的訊號。
10:17
And you can see how the lines occur發生
245
602000
2000
你們可以看到這些線是一群一群的
10:19
in these little groups of bump磕碰, bump磕碰, bump磕碰, bump磕碰, bump磕碰.
246
604000
4000
有蹦蹦蹦蹦蹦好幾條線。
10:23
And that's because we're measuring測量 the weight重量 so precisely恰恰 that --
247
608000
3000
這是因為我們很精準的測量重量--
10:26
carbon comes in different不同 isotopes同位素,
248
611000
2000
碳有不同的同位素,
10:28
so if it has an extra額外 neutron中子 on it,
249
613000
3000
所以如果有多一個中子,
10:31
we actually其實 measure測量 it as a different不同 chemical化學.
250
616000
4000
我們就會測出是不一樣的物質。
10:35
So we're actually其實 measuring測量 each isotope同位素 as a different不同 one.
251
620000
3000
也就是說我們把每一個同位素當作不一樣的來測量。
10:38
And so that gives you an idea理念
252
623000
3000
所以這給你們一個
10:41
of how exquisitely玲瓏 sensitive敏感 this is.
253
626000
2000
這個測量有多精密的概念。
10:43
So seeing眼看 this picture圖片
254
628000
2000
所以看這張圖
10:45
is sort分類 of like getting得到 to be Galileo伽利略
255
630000
2000
有點像伽利略
10:47
and looking at the stars明星
256
632000
2000
在看星星一樣,
10:49
and looking through通過 the telescope望遠鏡 for the first time,
257
634000
2000
就像他第一次透過望遠鏡看,
10:51
and suddenly突然 you say, "Wow, it's way more complicated複雜 than we thought it was."
258
636000
3000
然後你突然說「哇!這比我們想像的複雜許多。」
10:54
But we can see that stuff東東 out there
259
639000
2000
但我們可以看到這些東西
10:56
and actually其實 see features特徵 of it.
260
641000
2000
而且知道他們的特色。
10:58
So this is the signature簽名 out of which哪一個 we're trying to get patterns模式.
261
643000
3000
這就有點像是從各種簽名中找出規律。
11:01
So what we do with this
262
646000
2000
我們拿這些資訊做的是,
11:03
is, for example, we can look at two patients耐心,
263
648000
2000
舉例來說,我們看兩個病人,
11:05
one that responded回應 to a drug藥物 and one that didn't respond響應 to a drug藥物,
264
650000
3000
一個對某種藥有反應,另一個則沒反應。
11:08
and ask, "What's going on differently不同
265
653000
2000
然後問:「這兩者身體之間
11:10
inside of them?"
266
655000
2000
有什麼不同?」
11:12
And so we can make these measurements測量 precisely恰恰 enough足夠
267
657000
3000
所以我們可以讓這樣的測驗夠精準到
11:15
that we can overlay覆蓋 two patients耐心 and look at the differences分歧.
268
660000
3000
讓我們可以把兩個病人的資料疊在一起然後看出不同。
11:18
So here we have Alice愛麗絲 in green綠色
269
663000
2000
這裡綠色是愛莉絲
11:20
and Bob短發 in red.
270
665000
2000
紅色是包伯。
11:22
We overlay覆蓋 them. This is actual實際 data數據.
271
667000
3000
我們把他們倆疊在一起。這是實際的數據。
11:25
And you can see, mostly大多 it overlaps重疊 and it's yellow黃色,
272
670000
3000
你們可以看到,大部份相交呈黃色,
11:28
but there's some things that just Alice愛麗絲 has
273
673000
2000
但有些是只有愛莉絲有,
11:30
and some things that just Bob短發 has.
274
675000
2000
而有些只有包伯有。
11:32
And if we find a pattern模式 of things
275
677000
3000
如果我們可以有類似的東西
11:35
of the responders反應 to the drug藥物,
276
680000
3000
來看對藥物有反應的人,
11:38
we see that in the blood血液,
277
683000
2000
我們可以看到血液中,
11:40
they have the condition條件
278
685000
2000
他們有一些特別的狀況
11:42
that allows允許 them to respond響應 to this drug藥物.
279
687000
2000
讓他們可以對藥物有反應。
11:44
We might威力 not even know what this protein蛋白 is,
280
689000
2000
我們可能根本不知道這個蛋白質是什麼,
11:46
but we can see it's a marker標記
281
691000
2000
但我們可以看到
11:48
for the response響應 to the disease疾病.
282
693000
2000
是否會對疾病有影響。
11:53
So this already已經, I think,
283
698000
2000
所以到這裡,我認為已經
11:55
is tremendously異常 useful有用 in all kinds of medicine醫學.
284
700000
3000
是在醫學上很有用的了。
11:58
But I think this is actually其實
285
703000
2000
但我覺得
12:00
just the beginning開始
286
705000
2000
這只是我們以後
12:02
of how we're going to treat對待 cancer癌症.
287
707000
2000
將如何治療癌症的開端。
12:04
So let me move移動 to cancer癌症.
288
709000
2000
所以讓我談談癌症。
12:06
The thing about cancer癌症 --
289
711000
2000
關於癌症--
12:08
when I got into this,
290
713000
2000
當我剛開始接觸的時候,
12:10
I really knew知道 nothing about it,
291
715000
2000
我事實上什麼都不知道。
12:12
but working加工 with David大衛 Agus阿古斯,
292
717000
2000
但跟大衛艾格斯合作,
12:14
I started開始 watching觀看 how cancer癌症 was actually其實 being存在 treated治療
293
719000
3000
我開始觀察癌症治療,
12:17
and went to operations操作 where it was being存在 cut out.
294
722000
3000
還去看癌細胞移除手術。
12:20
And as I looked看著 at it,
295
725000
2000
按照我的觀察,
12:22
to me it didn't make sense
296
727000
2000
對我來說我們治療癌症的方式
12:24
how we were approaching接近 cancer癌症,
297
729000
2000
是不合邏輯的。
12:26
and in order訂購 to make sense of it,
298
731000
3000
為了瞭解它,
12:29
I had to learn學習 where did this come from.
299
734000
3000
我必須學這個是從何而來。
12:32
We're treating治療 cancer癌症 almost幾乎 like it's an infectious傳染病 disease疾病.
300
737000
4000
我們治療癌症的方式有點像是治療感染性疾病。
12:36
We're treating治療 it as something that got inside of you
301
741000
2000
我們治療的方式像是一個外來物侵入,
12:38
that we have to kill.
302
743000
2000
且我們需要殺死這個外來物。
12:40
So this is the great paradigm範例.
303
745000
2000
所以這是標準範例。
12:42
This is another另一個 case案件
304
747000
2000
另一個
12:44
where a theoretical理論 paradigm範例 in biology生物學 really worked工作 --
305
749000
2000
理論在生物學是對的的例子--
12:46
was the germ病菌 theory理論 of disease疾病.
306
751000
3000
就是細菌和疾病的關係。
12:49
So what doctors醫生 are mostly大多 trained熟練 to do
307
754000
2000
所以大部分醫生的訓練
12:51
is diagnose診斷 --
308
756000
2000
就是去診斷
12:53
that is, put you into a category類別
309
758000
2000
也就是說把你放在某一個類別中
12:55
and apply應用 a scientifically科學 proven證明 treatment治療
310
760000
2000
然後給你一個科學上證明為有用的
12:57
for that diagnosis診斷 --
311
762000
2000
治療方式。
12:59
and that works作品 great for infectious傳染病 diseases疾病.
312
764000
3000
這對治療感染性疾病是很有用的。
13:02
So if we put you in the category類別
313
767000
2000
如果我們把你放在得到梅毒的類別,
13:04
of you've got syphilis梅毒, we can give you penicillin青黴素.
314
769000
3000
那麽我們就給你盤尼西林。
13:07
We know that that works作品.
315
772000
2000
我們知道這是有用的。
13:09
If you've got malaria瘧疾, we give you quinine奎寧
316
774000
2000
如果你有瘧疾,我們給你奎寧,
13:11
or some derivative衍生物 of it.
317
776000
2000
或它的一些衍生物。
13:13
And so that's the basic基本 thing doctors醫生 are trained熟練 to do,
318
778000
3000
這基本上是醫生被訓練來做的事。
13:16
and it's miraculous神奇
319
781000
2000
這在感染性疾病上
13:18
in the case案件 of infectious傳染病 disease疾病 --
320
783000
3000
有的效果--
13:21
how well it works作品.
321
786000
2000
是幾近神奇的。
13:23
And many許多 people in this audience聽眾 probably大概 wouldn't不會 be alive
322
788000
3000
而且如果醫生們不這麼做,
13:26
if doctors醫生 didn't do this.
323
791000
2000
在座很多人可能活不到現在。
13:28
But now let's apply應用 that
324
793000
2000
但現在讓我們以同樣的方式
13:30
to systems系統 diseases疾病 like cancer癌症.
325
795000
2000
對待這個叫做癌症的疾病。
13:32
The problem問題 is that, in cancer癌症,
326
797000
2000
問題出在於,在癌症中,
13:34
there isn't something else其他
327
799000
2000
並沒有外來物
13:36
that's inside of you.
328
801000
2000
侵入人體。
13:38
It's you; you're broken破碎.
329
803000
2000
是你自己,你有問題。
13:40
That conversation會話 inside of you
330
805000
4000
那個你身體中的對話
13:44
got mixed up in some way.
331
809000
2000
出了問題。
13:46
So how do we diagnose診斷 that conversation會話?
332
811000
2000
所以我們要如何診斷這個對話?
13:48
Well, right now what we do is we divide劃分 it by part部分 of the body身體 --
333
813000
3000
目前我們根據身體部位把它劃分--
13:51
you know, where did it appear出現? --
334
816000
3000
你知道的,就是在哪裡發生--
13:54
and we put you in different不同 categories類別
335
819000
2000
所以我們根據身體部位
13:56
according根據 to the part部分 of the body身體.
336
821000
2000
有不同的類別。
13:58
And then we do a clinical臨床 trial審訊
337
823000
2000
然後我們有臨床試驗,
14:00
for a drug藥物 for lung cancer癌症
338
825000
2000
有針對肺癌的藥的試驗,
14:02
and one for prostate前列腺 cancer癌症 and one for breast乳房 cancer癌症,
339
827000
3000
有另一個針對前列腺癌,然後另一個給乳癌,
14:05
and we treat對待 these as if they're separate分離 diseases疾病
340
830000
3000
我們把他們看待成不同的疾病。
14:08
and that this way of dividing them
341
833000
2000
且這樣的分法
14:10
had something to do with what actually其實 went wrong錯誤.
342
835000
2000
是基於發病表面的症狀。
14:12
And of course課程, it really doesn't have that much to do
343
837000
2000
但當然的,實情跟發病表面的症狀
14:14
with what went wrong錯誤
344
839000
2000
是沒有太大關係的。
14:16
because cancer癌症 is a failure失敗 of the system系統.
345
841000
3000
因為癌症是系統出問題。
14:19
And in fact事實, I think we're even wrong錯誤
346
844000
2000
事實上,我認為我們把癌症當作“一個東西”
14:21
when we talk about cancer癌症 as a thing.
347
846000
3000
這個看法本身就有問題。
14:24
I think this is the big mistake錯誤.
348
849000
2000
我認為那是個很大的錯誤。
14:26
I think cancer癌症 should not be a noun名詞.
349
851000
4000
我認為癌症不該是名詞。
14:30
We should talk about canceringcancering
350
855000
2000
我們應該把癌症當作動詞,
14:32
as something we do, not something we have.
351
857000
3000
像是我們正在做,不是我們有。
14:35
And so those tumors腫瘤,
352
860000
2000
且那些腫瘤,
14:37
those are symptoms症狀 of cancer癌症.
353
862000
2000
是癌症的症狀。
14:39
And so your body身體 is probably大概 canceringcancering all the time,
354
864000
3000
所以你的身體可能隨時都在癌症中。
14:42
but there are lots of systems系統 in your body身體
355
867000
3000
但你的身體有很多系統,
14:45
that keep it under control控制.
356
870000
2000
會讓它在控制當中。
14:47
And so to give you an idea理念
357
872000
2000
所以要給你們一個
14:49
of an analogy比喻 of what I mean
358
874000
2000
我剛剛比喻的概念
14:51
by thinking思維 of canceringcancering as a verb動詞,
359
876000
3000
想像癌症是個動詞,
14:54
imagine想像 we didn't know anything about plumbing水暖,
360
879000
3000
想像我們對配管系統完全不了解,
14:57
and the way that we talked about it,
361
882000
2000
還有我們談論的方式,
14:59
we'd星期三 come home and we'd星期三 find a leak洩漏 in our kitchen廚房
362
884000
3000
我們會回到家看到廚房漏水,
15:02
and we'd星期三 say, "Oh, my house has water."
363
887000
4000
我們會說:「喔,我的房子有水。」
15:06
We might威力 divide劃分 it -- the plumber水管工人 would say, "Well, where's哪裡 the water?"
364
891000
3000
我們會把它分類--水電工會說:「水在哪裡?」
15:09
"Well, it's in the kitchen廚房." "Oh, you must必須 have kitchen廚房 water."
365
894000
3000
「在廚房裡。」「喔,你有廚房水。」
15:12
That's kind of the level水平 at which哪一個 it is.
366
897000
3000
有點像是這樣理解的。
15:15
"Kitchen廚房 water,
367
900000
2000
廚房水?
15:17
well, first of all, we'll go in there and we'll mop拖把 out a lot of it.
368
902000
2000
好,首先,我們要去那裡把水擦乾。
15:19
And then we know that if we sprinkle DranoDrano around the kitchen廚房,
369
904000
3000
然後我們知道如果在廚房撒Draino清潔劑
15:22
that helps幫助.
370
907000
3000
會有幫助。
15:25
Whereas living活的 room房間 water,
371
910000
2000
如果是客廳水,
15:27
it's better to do tar柏油 on the roof屋頂."
372
912000
2000
可能要到屋頂上塗焦油有用。
15:29
And it sounds聲音 silly愚蠢,
373
914000
2000
這聽起來很可笑,
15:31
but that's basically基本上 what we do.
374
916000
2000
但這基本上這就是我們現在的做法。
15:33
And I'm not saying you shouldn't不能 mop拖把 up your water if you have cancer癌症,
375
918000
3000
我不是說當你有癌症的時候你不該把水清乾淨。
15:36
but I'm saying that's not really the problem問題;
376
921000
3000
我是說它不是真正的問題;
15:39
that's the symptom症狀 of the problem問題.
377
924000
2000
那只是問題的症狀。
15:41
What we really need to get at
378
926000
2000
我們需要修理的
15:43
is the process處理 that's going on,
379
928000
2000
是整個過程,
15:45
and that's happening事件 at the level水平
380
930000
2000
而那是在蛋白質的層面上
15:47
of the proteonomic蛋白質組 actions行動,
381
932000
2000
決定的。
15:49
happening事件 at the level水平 of why is your body身體 not healing復原 itself本身
382
934000
3000
要去瞭解為什麼你的身體不能像以往一樣
15:52
in the way that it normally一般 does?
383
937000
2000
修復自己?
15:54
Because normally一般, your body身體 is dealing交易 with this problem問題 all the time.
384
939000
3000
因為平常你的身體隨時都在處理各種問題。
15:57
So your house is dealing交易 with leaks洩漏 all the time,
385
942000
3000
所以你的房子也一直都在處理漏水。
16:00
but it's fixing定影 them. It's draining排水 them out and so on.
386
945000
4000
是去解決這個問題,是將水排出系統外。
16:04
So what we need
387
949000
3000
所以我們需要的
16:07
is to have a causative致病 model模型
388
952000
4000
是一個整個過程
16:11
of what's actually其實 going on,
389
956000
2000
因果關係的模型。
16:13
and proteomics蛋白質組學 actually其實 gives us
390
958000
3000
蛋白質體學可以給我們
16:16
the ability能力 to build建立 a model模型 like that.
391
961000
3000
做這樣的模型的能力。
16:19
David大衛 got me invited邀請
392
964000
2000
大衛邀請我
16:21
to give a talk at National國民 Cancer癌症 Institute研究所
393
966000
2000
到國家癌症學院演講
16:23
and Anna安娜 Barker巴克 was there.
394
968000
3000
安娜芭克也在那。
16:27
And so I gave this talk
395
972000
2000
我在那演了講
16:29
and said, "Why don't you guys do this?"
396
974000
3000
問說:「為什麼你們不這麼做?」
16:32
And Anna安娜 said,
397
977000
2000
安娜說:「
16:34
"Because nobody沒有人 within cancer癌症
398
979000
3000
因為在癌症中的人
16:37
would look at it this way.
399
982000
2000
不會這樣看這件事。
16:39
But what we're going to do, is we're going to create創建 a program程序
400
984000
3000
但我們要做的是,我們要創造一個計畫
16:42
for people outside the field領域 of cancer癌症
401
987000
2000
讓癌症領域外的人
16:44
to get together一起 with doctors醫生
402
989000
2000
可以和真正
16:46
who really know about cancer癌症
403
991000
3000
瞭解癌症的醫生合作,
16:49
and work out different不同 programs程式 of research研究."
404
994000
4000
然後做出不同的研究方向。」
16:53
So David大衛 and I applied應用的 to this program程序
405
998000
2000
所以大維和我申請了這個計畫
16:55
and created創建 a consortium財團
406
1000000
2000
且在南加大
16:57
at USCUSC
407
1002000
2000
創造了一個聯合會,
16:59
where we've我們已經 got some of the best最好 oncologists腫瘤科醫生 in the world世界
408
1004000
3000
在那我們有世界上最好的癌症學家,
17:02
and some of the best最好 biologists生物學家 in the world世界,
409
1007000
3000
一些世界上頂尖的生物學家,
17:05
from Cold Spring彈簧 Harbor港口,
410
1010000
2000
從冷泉港,
17:07
Stanford斯坦福, Austin奧斯汀 --
411
1012000
2000
從史丹佛,從奧斯丁--
17:09
I won't慣於 even go through通過 and name名稱 all the places地方 --
412
1014000
3000
我不列舉全部的地方--
17:12
to have a research研究 project項目
413
1017000
3000
這些人一起做這個研究計畫
17:15
that will last for five years年份
414
1020000
2000
花五年的時間,
17:17
where we're really going to try to build建立 a model模型 of cancer癌症 like this.
415
1022000
3000
我們要試著去建造一個癌症模型。
17:20
We're doing it in mice老鼠 first,
416
1025000
2000
我們從老鼠開始。
17:22
and we will kill a lot of mice老鼠
417
1027000
2000
在這個過程中
17:24
in the process處理 of doing this,
418
1029000
2000
我們會犧牲很多老鼠,
17:26
but they will die for a good cause原因.
419
1031000
2000
但他們的犧牲會是有用的。
17:28
And we will actually其實 try to get to the point
420
1033000
3000
且我們要試著達到一個
17:31
where we have a predictive預測 model模型
421
1036000
2000
可以預測的模型,
17:33
where we can understand理解,
422
1038000
2000
我們可以瞭解
17:35
when cancer癌症 happens發生,
423
1040000
2000
什麼時候癌症會發生,
17:37
what's actually其實 happening事件 in there
424
1042000
2000
事實上發生了什麼事,
17:39
and which哪一個 treatment治療 will treat對待 that cancer癌症.
425
1044000
3000
和什麼樣的治療方法可以治療癌症。
17:42
So let me just end結束 with giving you a little picture圖片
426
1047000
3000
讓我給你一個我認為
17:45
of what I think cancer癌症 treatment治療 will be like in the future未來.
427
1050000
3000
未來癌症治療的方向。
17:48
So I think eventually終於,
428
1053000
2000
我認為總有一天,
17:50
once一旦 we have one of these models楷模 for people,
429
1055000
2000
當我們有針對人類的模型後,
17:52
which哪一個 we'll get eventually終於 --
430
1057000
2000
我們有一天會做到的--
17:54
I mean, our group won't慣於 get all the way there --
431
1059000
2000
我的意思是,我們這個團隊不會一直做到那--
17:56
but eventually終於 we'll have a very good computer電腦 model模型 --
432
1061000
3000
但總有一天我們會有一個很棒的電腦模型--
17:59
sort分類 of like a global全球 climate氣候 model模型 for weather天氣.
433
1064000
3000
有點像是世界天氣模型那樣。
18:02
It has lots of different不同 information信息
434
1067000
3000
這系統有很多不同的訊息,
18:05
about what's the process處理 going on in this proteomic蛋白質組學 conversation會話
435
1070000
3000
可以提供在不同層面蛋白質的對話中
18:08
on many許多 different不同 scales.
436
1073000
2000
發生的事情。
18:10
And so we will simulate模擬
437
1075000
2000
所以我們可以
18:12
in that model模型
438
1077000
2000
針對特定的模型
18:14
for your particular特定 cancer癌症 --
439
1079000
3000
來跑這樣的模擬--
18:17
and this also will be for ALSALS,
440
1082000
2000
且這也可以幫助ALS(脊椎硬化症)
18:19
or any kind of system系統 neurodegenerative神經退行性 diseases疾病,
441
1084000
3000
或其他任何一種神經退化性疾病,
18:22
things like that --
442
1087000
2000
像是這一類的事--
18:24
we will simulate模擬
443
1089000
2000
我們可以特別為你
18:26
specifically特別 you,
444
1091000
2000
來作模擬,
18:28
not just a generic通用 person,
445
1093000
2000
不只是一般不特定的人,
18:30
but what's actually其實 going on inside you.
446
1095000
2000
而是在你體內發生的事。
18:32
And in that simulation模擬, what we could do
447
1097000
2000
在這樣的模擬中,
18:34
is design設計 for you specifically特別
448
1099000
2000
我們可以特別為你設計
18:36
a sequence序列 of treatments治療,
449
1101000
2000
一系列的治療,
18:38
and it might威力 be very gentle溫和 treatments治療, very small amounts of drugs毒品.
450
1103000
3000
這有可能是很簡單的治療,很少量的藥物。
18:41
It might威力 be things like, don't eat that day,
451
1106000
3000
有可能是,那天不要吃東西,
18:44
or give them a little chemotherapy化療,
452
1109000
2000
或是給他們一點點化療,
18:46
maybe a little radiation輻射.
453
1111000
2000
或一點點放射線治療。
18:48
Of course課程, we'll do surgery手術 sometimes有時 and so on.
454
1113000
3000
當然,有時候我們也會開刀或做一些其他的事。
18:51
But design設計 a program程序 of treatments治療 specifically特別 for you
455
1116000
3000
但完全針對你來設計的治療,
18:54
and help your body身體
456
1119000
3000
來幫助你的身體
18:57
guide指南 back to health健康 --
457
1122000
3000
回到健康的狀態--
19:00
guide指南 your body身體 back to health健康.
458
1125000
2000
引導你回到健康。
19:02
Because your body身體 will do most of the work of fixing定影 it
459
1127000
4000
因為你的身體會做大部份的修理動作,
19:06
if we just sort分類 of prop支柱 it up in the ways方法 that are wrong錯誤.
460
1131000
3000
我們只是需要把錯誤的地方稍微修正一下。
19:09
We put it in the equivalent當量 of splints夾板.
461
1134000
2000
我們把它放在矯正器中。
19:11
And so your body身體 basically基本上 has lots and lots of mechanisms機制
462
1136000
2000
所以你的身體基本上有很多可以
19:13
for fixing定影 cancer癌症,
463
1138000
2000
治療癌症的方法,
19:15
and we just have to prop支柱 those up in the right way
464
1140000
3000
我們只是要把它引導到正確的方向
19:18
and get them to do the job工作.
465
1143000
2000
讓它們做這個工作。
19:20
And so I believe that this will be the way
466
1145000
2000
所以我相信這會是
19:22
that cancer癌症 will be treated治療 in the future未來.
467
1147000
2000
未來治療癌症的方法。
19:24
It's going to require要求 a lot of work,
468
1149000
2000
這會需要很多努力,
19:26
a lot of research研究.
469
1151000
2000
很多研究。
19:28
There will be many許多 teams球隊 like our team球隊
470
1153000
3000
會有很多像我們這樣的團隊
19:31
that work on this.
471
1156000
2000
來研究這個。
19:33
But I think eventually終於,
472
1158000
2000
但我認為最後,
19:35
we will design設計 for everybody每個人
473
1160000
2000
我們可以針對每一個人設計
19:37
a custom習慣 treatment治療 for cancer癌症.
474
1162000
4000
專屬個人的癌症療法。
19:41
So thank you very much.
475
1166000
2000
謝謝大家。
19:43
(Applause掌聲)
476
1168000
6000
(掌聲)
Translated by Joan Liu
Reviewed by Wang-Ju Tsai

▲Back to top

ABOUT THE SPEAKER
Danny Hillis - Computer theorist
Inventor, scientist, author, engineer -- over his broad career, Danny Hillis has turned his ever-searching brain on an array of subjects, with surprising results.

Why you should listen

Danny Hillis is an inventor, scientist, author and engineer. While completing his doctorate at MIT, he pioneered the concept of parallel computers that is now the basis for graphics processors and cloud computing. He holds more than 300 US patents, covering parallel computers, disk arrays, forgery prevention methods, various electronic and mechanical devices, and the pinch-to-zoom display interface. He has recently been working on problems in medicine as well. He is also the designer of a 10,000-year mechanical clock, and he gave a TED Talk in 1994 that is practically prophetic. Throughout his career, Hillis has worked at places like Disney, and now MIT and Applied Invention, always looking for the next fascinating problem.

More profile about the speaker
Danny Hillis | Speaker | TED.com

Data provided by TED.

This site was created in May 2015 and the last update was on January 12, 2020. It will no longer be updated.

We are currently creating a new site called "eng.lish.video" and would be grateful if you could access it.

If you have any questions or suggestions, please feel free to write comments in your language on the contact form.

Privacy Policy

Developer's Blog

Buy Me A Coffee