ABOUT THE SPEAKER
Tan Le - Entrepreneur
Tan Le is the founder & CEO of Emotiv, a bioinformatics company that's working on identifying biomarkers for mental and other neurological conditions using electroencephalography (EEG).

Why you should listen

Tan Le is the co-founder and president of Emotiv. Before this, she headed a firm that worked on a new form of remote control that uses brainwaves to control digital devices and digital media. It's long been a dream to bypass the mechanical (mouse, keyboard, clicker) and have our digital devices respond directly to what we think. Emotiv's EPOC headset uses 16 sensors to listen to activity across the entire brain. Software "learns" what each user's brain activity looks like when one, for instance, imagines a left turn or a jump.

Le herself has an extraordinary story -- a refugee from Vietnam at age 4, she entered college at 16 and has since become a vital young leader in her home country of Australia.

More profile about the speaker
Tan Le | Speaker | TED.com
TEDGlobal 2010

Tan Le: A headset that reads your brainwaves

Tan Le: 解讀腦電波的頭戴式耳機

Filmed:
2,732,929 views

Tan Le 展示一個影響深遠應用程式,只需要運用意念和一點專注力,這令人耳目一新的電腦界面可以透過頭戴式耳機來解讀使用者的大腦電波,從而控制虛擬物件和家電用品。
- Entrepreneur
Tan Le is the founder & CEO of Emotiv, a bioinformatics company that's working on identifying biomarkers for mental and other neurological conditions using electroencephalography (EEG). Full bio

Double-click the English transcript below to play the video.

00:16
Up until直到 now, our communication通訊 with machines
0
1000
2000
直到現在,我們與機器的溝通
00:18
has always been limited有限
1
3000
2000
仍局限於
00:20
to conscious意識 and direct直接 forms形式.
2
5000
2000
有意識和直接的模式
00:22
Whether是否 it's something simple簡單
3
7000
2000
不論是一些簡單的事情
00:24
like turning車削 on the lights燈火 with a switch開關,
4
9000
2000
如用開關開燈
00:26
or even as complex複雜 as programming程序設計 robotics機器人,
5
11000
3000
或一些複雜的程式來控制機械人
00:29
we have always had to give a command命令 to a machine,
6
14000
3000
我們都要給機器輸入一個
00:32
or even a series系列 of commands命令,
7
17000
2000
甚至一系列的指令
00:34
in order訂購 for it to do something for us.
8
19000
3000
才能命令它執行一些動作
00:37
Communication通訊 between之間 people, on the other hand,
9
22000
2000
相反的,人與人的溝通
00:39
is far more complex複雜 and a lot more interesting有趣
10
24000
3000
就更加複雜和有趣得多
00:42
because we take into account帳戶
11
27000
2000
因為我們會考慮到
00:44
so much more than what is explicitly明確地 expressed表達.
12
29000
3000
言語未表達的言外之意
00:47
We observe facial面部 expressions表達式, body身體 language語言,
13
32000
3000
我們會觀察表情、肢體語言
00:50
and we can intuit意會 feelings情懷 and emotions情緒
14
35000
2000
在對話中我們會用直覺來
00:52
from our dialogue對話 with one another另一個.
15
37000
3000
感受對方的感覺和情緒
00:55
This actually其實 forms形式 a large part部分
16
40000
2000
這些都是做決定時
00:57
of our decision-making做決定 process處理.
17
42000
2000
一些重要的因素
00:59
Our vision視力 is to introduce介紹
18
44000
2000
我們的願景是引進
01:01
this whole整個 new realm領域 of human人的 interaction相互作用
19
46000
3000
全新的人與電腦的互動科技
01:04
into human-computer人機 interaction相互作用
20
49000
2000
到人類互動的領域
01:06
so that computers電腦 can understand理解
21
51000
2000
這麼一來電腦不只可以
01:08
not only what you direct直接 it to do,
22
53000
2000
明白你指示它所做的事情
01:10
but it can also respond響應
23
55000
2000
而且也會對面部表情
01:12
to your facial面部 expressions表達式
24
57000
2000
和情緒經歷
01:14
and emotional情緒化 experiences經驗.
25
59000
2000
作出反應
01:16
And what better way to do this
26
61000
2000
還有什麼比從大腦的
01:18
than by interpreting解讀 the signals信號
27
63000
2000
情感控制中樞直接解譯
01:20
naturally自然 produced生成 by our brain,
28
65000
2000
大腦產生的電波
01:22
our center中央 for control控制 and experience經驗.
29
67000
3000
來得更好呢?
01:25
Well, it sounds聲音 like a pretty漂亮 good idea理念,
30
70000
2000
這聽起來好像是不錯的主意
01:27
but this task任務, as Bruno布魯諾 mentioned提到,
31
72000
2000
但這個任務,正如Bruno所說
01:29
isn't an easy簡單 one for two main主要 reasons原因:
32
74000
3000
並不容易,原因有兩個
01:32
First, the detection發現 algorithms算法.
33
77000
3000
第一是大腦的偵查演算法
01:35
Our brain is made製作 up of
34
80000
2000
我們的腦是由
01:37
billions數十億 of active活性 neurons神經元,
35
82000
2000
數十億個活躍的神經元所組成
01:39
around 170,000 km千米
36
84000
3000
如果把神經細胞的軸索連在一起
01:42
of combined結合 axon軸突 length長度.
37
87000
2000
大概有十七萬公里
01:44
When these neurons神經元 interact相互作用,
38
89000
2000
這些神經元互動時
01:46
the chemical化學 reaction反應 emits發射 an electrical電動 impulse衝動,
39
91000
2000
產生的化學作用所發射出的電脈衝
01:48
which哪一個 can be measured測量.
40
93000
2000
能夠被測量到
01:50
The majority多數 of our functional實用 brain
41
95000
3000
大部分功能性腦
01:53
is distributed分散式 over
42
98000
2000
是分佈在
01:55
the outer surface表面 layer of the brain,
43
100000
2000
大腦的表層
01:57
and to increase增加 the area that's available可得到 for mental心理 capacity容量,
44
102000
3000
心智能力功能也位於此,為了增加表面積
02:00
the brain surface表面 is highly高度 folded折疊.
45
105000
3000
大腦皮質層有非常多的褶皺
02:03
Now this cortical皮質 folding摺頁
46
108000
2000
大腦皮質褶皺
02:05
presents禮物 a significant重大 challenge挑戰
47
110000
2000
對分析電脈衝
02:07
for interpreting解讀 surface表面 electrical電動 impulses衝動.
48
112000
3000
帶來一個很大的挑戰
02:10
Each individual's個人 cortex皮質
49
115000
2000
每個人大腦皮質層
02:12
is folded折疊 differently不同,
50
117000
2000
的褶皺都不同
02:14
very much like a fingerprint指紋.
51
119000
2000
就像指紋一樣
02:16
So even though雖然 a signal信號
52
121000
2000
因此電脈衝訊息
02:18
may可能 come from the same相同 functional實用 part部分 of the brain,
53
123000
3000
雖然來自功能腦同樣的區域
02:21
by the time the structure結構體 has been folded折疊,
54
126000
2000
但大腦皮質褶皺結構早已形成
02:23
its physical物理 location位置
55
128000
2000
在不同的人的大腦裡
02:25
is very different不同 between之間 individuals個人,
56
130000
2000
即使是雙胞胎
02:27
even identical相同 twins雙胞胎.
57
132000
3000
訊息發生位置也不同
02:30
There is no longer any consistency一致性
58
135000
2000
大腦皮質層電脈衝訊息
02:32
in the surface表面 signals信號.
59
137000
2000
沒有一致性
02:34
Our breakthrough突破 was to create創建 an algorithm算法
60
139000
2000
我們的突破是建立一個演算法
02:36
that unfolds展開 the cortex皮質,
61
141000
2000
攤開大腦皮質層
02:38
so that we can map地圖 the signals信號
62
143000
2000
去勘測這些
02:40
closer接近 to its source資源,
63
145000
2000
訊息的原點
02:42
and therefore因此 making製造 it capable of working加工 across橫過 a mass population人口.
64
147000
3000
繼而把它運用在大眾身上
02:46
The second第二 challenge挑戰
65
151000
2000
第二項挑戰是
02:48
is the actual實際 device設備 for observing觀察 brainwaves腦電波.
66
153000
3000
觀察腦電波的儀器
02:51
EEG腦電圖 measurements測量 typically一般 involve涉及
67
156000
2000
腦波測量基本上包括
02:53
a hairnet發網 with an array排列 of sensors傳感器,
68
158000
3000
一個有許多感應器的髮網
02:56
like the one that you can see here in the photo照片.
69
161000
3000
就像現在圖中所看到的
02:59
A technician技術員 will put the electrodes電極
70
164000
2000
技術人員會把電極
03:01
onto the scalp頭皮
71
166000
2000
用導電的膠或漿糊
03:03
using運用 a conductive導電 gel凝膠 or paste
72
168000
2000
固定在頭皮上
03:05
and usually平時 after a procedure程序 of preparing準備 the scalp頭皮
73
170000
3000
這個準備程序需要在頭皮製造
03:08
by light abrasion磨損.
74
173000
2000
輕微的擦傷
03:10
Now this is quite相當 time consuming消費
75
175000
2000
這個程序既費時
03:12
and isn't the most comfortable自在 process處理.
76
177000
2000
又不舒服
03:14
And on top最佳 of that, these systems系統
77
179000
2000
再加上,這些系統
03:16
actually其實 cost成本 in the tens of thousands數千 of dollars美元.
78
181000
3000
非常昂貴,得花上數萬美金
03:20
So with that, I'd like to invite邀請 onstage在舞台上
79
185000
3000
現在,我邀請Evan Grant
03:23
Evan埃文 Grant格蘭特, who is one of last year's年份 speakers音箱,
80
188000
2000
去年的演講者上台
03:25
who's誰是 kindly和藹 agreed約定
81
190000
2000
他很樂意
03:27
to help me to demonstrate演示
82
192000
2000
幫忙示範
03:29
what we've我們已經 been able能夠 to develop發展.
83
194000
2000
我們所設計的儀器
03:31
(Applause掌聲)
84
196000
6000
(鼓掌)
03:37
So the device設備 that you see
85
202000
2000
你們所看到的儀器是
03:39
is a 14-channel-渠道, high-fidelity高保真度
86
204000
2000
有十四個頻道,高傳真的
03:41
EEG腦電圖 acquisition獲得 system系統.
87
206000
2000
腦電波訊號擷取系統
03:43
It doesn't require要求 any scalp頭皮 preparation製備,
88
208000
3000
不需要任何頭皮準備程序
03:46
no conductive導電 gel凝膠 or paste.
89
211000
2000
沒有導電的膠或漿糊
03:48
It only takes a few少數 minutes分鐘 to put on
90
213000
3000
戴上它,等訊號穩定
03:51
and for the signals信號 to settle解決.
91
216000
2000
只要幾分鐘
03:53
It's also wireless無線,
92
218000
2000
而且是無線的
03:55
so it gives you the freedom自由 to move移動 around.
93
220000
3000
它讓你活動自如
03:58
And compared相比 to the tens of thousands數千 of dollars美元
94
223000
3000
比起那些幾萬美元的
04:01
for a traditional傳統 EEG腦電圖 system系統,
95
226000
3000
傳統腦電波系統
04:04
this headset耳機 only costs成本
96
229000
2000
這個頭戴式耳機
04:06
a few少數 hundred dollars美元.
97
231000
2000
只要幾百美金
04:08
Now on to the detection發現 algorithms算法.
98
233000
3000
現在來談談大腦感應演算法
04:11
So facial面部 expressions表達式 --
99
236000
2000
好,面部表情--
04:13
as I mentioned提到 before in emotional情緒化 experiences經驗 --
100
238000
2000
如同之前講到的情緒經驗--
04:15
are actually其實 designed設計 to work out of the box
101
240000
2000
這套系統有令人意想不到的設計
04:17
with some sensitivity靈敏度 adjustments調整
102
242000
2000
只要做一些敏感度調整
04:19
available可得到 for personalization個性化.
103
244000
3000
就可以運用於個人化的使用
04:22
But with the limited有限 time we have available可得到,
104
247000
2000
但因時間的關係
04:24
I'd like to show顯示 you the cognitive認知 suite套房,
105
249000
2000
現在只示範認知的部份
04:26
which哪一個 is the ability能力 for you
106
251000
2000
這套系統能夠讓您
04:28
to basically基本上 move移動 virtual虛擬 objects對象 with your mind心神.
107
253000
3000
只用意念移動虛擬物件
04:32
Now, Evan埃文 is new to this system系統,
108
257000
2000
Evan是第一次接觸這個系統
04:34
so what we have to do first
109
259000
2000
因此我們要先
04:36
is create創建 a new profile輪廓 for him.
110
261000
2000
建立一個新的檔案
04:38
He's obviously明顯 not Joanne喬安妮 -- so we'll "add user用戶."
111
263000
3000
他當然不是Joanne, 所以要增加一個用戶
04:41
Evan埃文. Okay.
112
266000
2000
Evan,好了!
04:43
So the first thing we need to do with the cognitive認知 suite套房
113
268000
3000
首先要做的是
04:46
is to start開始 with training訓練
114
271000
2000
練習發出一個
04:48
a neutral中性 signal信號.
115
273000
2000
中立的訊號
04:50
With neutral中性, there's nothing in particular特定
116
275000
2000
Evan不需要做
04:52
that Evan埃文 needs需求 to do.
117
277000
2000
什麼特別的事
04:54
He just hangs掛起 out. He's relaxed輕鬆.
118
279000
2000
就這樣放輕鬆
04:56
And the idea理念 is to establish建立 a baseline底線
119
281000
2000
重點是建立一個基準線
04:58
or normal正常 state for his brain,
120
283000
2000
或是大腦的正常狀態
05:00
because every一切 brain is different不同.
121
285000
2000
因為每個人的腦都不相同
05:02
It takes eight seconds to do this,
122
287000
2000
這大概需要八秒的時間
05:04
and now that that's doneDONE,
123
289000
2000
完成了
05:06
we can choose選擇 a movement-based運動型 action行動.
124
291000
2000
我們可以選擇一個有動作的活動
05:08
So Evan埃文, choose選擇 something
125
293000
2000
Evan,你可選擇一個
05:10
that you can visualize想像 clearly明確地 in your mind心神.
126
295000
2000
在你腦海中可以清楚看到的事情
05:12
Evan埃文 Grant格蘭特: Let's do "pull."
127
297000
2000
讓我們做一個"拉"的動作
05:14
Tan黃褐色 Le: Okay, so let's choose選擇 "pull."
128
299000
2000
好,點選"拉"
05:16
So the idea理念 here now
129
301000
2000
我們現在
05:18
is that Evan埃文 needs需求 to
130
303000
2000
需要Evan想像
05:20
imagine想像 the object目的 coming未來 forward前鋒
131
305000
2000
一件物品在螢幕上
05:22
into the screen屏幕,
132
307000
2000
往前移動
05:24
and there's a progress進展 bar酒吧 that will scroll滾動 across橫過 the screen屏幕
133
309000
3000
他這樣做的時候
05:27
while he's doing that.
134
312000
2000
螢幕上會出現一個測量棒
05:29
The first time, nothing will happen發生,
135
314000
2000
第一次沒有任何事情發生
05:31
because the system系統 has no idea理念 how he thinks about "pull."
136
316000
3000
因為系統還不知道他怎麼想像"拉"的動作
05:34
But maintain保持 that thought
137
319000
2000
在這八秒中
05:36
for the entire整個 duration持續時間 of the eight seconds.
138
321000
2000
持續想著這個念頭
05:38
So: one, two, three, go.
139
323000
3000
一、二、三、開始
05:49
Okay.
140
334000
2000
好了
05:51
So once一旦 we accept接受 this,
141
336000
2000
當我們按了接受
05:53
the cube立方體 is live生活.
142
338000
2000
這個方塊就活了起來
05:55
So let's see if Evan埃文
143
340000
2000
讓我們看看Evan
05:57
can actually其實 try and imagine想像 pulling.
144
342000
3000
能否真的嘗試想像"拉"的動作
06:00
Ah, good job工作!
145
345000
2000
哇! 非常好!
06:02
(Applause掌聲)
146
347000
3000
(鼓掌)
06:05
That's really amazing驚人.
147
350000
2000
真是令人驚訝!
06:07
(Applause掌聲)
148
352000
4000
(鼓掌)
06:11
So we have a little bit of time available可得到,
149
356000
2000
我們還有一些時間
06:13
so I'm going to ask Evan埃文
150
358000
2000
我要請Evan
06:15
to do a really difficult task任務.
151
360000
2000
做一些比較困難的動作
06:17
And this one is difficult
152
362000
2000
這個有點難
06:19
because it's all about being存在 able能夠 to visualize想像 something
153
364000
3000
因為要想像
06:22
that doesn't exist存在 in our physical物理 world世界.
154
367000
2000
在物質界裡不存在的事物
06:24
This is "disappear消失."
155
369000
2000
就是 "消失"
06:26
So what you want to do -- at least最小 with movement-based運動型 actions行動,
156
371000
2000
就動作而言
06:28
we do that all the time, so you can visualize想像 it.
157
373000
3000
因為經常做這些動作,所以能"看見"它
06:31
But with "disappear消失," there's really no analogies類比 --
158
376000
2000
但"消失"沒有任何類似的動作
06:33
so Evan埃文, what you want to do here
159
378000
2000
Evan, 現在請你
06:35
is to imagine想像 the cube立方體 slowly慢慢地 fading衰退 out, okay.
160
380000
3000
想像這個方塊慢慢消失
06:38
Same相同 sort分類 of drill鑽頭. So: one, two, three, go.
161
383000
3000
一樣的練習。 一、二、三、開始
06:50
Okay. Let's try that.
162
395000
3000
可以了,我們試試吧
06:53
Oh, my goodness善良. He's just too good.
163
398000
3000
我的天啊!他真的是非常厲害
06:57
Let's try that again.
164
402000
2000
再試一次
07:04
EG例如: Losing失去 concentration濃度.
165
409000
2000
(EG儀器:) 失去專注力
07:06
(Laughter笑聲)
166
411000
2000
(笑聲)
07:08
TLTL: But we can see that it actually其實 works作品,
167
413000
2000
這套系統真的辦到了
07:10
even though雖然 you can only hold保持 it
168
415000
2000
雖然只維持
07:12
for a little bit of time.
169
417000
2000
一段很短的時間
07:14
As I said, it's a very difficult process處理
170
419000
3000
我認為想像"消失"
07:17
to imagine想像 this.
171
422000
2000
真的是非常困難
07:19
And the great thing about it is that
172
424000
2000
這個系統了不起的是
07:21
we've我們已經 only given特定 the software軟件 one instance
173
426000
2000
這套軟體只有一次機會
07:23
of how he thinks about "disappear消失."
174
428000
3000
知道Evan是怎麼想像"消失"的
07:26
As there is a machine learning學習 algorithm算法 in this --
175
431000
3000
而這部機器便學會了演算它
07:29
(Applause掌聲)
176
434000
4000
(鼓掌)
07:33
Thank you.
177
438000
2000
謝謝
07:35
Good job工作. Good job工作.
178
440000
3000
很棒!很棒!
07:38
(Applause掌聲)
179
443000
2000
(鼓掌)
07:40
Thank you, Evan埃文, you're a wonderful精彩, wonderful精彩
180
445000
3000
謝謝,Evan你真的是這項科技
07:43
example of the technology技術.
181
448000
3000
最佳的展示人員
07:46
So, as you can see, before,
182
451000
2000
正如你們所見
07:48
there is a leveling練級 system系統 built內置 into this software軟件
183
453000
3000
這個軟體有一個水準測量系統
07:51
so that as Evan埃文, or any user用戶,
184
456000
2000
Evan或其他使用者
07:53
becomes more familiar with the system系統,
185
458000
2000
對這個系統越熟悉
07:55
they can continue繼續 to add more and more detections檢測,
186
460000
3000
就能不斷地增加更多,更多的檢測項目
07:58
so that the system系統 begins開始 to differentiate區分
187
463000
2000
這個系統就能開始分辨
08:00
between之間 different不同 distinct不同 thoughts思念.
188
465000
3000
不同的明顯想法
08:04
And once一旦 you've trained熟練 up the detections檢測,
189
469000
2000
當你訓練做這些檢測項目
08:06
these thoughts思念 can be assigned分配 or mapped映射
190
471000
2000
這些念頭、想法就能指定或聯繫到
08:08
to any computing計算 platform平台,
191
473000
2000
任何的電腦平台、
08:10
application應用 or device設備.
192
475000
2000
應用程式或儀器上
08:12
So I'd like to show顯示 you a few少數 examples例子,
193
477000
2000
讓我為你們展示幾個例子
08:14
because there are many許多 possible可能 applications應用
194
479000
2000
這個新界面有
08:16
for this new interface接口.
195
481000
2000
很多可運用的應用程式
08:19
In games遊戲 and virtual虛擬 worlds世界, for example,
196
484000
2000
例如在遊戲或虛擬世界
08:21
your facial面部 expressions表達式
197
486000
2000
你可以用臉部表情
08:23
can naturally自然 and intuitively直觀地 be used
198
488000
2000
自然、直覺地
08:25
to control控制 an avatar頭像 or virtual虛擬 character字符.
199
490000
3000
操控遊戲角色或虛擬人物
08:29
Obviously明顯, you can experience經驗 the fantasy幻想 of magic魔法
200
494000
2000
無庸置疑,你將會親身體驗幻想的魔力
08:31
and control控制 the world世界 with your mind心神.
201
496000
3000
和運用意念來控制世界
08:36
And also, colors顏色, lighting燈光,
202
501000
3000
顏色,燈光
08:39
sound聲音 and effects效果
203
504000
2000
聲音和音效
08:41
can dynamically動態 respond響應 to your emotional情緒化 state
204
506000
2000
也可以不斷地變化來反映你的情緒狀態
08:43
to heighten增高 the experience經驗 that you're having, in real真實 time.
205
508000
3000
即時強化你的感受
08:47
And moving移動 on to some applications應用
206
512000
2000
現在來看看應用程式
08:49
developed發達 by developers開發商 and researchers研究人員 around the world世界,
207
514000
3000
全世界的研發人員發明了
08:52
with robots機器人 and simple簡單 machines, for example --
208
517000
3000
不同的機械人和簡單的機器,例如
08:55
in this case案件, flying飛行 a toy玩具 helicopter直升機
209
520000
2000
這個例子是操作玩具直昇機
08:57
simply只是 by thinking思維 "lift電梯" with your mind心神.
210
522000
3000
只要用意念就可以讓它飛起來
09:00
The technology技術 can also be applied應用的
211
525000
2000
這項科技也可以應用在
09:02
to real真實 world世界 applications應用 --
212
527000
2000
實際生活中
09:04
in this example, a smart聰明 home.
213
529000
2000
看看智能家居的例子
09:06
You know, from the user用戶 interface接口 of the control控制 system系統
214
531000
3000
從使用者界面控制系統
09:09
to opening開盤 curtains窗簾
215
534000
2000
來打開
09:11
or closing關閉 curtains窗簾.
216
536000
3000
或關上窗簾
09:22
And of course課程, also to the lighting燈光 --
217
547000
3000
當然電燈也可以
09:25
turning車削 them on
218
550000
3000
09:28
or off.
219
553000
2000
或關
09:30
And finally最後,
220
555000
2000
最後
09:32
to real真實 life-changing改變生活 applications應用,
221
557000
2000
是應用在改善真實生活
09:34
such這樣 as being存在 able能夠 to control控制 an electric電動 wheelchair輪椅.
222
559000
3000
例如能夠控制電動輪椅
09:37
In this example,
223
562000
2000
這個例子裡
09:39
facial面部 expressions表達式 are mapped映射 to the movement運動 commands命令.
224
564000
3000
面部表情對應於移動方向的指令
09:42
Man: Now blink right to go right.
225
567000
3000
男聲: 現在眨右眼右轉
09:50
Now blink left to turn back left.
226
575000
3000
眨左眼左轉
10:02
Now smile微笑 to go straight直行.
227
587000
3000
微笑往前
10:08
TLTL: We really -- Thank you.
228
593000
2000
TL: 我們真的.... 多謝各位。
10:10
(Applause掌聲)
229
595000
5000
(鼓掌)
10:15
We are really only scratching搔抓 the surface表面 of what is possible可能 today今天,
230
600000
3000
現今我們所做到的只是很小的一部分
10:18
and with the community's社區 input輸入,
231
603000
2000
有研發團隊的投入
10:20
and also with the involvement參與 of developers開發商
232
605000
2000
及全世界的研發和
10:22
and researchers研究人員 from around the world世界,
233
607000
3000
研究人員的參與
10:25
we hope希望 that you can help us to shape形狀
234
610000
2000
我們希望這一項科技能夠
10:27
where the technology技術 goes from here. Thank you so much.
235
612000
3000
從這裡一路順利發展。謝謝各位。
Translated by Jeannie Cheng
Reviewed by Sunshine Hong-Jun, Wang

▲Back to top

ABOUT THE SPEAKER
Tan Le - Entrepreneur
Tan Le is the founder & CEO of Emotiv, a bioinformatics company that's working on identifying biomarkers for mental and other neurological conditions using electroencephalography (EEG).

Why you should listen

Tan Le is the co-founder and president of Emotiv. Before this, she headed a firm that worked on a new form of remote control that uses brainwaves to control digital devices and digital media. It's long been a dream to bypass the mechanical (mouse, keyboard, clicker) and have our digital devices respond directly to what we think. Emotiv's EPOC headset uses 16 sensors to listen to activity across the entire brain. Software "learns" what each user's brain activity looks like when one, for instance, imagines a left turn or a jump.

Le herself has an extraordinary story -- a refugee from Vietnam at age 4, she entered college at 16 and has since become a vital young leader in her home country of Australia.

More profile about the speaker
Tan Le | Speaker | TED.com

Data provided by TED.

This site was created in May 2015 and the last update was on January 12, 2020. It will no longer be updated.

We are currently creating a new site called "eng.lish.video" and would be grateful if you could access it.

If you have any questions or suggestions, please feel free to write comments in your language on the contact form.

Privacy Policy

Developer's Blog

Buy Me A Coffee