ABOUT THE SPEAKER
Laurie Santos - Cognitive psychologist
Laurie Santos studies primate psychology and monkeynomics -- testing problems in human psychology on primates, who (not so surprisingly) have many of the same predictable irrationalities we do.

Why you should listen

Laurie Santos runs the Comparative Cognition Laboratory (CapLab) at Yale, where she and collaborators across departments (from psychology to primatology to neurobiology) explore the evolutionary origins of the human mind by studying lemurs, capuchin monkeys and other primates. The twist: Santos looks not only for positive humanlike traits, like tool-using and altruism, but irrational ones, like biased decisionmaking.

In elegant, carefully constructed experiments, Santos and CapLab have studied how primates understand and categorize objects in the physical world -- for instance, that monkeys understand an object is still whole even when part of it is obscured. Going deeper, their experiments also search for clues that primates possess a theory of mind -- an ability to think about what other people think.

Most recently, the lab has been looking at behaviors that were once the province mainly of novelists: jealousy, frustration, judgment of others' intentions, poor economic choices. In one experiment, Santos and her team taught monkeys to use a form of money, tradeable for food. When certain foods became cheaper, monkeys would, like humans, overbuy. As we humans search for clues to our own irrational behaviors, Santos' research suggests that the source of our genius for bad decisions might be our monkey brains.

More profile about the speaker
Laurie Santos | Speaker | TED.com
TEDGlobal 2010

Laurie Santos: A monkey economy as irrational as ours

勞瑞-桑托斯:跟人類一樣非理性的猴群經濟

Filmed:
1,506,660 views

勞瑞-桑托斯觀察我們靈長類親戚作決策的情形,從中發現了人類非理性行為的根源。一系列名為"猴子經濟學"的巧妙實驗,證明了有些愚蠢的人類行為,猴子也會做。
- Cognitive psychologist
Laurie Santos studies primate psychology and monkeynomics -- testing problems in human psychology on primates, who (not so surprisingly) have many of the same predictable irrationalities we do. Full bio

Double-click the English transcript below to play the video.

00:17
I want to start開始 my talk today今天 with two observations意見
0
2000
2000
我今天要跟各位分享有關人類這個物種的
00:19
about the human人的 species種類.
1
4000
2000
2個觀察結果。
00:21
The first observation意見 is something that you might威力 think is quite相當 obvious明顯,
2
6000
3000
第一個發現,你可能會覺得這超明顯的,
00:24
and that's that our species種類, Homo智人 sapiens智人,
3
9000
2000
我們這個物種,靈長類,
00:26
is actually其實 really, really smart聰明 --
4
11000
2000
真的非常非常聰明,
00:28
like, ridiculously可笑 smart聰明 --
5
13000
2000
聰明的很誇張,
00:30
like you're all doing things
6
15000
2000
你現在可以做的所有事情,
00:32
that no other species種類 on the planet行星 does right now.
7
17000
3000
目前地球上沒有其他物種可以做的到。
00:35
And this is, of course課程,
8
20000
2000
當然,
00:37
not the first time you've probably大概 recognized認可 this.
9
22000
2000
這絕對不是你第一次聽到這件事。
00:39
Of course課程, in addition加成 to being存在 smart聰明, we're also an extremely非常 vain徒然 species種類.
10
24000
3000
當然,除了聰明,我們還是個非常自大的物種。
00:42
So we like pointing指點 out the fact事實 that we're smart聰明.
11
27000
3000
所以我們才會講自己有多聰明。
00:45
You know, so I could turn to pretty漂亮 much any sage智者
12
30000
2000
我可以講出一堆偉人的名字,
00:47
from Shakespeare莎士比亞 to Stephen斯蒂芬 Colbert科爾伯特
13
32000
2000
從莎士比亞到史提芬-科伯(美國知名主持人)
00:49
to point out things like the fact事實 that
14
34000
2000
點出這些事情就像在講說
00:51
we're noble高貴 in reason原因 and infinite無窮 in faculties各系
15
36000
2000
我們有高貴的理性、無窮的能力,
00:53
and just kind of awesome-er真棒-ER than anything else其他 on the planet行星
16
38000
2000
遠超過地球上任何生物的驚嘆成就。
00:55
when it comes to all things cerebral顱內.
17
40000
3000
這一切都與大腦有關。
00:58
But of course課程, there's a second第二 observation意見 about the human人的 species種類
18
43000
2000
第二個有關我們人類這個物種的發現,
01:00
that I want to focus焦點 on a little bit more,
19
45000
2000
我想要特別說明這一點,
01:02
and that's the fact事實 that
20
47000
2000
這個發現就是
01:04
even though雖然 we're actually其實 really smart聰明, sometimes有時 uniquely獨特地 smart聰明,
21
49000
3000
即使我們真的很聰明,有時候還會蹦出更聰明的人,
01:07
we can also be incredibly令人難以置信, incredibly令人難以置信 dumb
22
52000
3000
但是當涉及某些領域的決策時,
01:10
when it comes to some aspects方面 of our decision決定 making製造.
23
55000
3000
我們仍然會做出極度荒謬的蠢事。
01:13
Now I'm seeing眼看 lots of smirks假笑 out there.
24
58000
2000
我發現有些人在偷笑。
01:15
Don't worry擔心, I'm not going to call anyone任何人 in particular特定 out
25
60000
2000
別擔心,我並不是在特別指名某某某
01:17
on any aspects方面 of your own擁有 mistakes錯誤.
26
62000
2000
在某些領域方面的錯誤。
01:19
But of course課程, just in the last two years年份
27
64000
2000
不過,就在2年前,
01:21
we see these unprecedented史無前例 examples例子 of human人的 ineptitude無能.
28
66000
3000
我就發現了一些人類史無前例的愚蠢行為。
01:24
And we've我們已經 watched看著 as the tools工具 we uniquely獨特地 make
29
69000
3000
我們用自己打造的獨特工具
01:27
to pull the resources資源 out of our environment環境
30
72000
2000
從大自然裡挖出天然資源,
01:29
kind of just blow打擊 up in our face面對.
31
74000
2000
而我們正在自食這種行為的惡果。
01:31
We've我們已經 watched看著 the financial金融 markets市場 that we uniquely獨特地 create創建 --
32
76000
2000
我們也看過那我們特別建構的金融市場--
01:33
these markets市場 that were supposed應該 to be foolproof簡單的 --
33
78000
3000
那個被認為是萬無一失的金融市場--
01:36
we've我們已經 watched看著 them kind of collapse坍方 before our eyes眼睛.
34
81000
2000
就這樣活生生的在我們眼前崩潰。
01:38
But both of these two embarrassing尷尬 examples例子, I think,
35
83000
2000
我想,這2個令人尷尬的例子,
01:40
don't highlight突出 what I think is most embarrassing尷尬
36
85000
3000
還並不是我心中
01:43
about the mistakes錯誤 that humans人類 make,
37
88000
2000
所認為最尷尬的人類行為,
01:45
which哪一個 is that we'd星期三 like to think that the mistakes錯誤 we make
38
90000
3000
我們可能都會覺得犯錯的來源是
01:48
are really just the result結果 of a couple一對 bad apples蘋果
39
93000
2000
壞蛋所做的偏差行為,
01:50
or a couple一對 really sort分類 of FAIL失敗 Blog-worthy博客值得 decisions決定.
40
95000
3000
或「爆笑部落格(FAIL Blog)」裡張貼的那些行為。
01:53
But it turns out, what social社會 scientists科學家們 are actually其實 learning學習
41
98000
3000
事實上,社會學家根據我們的行為做研究,
01:56
is that most of us, when put in certain某些 contexts上下文,
42
101000
3000
提出的相關研究顯示,
01:59
will actually其實 make very specific具體 mistakes錯誤.
43
104000
3000
人會犯一些特定的錯誤。
02:02
The errors錯誤 we make are actually其實 predictable可預測.
44
107000
2000
其實我們所犯的錯都是可以預期的。
02:04
We make them again and again.
45
109000
2000
但我們卻讓它一而再的發生。
02:06
And they're actually其實 immune免疫的 to lots of evidence證據.
46
111000
2000
而且會對這種行為免疫。
02:08
When we get negative feedback反饋,
47
113000
2000
當我們某個行為得到負面的回應時,
02:10
we still, the next下一個 time we're face面對 with a certain某些 context上下文,
48
115000
3000
下一次當我們遇到同樣情形時,
02:13
tend趨向 to make the same相同 errors錯誤.
49
118000
2000
我們還是會犯同樣的錯。
02:15
And so this has been a real真實 puzzle難題 to me
50
120000
2000
作為一個研究人類的學者,
02:17
as a sort分類 of scholar學者 of human人的 nature性質.
51
122000
2000
這種現象真的讓我百思不得其解。
02:19
What I'm most curious好奇 about is,
52
124000
2000
而我最好奇的地方是,
02:21
how is a species種類 that's as smart聰明 as we are
53
126000
3000
像我們這麼聰明的物種,
02:24
capable of such這樣 bad
54
129000
2000
怎麼會一直犯錯,
02:26
and such這樣 consistent一貫 errors錯誤 all the time?
55
131000
2000
甚至犯同樣的錯?
02:28
You know, we're the smartest最聰明的 thing out there, why can't we figure數字 this out?
56
133000
3000
我們是最聰明的物種,但為什麼我們找不出原因?
02:31
In some sense, where do our mistakes錯誤 really come from?
57
136000
3000
在某種意義上,我們所犯的錯誤是從何而來?
02:34
And having thought about this a little bit, I see a couple一對 different不同 possibilities可能性.
58
139000
3000
稍微思考一下後,我找出幾種可能性。
02:37
One possibility可能性 is, in some sense, it's not really our fault故障.
59
142000
3000
第一個可能性是,根本不是我們的錯。
02:40
Because we're a smart聰明 species種類,
60
145000
2000
因為我們是聰明的物種,
02:42
we can actually其實 create創建 all kinds of environments環境
61
147000
2000
我們能創造出各式各樣
02:44
that are super, super complicated複雜,
62
149000
2000
非常複雜的體制,
02:46
sometimes有時 too complicated複雜 for us to even actually其實 understand理解,
63
151000
3000
即使是我們一手創造的,
02:49
even though雖然 we've我們已經 actually其實 created創建 them.
64
154000
2000
有時候弄得太複雜,連自己都搞不懂。
02:51
We create創建 financial金融 markets市場 that are super complex複雜.
65
156000
2000
像是,我們創造了超複雜的金融市場。
02:53
We create創建 mortgage抵押 terms條款 that we can't actually其實 deal合同 with.
66
158000
3000
我們搞了一堆自己無法負荷的貸款條件。
02:56
And of course課程, if we are put in environments環境 where we can't deal合同 with it,
67
161000
3000
若我們真的身處在一個無法應付的體制中,
02:59
in some sense makes品牌 sense that we actually其實
68
164000
2000
某些時候
03:01
might威力 mess食堂 certain某些 things up.
69
166000
2000
我們也許會把情況弄得更加混亂。
03:03
If this was the case案件, we'd星期三 have a really easy簡單 solution
70
168000
2000
不過若真的情況一發不可收拾,
03:05
to the problem問題 of human人的 error錯誤.
71
170000
2000
我們有一種最簡易的通用解決方案。
03:07
We'd星期三 actually其實 just say, okay, let's figure數字 out
72
172000
2000
我們會這樣講,好吧,
03:09
the kinds of technologies技術 we can't deal合同 with,
73
174000
2000
既然已經無法應付這個情況,
03:11
the kinds of environments環境 that are bad --
74
176000
2000
那讓我們來想點法子吧--
03:13
get rid擺脫 of those, design設計 things better,
75
178000
2000
這法子就是丟掉它們吧,去設計別的體制,
03:15
and we should be the noble高貴 species種類
76
180000
2000
這樣才能讓我們
03:17
that we expect期望 ourselves我們自己 to be.
77
182000
2000
成為自己期望的高貴物種。
03:19
But there's another另一個 possibility可能性 that I find a little bit more worrying令人擔憂,
78
184000
3000
那另一種可能性,反而讓我有點擔憂,
03:22
which哪一個 is, maybe it's not our environments環境 that are messed搞砸 up.
79
187000
3000
也許不是體制亂不亂的問題。
03:25
Maybe it's actually其實 us that's designed設計 badly.
80
190000
3000
也許是我們人類本身就有缺陷。
03:28
This is a hint暗示 that I've gotten得到
81
193000
2000
這個徵兆,
03:30
from watching觀看 the ways方法 that social社會 scientists科學家們 have learned學到了 about human人的 errors錯誤.
82
195000
3000
是我從社會學家,研究人類犯錯的過程中得到的。
03:33
And what we see is that people tend趨向 to keep making製造 errors錯誤
83
198000
3000
我們發現,人類傾向用同樣的方式犯錯
03:36
exactly究竟 the same相同 way, over and over again.
84
201000
3000
而且會一而再、再而三的發生。
03:39
It feels感覺 like we might威力 almost幾乎 just be built內置
85
204000
2000
這感覺好像我們
03:41
to make errors錯誤 in certain某些 ways方法.
86
206000
2000
會在某些領域不斷犯錯。
03:43
This is a possibility可能性 that I worry擔心 a little bit more about,
87
208000
3000
這就是讓我擔心的另一項可能性,
03:46
because, if it's us that's messed搞砸 up,
88
211000
2000
因為,若是我們本身就是無法捉摸,
03:48
it's not actually其實 clear明確 how we go about dealing交易 with it.
89
213000
2000
那我們根本不知道要如何應對這樣的問題。
03:50
We might威力 just have to accept接受 the fact事實 that we're error錯誤 prone易於
90
215000
3000
我們只能接受自己傾向犯錯的事實,
03:53
and try to design設計 things around it.
91
218000
2000
然後想出新方法來修補錯誤。
03:55
So this is the question my students學生們 and I wanted to get at.
92
220000
3000
這問題是我和我的學生想了解的。
03:58
How can we tell the difference區別 between之間 possibility可能性 one and possibility可能性 two?
93
223000
3000
所以究竟是可能性一還是可能性二?
04:01
What we need is a population人口
94
226000
2000
我們需要一個群體來實驗,
04:03
that's basically基本上 smart聰明, can make lots of decisions決定,
95
228000
2000
這群體要夠聰明,可以做許多決策,
04:05
but doesn't have access訪問 to any of the systems系統 we have,
96
230000
2000
但必須從未接觸過人為的系統,
04:07
any of the things that might威力 mess食堂 us up --
97
232000
2000
沒接觸過會把我們搞瘋的體制,
04:09
no human人的 technology技術, human人的 culture文化,
98
234000
2000
沒有人類的技術、文化,
04:11
maybe even not human人的 language語言.
99
236000
2000
甚至不用人類的語言。
04:13
And so this is why we turned轉身 to these guys here.
100
238000
2000
這就是為什麼我們會找上這群傢伙。
04:15
These are one of the guys I work with. This is a brown棕色 capuchin僧帽 monkey.
101
240000
3000
這是我們其中一個伙伴,一隻褐色的僧帽猴。
04:18
These guys are New World世界 primates靈長類動物,
102
243000
2000
牠們屬於新世界靈長類(註:根據演化分為新世界和舊世界),
04:20
which哪一個 means手段 they broke打破 off from the human人的 branch
103
245000
2000
牠們大約在3500萬年前
04:22
about 35 million百萬 years年份 ago.
104
247000
2000
跟人類分開演化。
04:24
This means手段 that your great, great, great great, great, great --
105
249000
2000
這意思就是說你的曾曾曾曾曾曾....祖父,
04:26
with about five million百萬 "greats巨星" in there --
106
251000
2000
大概5百萬個曾;
04:28
grandmother祖母 was probably大概 the same相同 great, great, great, great
107
253000
2000
還有你的曾曾曾曾曾曾...祖母
04:30
grandmother祖母 with five million百萬 "greats巨星" in there
108
255000
2000
大概5百萬個曾,
04:32
as Holly冬青 up here.
109
257000
2000
是跟畫面的荷莉出自同一物種。
04:34
You know, so you can take comfort安慰 in the fact事實 that this guy up here is a really really distant遙遠,
110
259000
3000
各位請放寬心,這小傢伙跟我們幾乎是不同的,
04:37
but albeit儘管 evolutionary發展的, relative相對的.
111
262000
2000
即使我們在演化史上有深厚的關係。
04:39
The good news新聞 about Holly冬青 though雖然 is that
112
264000
2000
荷莉跟我們有完全不同的發展,
04:41
she doesn't actually其實 have the same相同 kinds of technologies技術 we do.
113
266000
3000
這對牠而言也是個好消息。
04:44
You know, she's a smart聰明, very cut creature生物, a primate靈長類動物 as well,
114
269000
3000
牠很聰明,很可愛的小動物,屬於靈長類,
04:47
but she lacks缺乏 all the stuff東東 we think might威力 be messing搞亂 us up.
115
272000
2000
而且牠沒有那些我們自己都搞不懂的東西。
04:49
So she's the perfect完善 test測試 case案件.
116
274000
2000
看來是個不錯的實驗對象。
04:51
What if we put Holly冬青 into the same相同 context上下文 as humans人類?
117
276000
3000
那我們該把荷莉放在人類的哪一個情境呢?
04:54
Does she make the same相同 mistakes錯誤 as us?
118
279000
2000
牠是否會跟我犯同樣的錯誤呢?
04:56
Does she not learn學習 from them? And so on.
119
281000
2000
牠是否不會從經驗中學得教訓呢?
04:58
And so this is the kind of thing we decided決定 to do.
120
283000
2000
這些都是我們想探討的問題。
05:00
My students學生們 and I got very excited興奮 about this a few少數 years年份 ago.
121
285000
2000
我們在好幾年前就對這實驗非常期待。
05:02
We said, all right, let's, you know, throw so problems問題 at Holly冬青,
122
287000
2000
我們想說丟給荷莉一些人類才有的問題,
05:04
see if she messes混亂 these things up.
123
289000
2000
看看牠會有什麼反應。
05:06
First problem問題 is just, well, where should we start開始?
124
291000
3000
第一個問題來了,要從哪裡開始?
05:09
Because, you know, it's great for us, but bad for humans人類.
125
294000
2000
實驗對我們來說很好,但對人類就很難。
05:11
We make a lot of mistakes錯誤 in a lot of different不同 contexts上下文.
126
296000
2000
因為我們在各種不同領域會犯不同的錯誤。
05:13
You know, where are we actually其實 going to start開始 with this?
127
298000
2000
所以,我們的實驗到底要從哪裡開始?
05:15
And because we started開始 this work around the time of the financial金融 collapse坍方,
128
300000
3000
正好實驗開始時是在次貸風暴的時候,
05:18
around the time when foreclosures喪失抵押品贖回權 were hitting the news新聞,
129
303000
2000
同時新聞也不斷的報導抵押品回收的消息,
05:20
we said, hhmmHHMM, maybe we should
130
305000
2000
我們想,也許
05:22
actually其實 start開始 in the financial金融 domain.
131
307000
2000
就從金融的領域開始好了。
05:24
Maybe we should look at monkey's猴子的 economic經濟 decisions決定
132
309000
3000
讓我們來觀察猴子在經濟方面的決策,
05:27
and try to see if they do the same相同 kinds of dumb things that we do.
133
312000
3000
看看牠們是不是也會犯跟我們一樣的錯誤。
05:30
Of course課程, that's when we hit擊中 a sort分類 second第二 problem問題 --
134
315000
2000
當然,第二個問題就隨之而來,
05:32
a little bit more methodological方法論 --
135
317000
2000
就是有關教學的問題,
05:34
which哪一個 is that, maybe you guys don't know,
136
319000
2000
各位可能不知道,
05:36
but monkeys猴子 don't actually其實 use money. I know, you haven't沒有 met會見 them.
137
321000
3000
猴子是不使用貨幣的。因為各位沒跟猴子接觸過。
05:39
But this is why, you know, they're not in the queue隊列 behind背後 you
138
324000
2000
這就是為什麼當你在雜貨店或是在提款機前面時,
05:41
at the grocery雜貨 store商店 or the ATM自動取款機 -- you know, they don't do this stuff東東.
139
326000
3000
沒看過猴子排在你後面,牠們才不會做這種事情。
05:44
So now we faced面對, you know, a little bit of a problem問題 here.
140
329000
3000
所以猴子不用錢這件事算是個問題。
05:47
How are we actually其實 going to ask monkeys猴子 about money
141
332000
2000
若猴子不用錢,
05:49
if they don't actually其實 use it?
142
334000
2000
那要怎樣讓猴子開始用錢?
05:51
So we said, well, maybe we should just, actually其實 just suck吮吸 it up
143
336000
2000
我們就想,好吧,稍微忍耐一下,
05:53
and teach monkeys猴子 how to use money.
144
338000
2000
先從教猴子用錢開始。
05:55
So that's just what we did.
145
340000
2000
所以教學就開始了。
05:57
What you're looking at over here is actually其實 the first unit單元 that I know of
146
342000
3000
各位看到我手上拿的這個
06:00
of non-human非人類的 currency貨幣.
147
345000
2000
就是非人類貨幣的基本單位。
06:02
We weren't very creative創作的 at the time we started開始 these studies學習,
148
347000
2000
我們在做這項研究的時候沒什麼創意,
06:04
so we just called it a token代幣.
149
349000
2000
所以我們都叫它代幣。
06:06
But this is the unit單元 of currency貨幣 that we've我們已經 taught our monkeys猴子 at Yale耶魯
150
351000
3000
我們在耶魯大學教猴子使用這些貨幣
06:09
to actually其實 use with humans人類,
151
354000
2000
和人類做交易,
06:11
to actually其實 buy購買 different不同 pieces of food餐飲.
152
356000
3000
教他們用來買不同種的水果。
06:14
It doesn't look like much -- in fact事實, it isn't like much.
153
359000
2000
看起來不起眼,也沒什麼價值
06:16
Like most of our money, it's just a piece of metal金屬.
154
361000
2000
就像我們的硬幣一樣,用金屬做的。
06:18
As those of you who've誰一直 taken採取 currencies貨幣 home from your trip know,
155
363000
3000
就像各位旅行後帶回家的各種外幣,
06:21
once一旦 you get home, it's actually其實 pretty漂亮 useless無用.
156
366000
2000
一但你回到家,這錢就沒辦法用了。
06:23
It was useless無用 to the monkeys猴子 at first
157
368000
2000
在猴子們了解能用代幣做什麼之前,
06:25
before they realized實現 what they could do with it.
158
370000
2000
對猴子來說這東西一點用也沒有。
06:27
When we first gave it to them in their enclosures機箱,
159
372000
2000
當我們首次把代幣放到籠子裏面時,
06:29
they actually其實 kind of picked採摘的 them up, looked看著 at them.
160
374000
2000
牠們撿了起來,看著這些代幣。
06:31
They were these kind of weird奇怪的 things.
161
376000
2000
這對牠們來說是很怪的東西。
06:33
But very quickly很快, the monkeys猴子 realized實現
162
378000
2000
不過很快的,猴子們很快的就瞭解到
06:35
that they could actually其實 hand these tokens令牌 over
163
380000
2000
牠們可以用這些代幣
06:37
to different不同 humans人類 in the lab實驗室 for some food餐飲.
164
382000
3000
跟實驗室裡的人換食物。
06:40
And so you see one of our monkeys猴子, Mayday勞動節, up here doing this.
165
385000
2000
可以看到其中一隻猴子,五月天,就正在做這件事。
06:42
This is A and B are kind of the points where she's sort分類 of a little bit
166
387000
3000
A圖到B圖是牠正對這些代幣感到一點好奇,
06:45
curious好奇 about these things -- doesn't know.
167
390000
2000
因為牠從來沒看過代幣。
06:47
There's this waiting等候 hand from a human人的 experimenter實驗者,
168
392000
2000
圖C是實驗人員伸出手在等著,
06:49
and Mayday勞動節 quickly很快 figures人物 out, apparently顯然地 the human人的 wants this.
169
394000
3000
五月天很快的就懂了,看起來人類是想要這個代幣。
06:52
Hands it over, and then gets得到 some food餐飲.
170
397000
2000
牠交出代幣,然後就拿到一些食物了。
06:54
It turns out not just Mayday勞動節, all of our monkeys猴子 get good
171
399000
2000
不只是五月天,
06:56
at trading貿易 tokens令牌 with human人的 salesman推銷員.
172
401000
2000
實驗室裡所有的猴子都懂。
06:58
So here's這裡的 just a quick video視頻 of what this looks容貌 like.
173
403000
2000
下面一個小短片讓大家看看這情形。
07:00
Here's這裡的 Mayday勞動節. She's going to be trading貿易 a token代幣 for some food餐飲
174
405000
3000
牠是五月天。牠將使用代幣換食物,
07:03
and waiting等候 happily高高興興 and getting得到 her food餐飲.
175
408000
3000
牠開心的等待,之後也順利拿到食物。
07:06
Here's這裡的 Felix費利克斯, I think. He's our alphaα male; he's a kind of big guy.
176
411000
2000
牠是菲力,猴子群的老大,是個大傢伙。
07:08
But he too waits等待 patiently耐心地, gets得到 his food餐飲 and goes on.
177
413000
3000
但也同樣耐心的等待食物的到來。
07:11
So the monkeys猴子 get really good at this.
178
416000
2000
可見猴子們對交易這件事挺在行的。
07:13
They're surprisingly出奇 good at this with very little training訓練.
179
418000
3000
只需要一點點訓練牠們的表現就意外的好。
07:16
We just allowed允許 them to pick this up on their own擁有.
180
421000
2000
我們只是放手讓牠們自己做選擇。
07:18
The question is: is this anything like human人的 money?
181
423000
2000
這時候的問題就是:這像人類的貨幣使用情形媽?
07:20
Is this a market市場 at all,
182
425000
2000
市場運作就是這樣而已?
07:22
or did we just do a weird奇怪的 psychologist's心理學家 trick
183
427000
2000
或是我們應該用奇特的心理手段
07:24
by getting得到 monkeys猴子 to do something,
184
429000
2000
引誘猴子們去做一些事情,
07:26
looking smart聰明, but not really being存在 smart聰明.
185
431000
2000
看似聰明又不用很聰明的事情。
07:28
And so we said, well, what would the monkeys猴子 spontaneously自發 do
186
433000
3000
所以我們想,如果這真是牠們的貨幣,用起來真的像錢,
07:31
if this was really their currency貨幣, if they were really using運用 it like money?
187
436000
3000
猴子會做有怎樣的自然反應?
07:34
Well, you might威力 actually其實 imagine想像 them
188
439000
2000
各位可以想像一下,
07:36
to do all the kinds of smart聰明 things
189
441000
2000
當牠們開始用貨幣彼此做交易的時候
07:38
that humans人類 do when they start開始 exchanging交換 money with each other.
190
443000
3000
就是開始作聰明人會做的事了。
07:41
You might威力 have them start開始 paying付款 attention注意 to price價錢,
191
446000
3000
牠們會開始注意到價格,
07:44
paying付款 attention注意 to how much they buy購買 --
192
449000
2000
注意到該用多少價格去買,
07:46
sort分類 of keeping保持 track跟踪 of their monkey token代幣, as it were.
193
451000
3000
可以說是追蹤猴子幣的使用情形。
07:49
Do the monkeys猴子 do anything like this?
194
454000
2000
看看猴子們是否有做這些事情了呢?
07:51
And so our monkey marketplace市井 was born天生.
195
456000
3000
猴子市集誕生了。
07:54
The way this works作品 is that
196
459000
2000
這運作的方式如下,
07:56
our monkeys猴子 normally一般 live生活 in a kind of big zoo動物園 social社會 enclosure附件.
197
461000
3000
我們讓猴子們生活在一個類似動物園的透明籠子裡。
07:59
When they get a hankering渴望 for some treats對待,
198
464000
2000
當牠們表現出想要做交易的時候,
08:01
we actually其實 allowed允許 them a way out
199
466000
2000
我們會讓牠們
08:03
into a little smaller enclosure附件 where they could enter輸入 the market市場.
200
468000
2000
移轉到一個可以進入市場的透明箱子裡。
08:05
Upon entering進入 the market市場 --
201
470000
2000
一進入這個市場---
08:07
it was actually其實 a much more fun開玩笑 market市場 for the monkeys猴子 than most human人的 markets市場
202
472000
2000
這個市場可比人類的市場有趣多了,
08:09
because, as the monkeys猴子 entered進入 the door of the market市場,
203
474000
3000
因為,當猴子一進入這市場,
08:12
a human人的 would give them a big wallet錢包 full充分 of tokens令牌
204
477000
2000
人類會給牠們一個裝滿代幣的錢包,
08:14
so they could actually其實 trade貿易 the tokens令牌
205
479000
2000
牠們可以用代幣
08:16
with one of these two guys here --
206
481000
2000
和畫面中的其中一個人做交易,
08:18
two different不同 possible可能 human人的 salesmen推銷員
207
483000
2000
2個不同的銷售員,
08:20
that they could actually其實 buy購買 stuff東東 from.
208
485000
2000
猴子們可以從他們身上買到不同東西。
08:22
The salesmen推銷員 were students學生們 from my lab實驗室.
209
487000
2000
這2位是我實驗室裡的學生。
08:24
They dressed連衣裙的 differently不同; they were different不同 people.
210
489000
2000
不同人穿著不同衣服。
08:26
And over time, they did basically基本上 the same相同 thing
211
491000
3000
隨著時間推移,銷售人員會一直做同樣的事情,
08:29
so the monkeys猴子 could learn學習, you know,
212
494000
2000
所以猴子就能學習到
08:31
who sold出售 what at what price價錢 -- you know, who was reliable可靠, who wasn't, and so on.
213
496000
3000
誰賣的是什麼價格,誰比較可靠等等之類的事情。
08:34
And you can see that each of the experimenters實驗者
214
499000
2000
各位能看到這2位銷售人員
08:36
is actually其實 holding保持 up a little, yellow黃色 food餐飲 dish.
215
501000
3000
都拿著一個小小的黃色食物盤,
08:39
and that's what the monkey can for a single token代幣.
216
504000
2000
猴子可以用一個代幣買盤子裡的東西。
08:41
So everything costs成本 one token代幣,
217
506000
2000
其實每個商品都是價值一個代幣,
08:43
but as you can see, sometimes有時 tokens令牌 buy購買 more than others其他,
218
508000
2000
但有時候一個代幣可以買到比較多的東西,
08:45
sometimes有時 more grapes葡萄 than others其他.
219
510000
2000
也就是買到比較多的葡萄。
08:47
So I'll show顯示 you a quick video視頻 of what this marketplace市井 actually其實 looks容貌 like.
220
512000
3000
讓我給各位看看這個猴子市集的運作情形。
08:50
Here's這裡的 a monkey-eye-view猴眼圖. Monkeys猴子 are shorter, so it's a little short.
221
515000
3000
這是從猴子的視點來錄製,所以比較矮。
08:53
But here's這裡的 Honey蜜糖.
222
518000
2000
牠是小可愛。
08:55
She's waiting等候 for the market市場 to open打開 a little impatiently不耐煩.
223
520000
2000
她有點不耐煩的等待市場開張。
08:57
All of a sudden突然 the market市場 opens打開. Here's這裡的 her choice選擇: one grapes葡萄 or two grapes葡萄.
224
522000
3000
突然間市場開張了,牠有2個選擇:買1個葡萄或2個葡萄。
09:00
You can see Honey蜜糖, very good market市場 economist經濟學家,
225
525000
2000
各位可以發現小可愛是個很棒的市場經濟學家,
09:02
goes with the guy who gives more.
226
527000
3000
牠跟賣較多葡萄的人做交易了。
09:05
She could teach our financial金融 advisers顧問 a few少數 things or two.
227
530000
2000
牠可以幫我們的財務學教授上課了。
09:07
So not just Honey蜜糖,
228
532000
2000
不只是小可愛,
09:09
most of the monkeys猴子 went with guys who had more.
229
534000
3000
大多數的猴子都會跟葡萄較多的人做交易。
09:12
Most of the monkeys猴子 went with guys who had better food餐飲.
230
537000
2000
大多數的猴子都會跟持有較好食物的人交易。
09:14
When we introduced介紹 sales銷售, we saw the monkeys猴子 paid支付 attention注意 to that.
231
539000
3000
開始與猴子作買賣後,我們發現猴子會專注在這件事情上。
09:17
They really cared照顧 about their monkey token代幣 dollar美元.
232
542000
3000
牠們會在意猴子幣的真正價值。
09:20
The more surprising奇怪 thing was that when we collaborated合作 with economists經濟學家
233
545000
3000
最令人驚訝的是,當我們開始與經濟學家合作
09:23
to actually其實 look at the monkeys'猴子' data數據 using運用 economic經濟 tools工具,
234
548000
3000
觀察猴子使用經濟工具的情形時,
09:26
they basically基本上 matched匹配, not just qualitatively定性,
235
551000
3000
不管是在質性研究上,
09:29
but quantitatively數量上 with what we saw
236
554000
2000
還是在量性研究上,
09:31
humans人類 doing in a real真實 market市場.
237
556000
2000
牠們的使用情形與我們人類在市場上做的一樣。
09:33
So much so that, if you saw the monkeys'猴子' numbers數字,
238
558000
2000
以至於在量性的研究上,
09:35
you couldn't不能 tell whether是否 they came來了 from a monkey or a human人的 in the same相同 market市場.
239
560000
3000
你根本沒辦法分辨出這數據結果是人類的還是猴子的。
09:38
And what we'd星期三 really thought we'd星期三 doneDONE
240
563000
2000
我們已經成功做到
09:40
is like we'd星期三 actually其實 introduced介紹 something
241
565000
2000
引介給猴子一些東西,
09:42
that, at least最小 for the monkeys猴子 and us,
242
567000
2000
至少猴子與我們
09:44
works作品 like a real真實 financial金融 currency貨幣.
243
569000
2000
將代幣運作的跟金融貨幣差不多。
09:46
Question is: do the monkeys猴子 start開始 messing搞亂 up in the same相同 ways方法 we do?
244
571000
3000
另一個問題是:猴子會不會跟我們用一樣的方法把這制度搞亂?
09:49
Well, we already已經 saw anecdotally據傳 a couple一對 of signs跡象 that they might威力.
245
574000
3000
其實我們有觀察到一些現象。
09:52
One thing we never saw in the monkey marketplace市井
246
577000
2000
第一,在猴子市場中我們沒發現到
09:54
was any evidence證據 of saving保存 --
247
579000
2000
任何儲蓄的證據,
09:56
you know, just like our own擁有 species種類.
248
581000
2000
沒發現像我們人一樣的儲蓄行為。
09:58
The monkeys猴子 entered進入 the market市場, spent花費 their entire整個 budget預算
249
583000
2000
猴子進入市場後,會把所有錢花光,
10:00
and then went back to everyone大家 else其他.
250
585000
2000
然後再跳回猴群中。
10:02
The other thing we also spontaneously自發 saw,
251
587000
2000
我們自然而然的發現另一件事,
10:04
embarrassingly尷尬 enough足夠,
252
589000
2000
非常尷尬,
10:06
is spontaneous自發 evidence證據 of larceny盜竊罪.
253
591000
2000
就是自發性的竊盜行為。
10:08
The monkeys猴子 would rip-off撕掉 the tokens令牌 at every一切 available可得到 opportunity機會 --
254
593000
3000
猴子會用任何機會來偷代幣,
10:11
from each other, often經常 from us --
255
596000
2000
偷同伴的、偷我們的。
10:13
you know, things we didn't necessarily一定 think we were introducing引入,
256
598000
2000
我沒有必要在這方面做太多著墨,
10:15
but things we spontaneously自發 saw.
257
600000
2000
但是我們看到了這個行為。
10:17
So we said, this looks容貌 bad.
258
602000
2000
這看起來很糟糕。
10:19
Can we actually其實 see if the monkeys猴子
259
604000
2000
我們是否能夠看到
10:21
are doing exactly究竟 the same相同 dumb things as humans人類 do?
260
606000
3000
猴子們做出跟人類一樣愚蠢的事情?
10:24
One possibility可能性 is just kind of let
261
609000
2000
有個方法是先創立猴子金融市場,
10:26
the monkey financial金融 system系統 play out,
262
611000
2000
然後再讓這個市場停擺,
10:28
you know, see if they start開始 calling調用 us for bailouts救助 in a few少數 years年份.
263
613000
2000
不過,這樣做實驗可能得耗上好幾年。
10:30
We were a little impatient不耐煩 so we wanted
264
615000
2000
我們有點等不及,
10:32
to sort分類 of speed速度 things up a bit.
265
617000
2000
所以我們讓實驗進行的快一點。
10:34
So we said, let's actually其實 give the monkeys猴子
266
619000
2000
我們就想,那就給這些小猴子們
10:36
the same相同 kinds of problems問題
267
621000
2000
面對一些問題,
10:38
that humans人類 tend趨向 to get wrong錯誤
268
623000
2000
這些問題是人類經常會犯錯的
10:40
in certain某些 kinds of economic經濟 challenges挑戰,
269
625000
2000
一些經濟議題,或是
10:42
or certain某些 kinds of economic經濟 experiments實驗.
270
627000
2000
一些經濟的試驗。
10:44
And so, since以來 the best最好 way to see how people go wrong錯誤
271
629000
3000
想要了解人類是怎麼犯錯的,
10:47
is to actually其實 do it yourself你自己,
272
632000
2000
最棒的方式就是自己做一次。
10:49
I'm going to give you guys a quick experiment實驗
273
634000
2000
所以我要給各位一個小試驗,
10:51
to sort分類 of watch your own擁有 financial金融 intuitions直覺 in action行動.
274
636000
2000
請各位用你的財務直覺來回答。
10:53
So imagine想像 that right now
275
638000
2000
請各位現在想像一下,
10:55
I handed each and every一切 one of you
276
640000
2000
我給現場每個人各1千美金,
10:57
a thousand U.S. dollars美元 -- so 10 crisp hundred dollar美元 bills票據.
277
642000
3000
用10張百元鈔票成一捆的1千美金。
11:00
Take these, put it in your wallet錢包
278
645000
2000
把它放進你的皮夾裡
11:02
and spend a second第二 thinking思維 about what you're going to do with it.
279
647000
2000
花點時間想想你要拿這筆錢做什麼。
11:04
Because it's yours你的 now; you can buy購買 whatever隨你 you want.
280
649000
2000
這是你的錢了,你可以買任何想要的東西。
11:06
Donate it, take it, and so on.
281
651000
2000
捐出去,花掉,隨便你。
11:08
Sounds聲音 great, but you get one more choice選擇 to earn a little bit more money.
282
653000
3000
不錯吧?不過再給你另一個機會,讓你能拿1千美金以上的錢。
11:11
And here's這裡的 your choice選擇: you can either be risky有風險,
283
656000
3000
第一種選擇:冒個險拿多一些,
11:14
in which哪一個 case案件 I'm going to flip翻動 one of these monkey tokens令牌.
284
659000
2000
我用丟猴子代幣來決定這個選擇的結果 。
11:16
If it comes up heads, you're going to get a thousand dollars美元 more.
285
661000
2000
如果代幣出現頭像,你可以多得1000美金。
11:18
If it comes up tails尾巴, you get nothing.
286
663000
2000
如果出現字面,你就只有本金。
11:20
So it's a chance機會 to get more, but it's pretty漂亮 risky有風險.
287
665000
3000
有機會拿到比較多,但是要冒點風險。
11:23
Your other option選項 is a bit safe安全. Your just going to get some money for sure.
288
668000
3000
而另一個較安全的選擇:讓你再拿一筆確切的金額。
11:26
I'm just going to give you 500 bucks雄鹿.
289
671000
2000
不過只能拿500美金。
11:28
You can stick it in your wallet錢包 and use it immediately立即.
290
673000
3000
你可以把這筆錢放在皮夾或是馬上花掉。
11:31
So see what your intuition直覺 is here.
291
676000
2000
你的直覺決定好了嗎?
11:33
Most people actually其實 go with the play-it-safe播放它安全 option選項.
292
678000
3000
大部分的人會選擇不冒險的選項。
11:36
Most people say, why should I be risky有風險 when I can get 1,500 dollars美元 for sure?
293
681000
3000
這些人想說,我確定能拿1500美金幹麻還要去冒險?
11:39
This seems似乎 like a good bet賭注. I'm going to go with that.
294
684000
2000
這似乎是一個不錯的選擇,我選這個。
11:41
You might威力 say, eh, that's not really irrational不合理的.
295
686000
2000
各位也許覺得這樣選沒錯阿,
11:43
People are a little risk-averse規避風險. So what?
296
688000
2000
人是風險趨避者,有問題嗎?
11:45
Well, the "so what?" comes when start開始 thinking思維
297
690000
2000
人是不是風險趨避者的問題,
11:47
about the same相同 problem問題
298
692000
2000
請思考過另一個相似問題後,
11:49
set up just a little bit differently不同.
299
694000
2000
再來做判斷。
11:51
So now imagine想像 that I give each and every一切 one of you
300
696000
2000
現在再想像一下,我現在給各位2000美金,
11:53
2,000 dollars美元 -- 20 crisp hundred dollar美元 bills票據.
301
698000
3000
20張百元鈔票成一捆。
11:56
Now you can buy購買 double to stuff東東 you were going to get before.
302
701000
2000
你剛剛想買的物品可以多買一倍。
11:58
Think about how you'd feel sticking癥結 it in your wallet錢包.
303
703000
2000
想想這筆錢在皮夾裡的感覺。
12:00
And now imagine想像 that I have you make another另一個 choice選擇
304
705000
2000
現在,選擇的一刻又來了,
12:02
But this time, it's a little bit worse更差.
305
707000
2000
但這次,條件比較糟糕。
12:04
Now, you're going to be deciding決定 how you're going to lose失去 money,
306
709000
3000
因為你將決定"失去金錢"的方式,
12:07
but you're going to get the same相同 choice選擇.
307
712000
2000
一樣要從中做個選擇。
12:09
You can either take a risky有風險 loss失利 --
308
714000
2000
第一個選擇是有風險的損失--
12:11
so I'll flip翻動 a coin硬幣. If it comes up heads, you're going to actually其實 lose失去 a lot.
309
716000
3000
一樣用丟硬幣,出現頭像,你會損失1000美金。
12:14
If it comes up tails尾巴, you lose失去 nothing, you're fine, get to keep the whole整個 thing --
310
719000
3000
如果出現反面,你1毛都不用丟,2000美金好好放著。
12:17
or you could play it safe安全, which哪一個 means手段 you have to reach達到 back into your wallet錢包
311
722000
3000
或是不冒險,也就是說你乖乖把皮夾拿出來,
12:20
and give me five of those $100 bills票據, for certain某些.
312
725000
3000
然後給我5張100元鈔票。
12:23
And I'm seeing眼看 a lot of furrowed緊鎖 brows眉毛 out there.
313
728000
3000
我看到很多人眉頭深鎖著喔。
12:26
So maybe you're having the same相同 intuitions直覺
314
731000
2000
測試各位的這個問題,
12:28
as the subjects主題 that were actually其實 tested測試 in this,
315
733000
2000
也許各位有著同樣直覺的答案,
12:30
which哪一個 is when presented呈現 with these options選項,
316
735000
2000
當這些選項攤開給大家選擇時,
12:32
people don't choose選擇 to play it safe安全.
317
737000
2000
人們不會選安全的方案,
12:34
They actually其實 tend趨向 to go a little risky有風險.
318
739000
2000
而會選擇冒險。
12:36
The reason原因 this is irrational不合理的 is that we've我們已經 given特定 people in both situations情況
319
741000
3000
明明是有著同樣選擇的2種情境下,
12:39
the same相同 choice選擇.
320
744000
2000
後者竟然變得喜歡風險。
12:41
It's a 50/50 shot射擊 of a thousand or 2,000,
321
746000
3000
拿到1000或2000元的機會各50%,
12:44
or just 1,500 dollars美元 with certainty肯定.
322
749000
2000
或是100%拿到1500元。
12:46
But people's人們 intuitions直覺 about how much risk風險 to take
323
751000
3000
而人們對於風險多寡的直覺
12:49
varies變化 depending根據 on where they started開始 with.
324
754000
2000
居然是來自一開始手上有多少籌碼來決定。
12:51
So what's going on?
325
756000
2000
這是怎麼回事?
12:53
Well, it turns out that this seems似乎 to be the result結果
326
758000
2000
恩,這答案來自
12:55
of at least最小 two biases偏見 that we have at the psychological心理 level水平.
327
760000
3000
我們心裡層面上的2項偏誤。
12:58
One is that we have a really hard time thinking思維 in absolute絕對 terms條款.
328
763000
3000
一個是我們沒有足夠的時間去計算絕對價值。
13:01
You really have to do work to figure數字 out,
329
766000
2000
你應該要找時間好好考慮清楚,
13:03
well, one option's期權 a thousand, 2,000;
330
768000
2000
一個選擇是拿1000或2000,
13:05
one is 1,500.
331
770000
2000
一個是拿1500。
13:07
Instead代替, we find it very easy簡單 to think in very relative相對的 terms條款
332
772000
3000
相反的,如果選項改成相對價值的話,
13:10
as options選項 change更改 from one time to another另一個.
333
775000
3000
就比較容易釐清了。
13:13
So we think of things as, "Oh, I'm going to get more," or "Oh, I'm going to get less."
334
778000
3000
選項改成:"拿到更多"或"拿比較少"。
13:16
This is all well and good, except that
335
781000
2000
這樣的話很好,只不過
13:18
changes變化 in different不同 directions方向
336
783000
2000
稍微改變一下手法,
13:20
actually其實 effect影響 whether是否 or not we think
337
785000
2000
就會影響我們對於
13:22
options選項 are good or not.
338
787000
2000
選項是好是壞的觀感。
13:24
And this leads引線 to the second第二 bias偏壓,
339
789000
2000
這會引導出第二項偏誤,
13:26
which哪一個 economists經濟學家 have called loss失利 aversion厭惡.
340
791000
2000
經濟學家稱這個為"損失趨避"(loss aversion)。
13:28
The idea理念 is that we really hate討厭 it when things go into the red.
341
793000
3000
這概念是說,我們會非常討厭任何損失。
13:31
We really hate討厭 it when we have to lose失去 out on some money.
342
796000
2000
我們會極度不願意失去任何金錢。
13:33
And this means手段 that sometimes有時 we'll actually其實
343
798000
2000
這點指出我們會轉移我們的偏好
13:35
switch開關 our preferences優先 to avoid避免 this.
344
800000
2000
來避免任何損失。
13:37
What you saw in that last scenario腳本 is that
345
802000
2000
剛剛再第二個情境裏面
13:39
subjects主題 get risky有風險
346
804000
2000
人們會選擇冒險,
13:41
because they want the small shot射擊 that there won't慣於 be any loss失利.
347
806000
3000
因為不想放過任何"零損失"的機會。
13:44
That means手段 when we're in a risk風險 mindset心態 --
348
809000
2000
這也點出了我們對於風險的心態---
13:46
excuse藉口 me, when we're in a loss失利 mindset心態,
349
811000
2000
當我們進入"避免損失"的模式時,
13:48
we actually其實 become成為 more risky有風險,
350
813000
2000
我們會變得更喜歡風險,
13:50
which哪一個 can actually其實 be really worrying令人擔憂.
351
815000
2000
這就是最令人擔憂的部份。
13:52
These kinds of things play out in lots of bad ways方法 in humans人類.
352
817000
3000
人類的負面行為也因此而暴露出來。
13:55
They're why stock股票 investors投資者 hold保持 onto losing失去 stocks個股 longer --
353
820000
3000
也是為什麼股票投資者會死抱著不斷下跌的股票,
13:58
because they're evaluating評估 them in relative相對的 terms條款.
354
823000
2000
因為他們用相對價值來計算後得到的結論。
14:00
They're why people in the housing住房 market市場 refused拒絕 to sell their house --
355
825000
2000
這也是為什麼房市裡的投資客不願意賣掉房子,
14:02
because they don't want to sell at a loss失利.
356
827000
2000
因為他們不想要房子貶值的時候賣掉。
14:04
The question we were interested有興趣 in
357
829000
2000
我們感興趣的問題是
14:06
is whether是否 the monkeys猴子 show顯示 the same相同 biases偏見.
358
831000
2000
猴子們是否也會有同樣的偏誤。
14:08
If we set up those same相同 scenarios場景 in our little monkey market市場,
359
833000
3000
若我們設計同樣的問題在猴子市場裡,
14:11
would they do the same相同 thing as people?
360
836000
2000
他們是否會做出跟人一樣的行為?
14:13
And so this is what we did, we gave the monkeys猴子 choices選擇
361
838000
2000
所以我們讓猴子在2個傢伙之間做選擇,
14:15
between之間 guys who were safe安全 -- they did the same相同 thing every一切 time --
362
840000
3000
一位是安全的交易者,他會一直拿出同樣的商品量;
14:18
or guys who were risky有風險 --
363
843000
2000
另一位是有風險的交易者,
14:20
they did things differently不同 half the time.
364
845000
2000
他有一半的時間會拿出不同商品。
14:22
And then we gave them options選項 that were bonuses獎金 --
365
847000
2000
我們提供有紅利的選項---
14:24
like you guys did in the first scenario腳本 --
366
849000
2000
就像剛剛的第一情境---
14:26
so they actually其實 have a chance機會 more,
367
851000
2000
因此猴子們同樣也有機會拿到更多,
14:28
or pieces where they were experiencing經歷 losses損失 --
368
853000
3000
或是嚐到一些損失,
14:31
they actually其實 thought they were going to get more than they really got.
369
856000
2000
實際上牠們會覺得自己會拿到比較多的葡萄。
14:33
And so this is what this looks容貌 like.
370
858000
2000
這是實驗的模樣。
14:35
We introduced介紹 the monkeys猴子 to two new monkey salesmen推銷員.
371
860000
2000
我們將2位新的猴子銷售員引介給猴子們。
14:37
The guy on the left and right both start開始 with one piece of grape葡萄,
372
862000
2000
左邊和右邊一開始都是拿出1粒葡萄,
14:39
so it looks容貌 pretty漂亮 good.
373
864000
2000
看起來很公平。
14:41
But they're going to give the monkeys猴子 bonuses獎金.
374
866000
2000
但是這2位會給猴子一些紅利。
14:43
The guy on the left is a safe安全 bonus獎金.
375
868000
2000
左邊提供的是安全紅利。
14:45
All the time, he adds增加 one, to give the monkeys猴子 two.
376
870000
3000
從頭到尾,他會多給猴子1粒葡萄。
14:48
The guy on the right is actually其實 a risky有風險 bonus獎金.
377
873000
2000
右邊的是提供風險紅利。
14:50
Sometimes有時 the monkeys猴子 get no bonus獎金 -- so this is a bonus獎金 of zero.
378
875000
3000
有時候猴子拿不到任何紅利,所以牠不會多拿任何葡萄。
14:53
Sometimes有時 the monkeys猴子 get two extra額外.
379
878000
3000
但有時候猴子能多拿2粒葡萄。
14:56
For a big bonus獎金, now they get three.
380
881000
2000
很棒的紅利,所以猴子能一次拿3粒葡萄。
14:58
But this is the same相同 choice選擇 you guys just faced面對.
381
883000
2000
這跟剛剛給各位的實驗內容是一樣的。
15:00
Do the monkeys猴子 actually其實 want to play it safe安全
382
885000
3000
那麼,猴子是會去選擇有安全紅利的交易,
15:03
and then go with the guy who's誰是 going to do the same相同 thing on every一切 trial審訊,
383
888000
2000
就是那位每次交易都會提供同樣東西的人;
15:05
or do they want to be risky有風險
384
890000
2000
或是,牠們會去選有風險的紅利
15:07
and try to get a risky有風險, but big, bonus獎金,
385
892000
2000
雖然要冒點險,有可能拿不到任何紅利,
15:09
but risk風險 the possibility可能性 of getting得到 no bonus獎金.
386
894000
2000
但是若能拿到就賺翻了。
15:11
People here played發揮 it safe安全.
387
896000
2000
人類傾向選擇安全的一方。
15:13
Turns out, the monkeys猴子 play it safe安全 too.
388
898000
2000
結果,沒想到猴子也會選擇安全的一方。
15:15
Qualitatively定性 and quantitatively數量上,
389
900000
2000
在質性研究和量化研究裡,
15:17
they choose選擇 exactly究竟 the same相同 way as people,
390
902000
2000
在同樣的測試內容下,
15:19
when tested測試 in the same相同 thing.
391
904000
2000
猴子與人類有一致的行為反應。
15:21
You might威力 say, well, maybe the monkeys猴子 just don't like risk風險.
392
906000
2000
各位也許會覺得,也許是因為猴子不喜歡冒險。
15:23
Maybe we should see how they do with losses損失.
393
908000
2000
也許我們應該看看猴子面對損失時的行為。
15:25
And so we ran a second第二 version of this.
394
910000
2000
所以我們就做了第二種版本的實驗。
15:27
Now, the monkeys猴子 meet遇到 two guys
395
912000
2000
現在,猴子們會面對這2個傢伙,
15:29
who aren't giving them bonuses獎金;
396
914000
2000
他們不會再給猴子紅利了;
15:31
they're actually其實 giving them less than they expect期望.
397
916000
2000
他們會給拿走猴子預期的葡萄數。
15:33
So they look like they're starting開始 out with a big amount.
398
918000
2000
所以他們一開始就拿出較多的葡萄。
15:35
These are three grapes葡萄; the monkey's猴子的 really psyched激動 for this.
399
920000
2000
一開始就拿出3粒葡萄;這是猴子最想看到的情形。
15:37
But now they learn學習 these guys are going to give them less than they expect期望.
400
922000
3000
不過他們發現,這2個傢伙會給予比預期還少的數量。
15:40
They guy on the left is a safe安全 loss失利.
401
925000
2000
左邊這位,他提供固定的損失量。
15:42
Every一切 single time, he's going to take one of these away
402
927000
3000
每次他都會固定少給猴子一粒葡萄,
15:45
and give the monkeys猴子 just two.
403
930000
2000
也就是只給他們2粒。
15:47
the guy on the right is the risky有風險 loss失利.
404
932000
2000
右邊這位提供有風險的損失量。
15:49
Sometimes有時 he gives no loss失利, so the monkeys猴子 are really psyched激動,
405
934000
3000
有時候一個都不會少,完全符合猴子期待,
15:52
but sometimes有時 he actually其實 gives a big loss失利,
406
937000
2000
但有時候他會拿走很多,
15:54
taking服用 away two to give the monkeys猴子 only one.
407
939000
2000
也就是只給猴子1粒葡萄。
15:56
And so what do the monkeys猴子 do?
408
941000
2000
猴子們會怎麼決定?
15:58
Again, same相同 choice選擇; they can play it safe安全
409
943000
2000
跟剛才一樣,牠們可以作保險的交易,
16:00
for always getting得到 two grapes葡萄 every一切 single time,
410
945000
3000
每次交易都拿固定的2粒葡萄,
16:03
or they can take a risky有風險 bet賭注 and choose選擇 between之間 one and three.
411
948000
3000
或是做有風險的交易,拿1粒或拿3粒。
16:06
The remarkable卓越 thing to us is that, when you give monkeys猴子 this choice選擇,
412
951000
3000
最值得我們注意的是,當提供給猴子們這種選擇時,
16:09
they do the same相同 irrational不合理的 thing that people do.
413
954000
2000
牠們出現跟人類同樣非理性的行為。
16:11
They actually其實 become成為 more risky有風險
414
956000
2000
根據實驗人員的起始條件
16:13
depending根據 on how the experimenters實驗者 started開始.
415
958000
3000
猴子們變得傾向冒險。
16:16
This is crazy because it suggests提示 that the monkeys猴子 too
416
961000
2000
這真是太瘋狂了,
16:18
are evaluating評估 things in relative相對的 terms條款
417
963000
2000
因為猴子居然也用相對價值來評估,
16:20
and actually其實 treating治療 losses損失 differently不同 than they treat對待 gains收益.
418
965000
3000
而且在面對損失和面對獲得之間有著非常不同的行為。
16:23
So what does all of this mean?
419
968000
2000
這帶來什麼啟示?
16:25
Well, what we've我們已經 shown顯示 is that, first of all,
420
970000
2000
我們先做歸納,首先,
16:27
we can actually其實 give the monkeys猴子 a financial金融 currency貨幣,
421
972000
2000
我們給予猴子一種財務貨幣,
16:29
and they do very similar類似 things with it.
422
974000
2000
然後教牠們做一些簡單的交易行為。
16:31
They do some of the smart聰明 things we do,
423
976000
2000
牠們會做出跟人類一樣聰明的事情,
16:33
some of the kind of not so nice不錯 things we do,
424
978000
2000
也會做出跟人類一樣不太好的事情,
16:35
like steal it and so on.
425
980000
2000
像是偷錢之類的。
16:37
But they also do some of the irrational不合理的 things we do.
426
982000
2000
同時牠們也會做出跟人類一樣非理性的行為。
16:39
They systematically系統 get things wrong錯誤
427
984000
2000
他們有條理地做出錯誤行為,
16:41
and in the same相同 ways方法 that we do.
428
986000
2000
就跟我們一樣。
16:43
This is the first take-home帶回家 message信息 of the Talk,
429
988000
2000
今天演講中給各位的第一個結論,
16:45
which哪一個 is that if you saw the beginning開始 of this and you thought,
430
990000
2000
如果你只聽到開頭的部份,你可能會想--
16:47
oh, I'm totally完全 going to go home and hire聘請 a capuchin僧帽 monkey financial金融 adviser顧問.
431
992000
2000
我回家後真該雇用一隻僧帽猴當我的財務大臣。
16:49
They're way cuter可愛 than the one at ... you know --
432
994000
2000
這傢伙的可愛程度遠超家裡的那位...
16:51
Don't do that; they're probably大概 going to be just as dumb
433
996000
2000
但你可千萬別這麼做,因為這些猴子的糊塗程度
16:53
as the human人的 one you already已經 have.
434
998000
3000
跟你家裡的那位差不多。
16:56
So, you know, a little bad -- Sorry, sorry, sorry.
435
1001000
2000
這是有點糟糕的..各位聽我說一下。
16:58
A little bad for monkey investors投資者.
436
1003000
2000
請猴子來當投資客不太好。
17:00
But of course課程, you know, the reason原因 you're laughing is bad for humans人類 too.
437
1005000
3000
當然,各位笑的點在於人一樣不擅於當投資客。
17:03
Because we've我們已經 answered回答 the question we started開始 out with.
438
1008000
3000
這問題的答案在剛才就已經證明給大家看了。
17:06
We wanted to know where these kinds of errors錯誤 came來了 from.
439
1011000
2000
而我們為了想了解這些錯誤從何而來,
17:08
And we started開始 with the hope希望 that maybe we can
440
1013000
2000
就抱著某些希望,像是
17:10
sort分類 of tweak our financial金融 institutions機構,
441
1015000
2000
在某種程度上調整我們的金融機構,
17:12
tweak our technologies技術 to make ourselves我們自己 better.
442
1017000
3000
或調整我們的財務手法使自己過的更好。
17:15
But what we've我們已經 learn學習 is that these biases偏見 might威力 be a deeper更深 part部分 of us than that.
443
1020000
3000
但我們已經了解到其實這2種偏誤會深深的影響我們。
17:18
In fact事實, they might威力 be due應有 to the very nature性質
444
1023000
2000
事實上,這些偏誤會影響我們這麼深,
17:20
of our evolutionary發展的 history歷史.
445
1025000
2000
因為它們在老早就深植在我們的進化過程中。
17:22
You know, maybe it's not just humans人類
446
1027000
2000
各位,也許笨蛋不只是
17:24
at the right side of this chain that's dunceyduncey.
447
1029000
2000
圖中這進化鏈中最右邊的人類,
17:26
Maybe it's sort分類 of dunceyduncey all the way back.
448
1031000
2000
也許變笨蛋的來源是從古早就有了。
17:28
And this, if we believe the capuchin僧帽 monkey results結果,
449
1033000
3000
若我們相信這些針對猴子的實驗結果,
17:31
means手段 that these dunceyduncey strategies策略
450
1036000
2000
也就表示我們承認這種愚蠢對策
17:33
might威力 be 35 million百萬 years年份 old.
451
1038000
2000
早在3500萬年前就出現了。
17:35
That's a long time for a strategy戰略
452
1040000
2000
這存在已久的對策
17:37
to potentially可能 get changed around -- really, really old.
453
1042000
3000
已經默默的影響我們很久。
17:40
What do we know about other old strategies策略 like this?
454
1045000
2000
我們對這類的對策了解多少?
17:42
Well, one thing we know is that they tend趨向 to be really hard to overcome克服.
455
1047000
3000
我們了解的其中一項事實就是,我們很難去改變它。
17:45
You know, think of our evolutionary發展的 predilection好發
456
1050000
2000
想一想我們最先進化的部份
17:47
for eating sweet things, fatty脂肪 things like cheesecake乳酪蛋糕.
457
1052000
3000
就是懂得吃甜食、高油脂的食物,如起士蛋糕。
17:50
You can't just shut關閉 that off.
458
1055000
2000
你沒辦法閉嘴不吃。
17:52
You can't just look at the dessert甜點 cart大車 as say, "No, no, no. That looks容貌 disgusting討厭 to me."
459
1057000
3000
你沒辦法對著裝滿推車的點心說:"我才不吃,這些令我作嘔。"
17:55
We're just built內置 differently不同.
460
1060000
2000
但人與人之間存在著差異性。
17:57
We're going to perceive感知 it as a good thing to go after.
461
1062000
2000
我們會追求自己認為好的事物。
17:59
My guess猜測 is that the same相同 thing is going to be true真正
462
1064000
2000
所以我推測
18:01
when humans人類 are perceiving感知
463
1066000
2000
人們對於財務上的決策
18:03
different不同 financial金融 decisions決定.
464
1068000
2000
也會有不同的認知見解。
18:05
When you're watching觀看 your stocks個股 plummet鉛墜 into the red,
465
1070000
2000
你會傻愣愣地看持有的股票價格直線下墜,
18:07
when you're watching觀看 your house price價錢 go down,
466
1072000
2000
或是看著自己持有的不動產貶值,
18:09
you're not going to be able能夠 to see that
467
1074000
2000
而你不會去注意到事情的真相,
18:11
in anything but old evolutionary發展的 terms條款.
468
1076000
2000
因為我們與生俱來就是有這樣的行為。
18:13
This means手段 that the biases偏見
469
1078000
2000
這種心理上的偏差
18:15
that lead investors投資者 to do badly,
470
1080000
2000
會讓投資者做出糟糕的決定,
18:17
that lead to the foreclosure喪失抵押品贖回權 crisis危機
471
1082000
2000
所以像這次的次貸危機
18:19
are going to be really hard to overcome克服.
472
1084000
2000
就變得很難去避免。
18:21
So that's the bad news新聞. The question is: is there any good news新聞?
473
1086000
2000
聽起來都是壞消息。那有沒有好消息呢?
18:23
I'm supposed應該 to be up here telling告訴 you the good news新聞.
474
1088000
2000
我這裡是有一些好消息告訴各位。
18:25
Well, the good news新聞, I think,
475
1090000
2000
我想這個好消息就是,
18:27
is what I started開始 with at the beginning開始 of the Talk,
476
1092000
2000
就如同我在演講時的開頭就說的,
18:29
which哪一個 is that humans人類 are not only smart聰明;
477
1094000
2000
人類不只是聰明而已;
18:31
we're really inspirationallyinspirationally smart聰明
478
1096000
2000
我們比起生物界裡的其他動物,
18:33
to the rest休息 of the animals動物 in the biological生物 kingdom王國.
479
1098000
3000
都要聰明許多。
18:36
We're so good at overcoming克服 our biological生物 limitations限制 --
480
1101000
3000
我們非常擅長克服我們先天上的不足---
18:39
you know, I flew over here in an airplane飛機.
481
1104000
2000
就像我是搭飛機來這裡。
18:41
I didn't have to try to flap拍打 my wings翅膀.
482
1106000
2000
我不需要把手當翅膀拍動來飛。
18:43
I'm wearing穿著 contact聯繫 lenses鏡頭 now so that I can see all of you.
483
1108000
3000
我帶著隱形眼鏡才能清楚看見各位。
18:46
I don't have to rely依靠 on my own擁有 near-sightedness近視.
484
1111000
3000
不需要依賴我這雙大近視的眼睛。
18:49
We actually其實 have all of these cases
485
1114000
2000
我們有這麼多例子
18:51
where we overcome克服 our biological生物 limitations限制
486
1116000
3000
都是用科技或其他方式來突破我們生物限制的事實,
18:54
through通過 technology技術 and other means手段, seemingly似乎 pretty漂亮 easily容易.
487
1119000
3000
讓一切看起來是這麼簡單。
18:57
But we have to recognize認識 that we have those limitations限制.
488
1122000
3000
但我們也必須了解自己的極限在哪裡,
19:00
And here's這裡的 the rub.
489
1125000
2000
而這是最難的地方。
19:02
It was Camus加繆 who once一旦 said that, "Man is the only species種類
490
1127000
2000
就像卡謬曾說(1957年諾貝爾文學獎得主):
19:04
who refuses拒絕 to be what he really is."
491
1129000
3000
"人是唯一搞不清楚自己是什麼的物種。"
19:07
But the irony諷刺 is that
492
1132000
2000
諷刺的是
19:09
it might威力 only be in recognizing認識 our limitations限制
493
1134000
2000
我們得知道人類的極限在哪,
19:11
that we can really actually其實 overcome克服 them.
494
1136000
2000
才能克服它們。
19:13
The hope希望 is that you all will think about your limitations限制,
495
1138000
3000
希望各位都能意識到自己的極限在哪,
19:16
not necessarily一定 as unovercomableunovercomable,
496
1141000
3000
它並不是不可逾越,
19:19
but to recognize認識 them, accept接受 them
497
1144000
2000
了解它,接受它,
19:21
and then use the world世界 of design設計 to actually其實 figure數字 them out.
498
1146000
3000
然後發展出讓世人更了解人類極限的工具。
19:24
That might威力 be the only way that we will really be able能夠
499
1149000
3000
想要能激發出人類潛力
19:27
to achieve實現 our own擁有 human人的 potential潛在
500
1152000
2000
同時成為那種我們心裡所想達成的高貴物種,
19:29
and really be the noble高貴 species種類 we hope希望 to all be.
501
1154000
3000
這也許是唯一的辦法。
19:32
Thank you.
502
1157000
2000
謝謝各位。
19:34
(Applause掌聲)
503
1159000
5000
(掌聲)
Translated by Lin Su-Wei()
Reviewed by Adrienne Lin

▲Back to top

ABOUT THE SPEAKER
Laurie Santos - Cognitive psychologist
Laurie Santos studies primate psychology and monkeynomics -- testing problems in human psychology on primates, who (not so surprisingly) have many of the same predictable irrationalities we do.

Why you should listen

Laurie Santos runs the Comparative Cognition Laboratory (CapLab) at Yale, where she and collaborators across departments (from psychology to primatology to neurobiology) explore the evolutionary origins of the human mind by studying lemurs, capuchin monkeys and other primates. The twist: Santos looks not only for positive humanlike traits, like tool-using and altruism, but irrational ones, like biased decisionmaking.

In elegant, carefully constructed experiments, Santos and CapLab have studied how primates understand and categorize objects in the physical world -- for instance, that monkeys understand an object is still whole even when part of it is obscured. Going deeper, their experiments also search for clues that primates possess a theory of mind -- an ability to think about what other people think.

Most recently, the lab has been looking at behaviors that were once the province mainly of novelists: jealousy, frustration, judgment of others' intentions, poor economic choices. In one experiment, Santos and her team taught monkeys to use a form of money, tradeable for food. When certain foods became cheaper, monkeys would, like humans, overbuy. As we humans search for clues to our own irrational behaviors, Santos' research suggests that the source of our genius for bad decisions might be our monkey brains.

More profile about the speaker
Laurie Santos | Speaker | TED.com

Data provided by TED.

This site was created in May 2015 and the last update was on January 12, 2020. It will no longer be updated.

We are currently creating a new site called "eng.lish.video" and would be grateful if you could access it.

If you have any questions or suggestions, please feel free to write comments in your language on the contact form.

Privacy Policy

Developer's Blog

Buy Me A Coffee