ABOUT THE SPEAKER
Stuart Russell - AI expert
Stuart Russell wrote the standard text on AI; now he thinks deeply on AI's future -- and the future of us humans, too.

Why you should listen

Stuart Russell is a professor (and formerly chair) of Electrical Engineering and Computer Sciences at University of California at Berkeley. His book Artificial Intelligence: A Modern Approach (with Peter Norvig) is the standard text in AI; it has been translated into 13 languages and is used in more than 1,300 universities in 118 countries. His research covers a wide range of topics in artificial intelligence including machine learning, probabilistic reasoning, knowledge representation, planning, real-time decision making, multitarget tracking, computer vision, computational physiology, global seismic monitoring and philosophical foundations.

He also works for the United Nations, developing a new global seismic monitoring system for the nuclear-test-ban treaty. His current concerns include the threat of autonomous weapons and the long-term future of artificial intelligence and its relation to humanity.

More profile about the speaker
Stuart Russell | Speaker | TED.com
TED2017

Stuart Russell: 3 principles for creating safer AI

斯图尔特·罗素: 人工智能是如何让我们变得更好的

Filmed:
1,465,832 views

我们应该如何在发挥人工智能最大用途的同时,预防那些机器人可能带来的威胁呢?随着人工智能的日益完善和发展,人工智能先驱斯图尔特·罗素正在创造一些不同的东西:那就是具有无限可能的机器人。让我们听听他对人类该如何兼容人工智能的看法,如何才能真正利用人工智能使其利用常识、利他主义以及人类的价值观来解决问题。
- AI expert
Stuart Russell wrote the standard text on AI; now he thinks deeply on AI's future -- and the future of us humans, too. Full bio

Double-click the English transcript below to play the video.

这是李世石。
00:12
This is Lee背风处 SedolSEDOL.
0
712
1552
李世石是全世界
最顶尖的围棋高手之一,
00:14
Lee背风处 SedolSEDOL is one of the world's世界
greatest最大 Go players玩家,
1
2288
3997
在这一刻,他所经历的
足以让我硅谷的朋友们
00:18
and he's having what my friends朋友
in Silicon Valley call
2
6309
2885
00:21
a "Holy Cow" moment时刻 --
3
9218
1510
喊一句”我的天啊“——
00:22
(Laughter笑声)
4
10752
1073
(笑声)
00:23
a moment时刻 where we realize实现
5
11849
2188
在这一刻,我们意识到
原来人工智能发展的进程
比我们预想的要快得多。
00:26
that AIAI is actually其实 progressing进展
a lot faster更快 than we expected预期.
6
14061
3296
00:30
So humans人类 have lost丢失 on the Go board.
What about the real真实 world世界?
7
18154
3047
人们在围棋棋盘上已经输了,
那在现实世界中又如何呢?
当然了,现实世界要
比围棋棋盘要大得多,
00:33
Well, the real真实 world世界 is much bigger,
8
21225
2100
复杂得多。
00:35
much more complicated复杂 than the Go board.
9
23349
2249
相比之下每一步也没那么明确,
00:37
It's a lot less visible可见,
10
25622
1819
00:39
but it's still a decision决定 problem问题.
11
27465
2038
但现实世界仍然是一个选择性问题。
00:42
And if we think about some
of the technologies技术
12
30948
2321
如果我们想想那一些在不久的未来,
即将来临的新科技……
00:45
that are coming未来 down the pike梭子鱼 ...
13
33293
1749
00:47
Noriko纪子 [Arai新井] mentioned提到 that reading
is not yet然而 happening事件 in machines,
14
35738
4335
Noriko提到机器还不能进行阅读,
至少达不到理解的程度,
00:52
at least最小 with understanding理解.
15
40097
1500
但这迟早会发生,
00:53
But that will happen发生,
16
41621
1536
而当它发生时,
00:55
and when that happens发生,
17
43181
1771
不久之后,
00:56
very soon不久 afterwards之后,
18
44976
1187
机器就将读遍人类写下的所有东西。
00:58
machines will have read everything
that the human人的 race种族 has ever written书面.
19
46187
4572
01:03
And that will enable启用 machines,
20
51850
2030
这将使机器除了拥有
比人类看得更远的能力,
01:05
along沿 with the ability能力 to look
further进一步 ahead than humans人类 can,
21
53904
2920
就像我们在围棋中看到的那样,
01:08
as we've我们已经 already已经 seen看到 in Go,
22
56848
1680
如果机器能接触到比人类更多的信息,
01:10
if they also have access访问
to more information信息,
23
58552
2164
则将能够在现实世界中
做出比人类更好的选择。
01:12
they'll他们会 be able能够 to make better decisions决定
in the real真实 world世界 than we can.
24
60740
4268
那这是一件好事吗?
01:18
So is that a good thing?
25
66792
1606
01:21
Well, I hope希望 so.
26
69898
2232
我当然希望如此。
01:26
Our entire整个 civilization文明,
everything that we value,
27
74694
3255
人类的全部文明,
我们所珍视的一切,
都是基于我们的智慧之上。
01:29
is based基于 on our intelligence情报.
28
77973
2068
如果我们能掌控更强大的智能,
01:32
And if we had access访问
to a lot more intelligence情报,
29
80065
3694
那我们人类的 创造力
就真的没有极限了。
01:35
then there's really no limit限制
to what the human人的 race种族 can do.
30
83783
3302
01:40
And I think this could be,
as some people have described描述 it,
31
88665
3325
我认为这可能就像很多人描述的那样
会成为人类历史上最重要的事件。
01:44
the biggest最大 event事件 in human人的 history历史.
32
92014
2016
01:48
So why are people saying things like this,
33
96665
2829
那为什么有的人会说出以下的言论,
说人工智能将是人类的末日呢?
01:51
that AIAI might威力 spell拼写 the end结束
of the human人的 race种族?
34
99518
2876
01:55
Is this a new thing?
35
103438
1659
这是一个新事物吗?
这只关乎伊隆马斯克、
比尔盖茨,和斯提芬霍金吗?
01:57
Is it just Elon伊隆 Musk and Bill法案 Gates盖茨
and Stephen斯蒂芬 Hawking霍金?
36
105121
4110
02:01
Actually其实, no. This idea理念
has been around for a while.
37
109953
3262
其实不是的,人工智能
这个概念已经存在很长时间了。
请看这段话:
02:05
Here's这里的 a quotation行情:
38
113239
1962
“即便我们能够将机器
维持在一个屈服于我们的地位,
02:07
"Even if we could keep the machines
in a subservient奴颜婢膝 position位置,
39
115225
4350
比如说,在战略性时刻将电源关闭。”——
02:11
for instance, by turning车削 off the power功率
at strategic战略 moments瞬间" --
40
119599
2984
我等会儿再来讨论
”关闭电源“这一话题,
02:14
and I'll come back to that
"turning车削 off the power功率" idea理念 later后来 on --
41
122607
3237
”我们,作为一个物种,
仍然应该自感惭愧。“
02:17
"we should, as a species种类,
feel greatly非常 humbled自愧不如."
42
125868
2804
02:22
So who said this?
This is Alan艾伦 Turing图灵 in 1951.
43
130177
3448
这段话是谁说的呢?
是阿兰图灵,他在1951年说的。
02:26
Alan艾伦 Turing图灵, as you know,
is the father父亲 of computer电脑 science科学
44
134300
2763
阿兰图灵,众所皆知,
是计算机科学之父。
从很多意义上说,
他也是人工智能之父。
02:29
and in many许多 ways方法,
the father父亲 of AIAI as well.
45
137087
3048
02:33
So if we think about this problem问题,
46
141239
1882
当我们考虑这个问题,
创造一个比自己更智能的
物种的问题时,
02:35
the problem问题 of creating创建 something
more intelligent智能 than your own拥有 species种类,
47
143145
3787
我们不妨将它称为”大猩猩问题“,
02:38
we might威力 call this "the gorilla大猩猩 problem问题,"
48
146956
2622
02:42
because gorillas'大猩猩 ancestors祖先 did this
a few少数 million百万 years年份 ago,
49
150345
3750
因为这正是大猩猩的
祖先们几百万年前所经历的。
我们今天可以去问大猩猩们:
02:46
and now we can ask the gorillas大猩猩:
50
154119
1745
02:48
Was this a good idea理念?
51
156752
1160
那么做是不是一个好主意?
在这幅图里,大猩猩们正在
开会讨论那么做是不是一个好主意,
02:49
So here they are having a meeting会议
to discuss讨论 whether是否 it was a good idea理念,
52
157936
3530
片刻后他们下定结论,不是的。
02:53
and after a little while,
they conclude得出结论, no,
53
161490
3346
那是一个很糟糕的主意。
02:56
this was a terrible可怕 idea理念.
54
164860
1345
我们的物种已经奄奄一息了,
02:58
Our species种类 is in dire可怕的 straits海峡.
55
166229
1782
03:00
In fact事实, you can see the existential存在
sadness in their eyes眼睛.
56
168538
4263
你都可以从它们的眼神中看到这种忧伤,
(笑声)
03:04
(Laughter笑声)
57
172825
1640
所以创造比你自己更聪明的物种,
03:06
So this queasy动荡 feeling感觉 that making制造
something smarter聪明 than your own拥有 species种类
58
174489
4840
也许不是一个好主意——
03:11
is maybe not a good idea理念 --
59
179353
2365
03:14
what can we do about that?
60
182488
1491
那我们能做些什么呢?
其实没什么能做的,
除了停止研究人工智能,
03:16
Well, really nothing,
except stop doing AIAI,
61
184003
4767
03:20
and because of all
the benefits好处 that I mentioned提到
62
188794
2510
但因为人工智能能带来
我之前所说的诸多益处,
也因为我是
人工智能的研究者之一,
03:23
and because I'm an AIAI researcher研究员,
63
191328
1716
我可不同意就这么止步。
03:25
I'm not having that.
64
193068
1791
03:27
I actually其实 want to be able能够
to keep doing AIAI.
65
195283
2468
实际上,我想继续做人工智能。
03:30
So we actually其实 need to nail down
the problem问题 a bit more.
66
198615
2678
所以我们需要把这个问题更细化一点,
它到底是什么呢?
03:33
What exactly究竟 is the problem问题?
67
201317
1371
那就是为什么更强大的
人工智能可能会是灾难呢?
03:34
Why is better AIAI possibly或者 a catastrophe灾难?
68
202712
3246
03:39
So here's这里的 another另一个 quotation行情:
69
207398
1498
再来看这段话:
03:41
"We had better be quite相当 sure
that the purpose目的 put into the machine
70
209935
3335
”我们一定得确保我们
给机器输入的目的和价值
是我们确实想要的目的和价值。“
03:45
is the purpose目的 which哪一个 we really desire欲望."
71
213294
2298
03:48
This was said by Norbert诺伯特 Wiener维纳 in 1960,
72
216282
3498
这是诺博特维纳在1960年说的,
他说这话时是刚看到
一个早期的学习系统,
03:51
shortly不久 after he watched看着
one of the very early learning学习 systems系统
73
219804
4002
这个系统在学习如何能把
西洋棋下得比它的创造者更好。
03:55
learn学习 to play checkers跳棋
better than its creator创造者.
74
223830
2583
04:00
But this could equally一样 have been said
75
228602
2683
与此如出一辙的一句话,
迈达斯国王也说过。
04:03
by King国王 Midas迈达斯.
76
231309
1167
04:05
King国王 Midas迈达斯 said, "I want everything
I touch触摸 to turn to gold,"
77
233083
3134
迈达斯国王说:”我希望
我触碰的所有东西都变成金子。“
结果他真的获得了点石成金的能力。
04:08
and he got exactly究竟 what he asked for.
78
236241
2473
那就是他所输入的目的,
04:10
That was the purpose目的
that he put into the machine,
79
238738
2751
从一定程度上说,
04:13
so to speak说话,
80
241513
1450
后来他的食物、
他的家人都变成了金子,
04:14
and then his food餐饮 and his drink
and his relatives亲戚们 turned转身 to gold
81
242987
3444
他死在痛苦与饥饿之中。
04:18
and he died死亡 in misery苦难 and starvation饥饿.
82
246455
2281
04:22
So we'll call this
"the King国王 Midas迈达斯 problem问题"
83
250444
2341
我们可以把这个问题
叫做”迈达斯问题“,
这个问题是我们阐述的目标,但实际上
04:24
of stating说明 an objective目的
which哪一个 is not, in fact事实,
84
252809
3305
与我们真正想要的不一致,
04:28
truly aligned对齐 with what we want.
85
256138
2413
用现代的术语来说,
我们把它称为”价值一致性问题“。
04:30
In modern现代 terms条款, we call this
"the value alignment对准 problem问题."
86
258575
3253
04:37
Putting in the wrong错误 objective目的
is not the only part部分 of the problem问题.
87
265047
3485
而输入错误的目标
仅仅是问题的一部分。
它还有另一部分。
04:40
There's another另一个 part部分.
88
268556
1152
04:42
If you put an objective目的 into a machine,
89
270160
1943
如果你为机器输入一个目标,
即便是一个很简单的目标,
比如说”去把咖啡端来“,
04:44
even something as simple简单 as,
"Fetch the coffee咖啡,"
90
272127
2448
04:47
the machine says to itself本身,
91
275908
1841
机器会对自己说:
04:50
"Well, how might威力 I fail失败
to fetch the coffee咖啡?
92
278733
2623
”好吧,那我要怎么去拿咖啡呢?
说不定有人会把我的电源关掉。
04:53
Someone有人 might威力 switch开关 me off.
93
281380
1580
04:55
OK, I have to take steps脚步 to prevent避免 that.
94
283645
2387
好吧,那我要想办法
阻止别人把我关掉。
我得让我的‘关闭’开关失效。
04:58
I will disable禁用 my 'off'“关” switch开关.
95
286056
1906
05:00
I will do anything to defend保卫 myself
against反对 interference干扰
96
288534
2959
我得尽一切可能自我防御,
不让别人干涉我,
这都是因为我被赋予的目标。”
05:03
with this objective目的
that I have been given特定."
97
291517
2629
这种一根筋的思维,
05:06
So this single-minded专一 pursuit追求
98
294170
2012
05:09
in a very defensive防御性 mode模式
of an objective目的 that is, in fact事实,
99
297213
2945
以一种十分防御型的
模式去实现某一目标,
实际上与我们人类最初
想实现的目标并不一致——
05:12
not aligned对齐 with the true真正 objectives目标
of the human人的 race种族 --
100
300182
2814
这就是我们面临的问题。
05:16
that's the problem问题 that we face面对.
101
304122
1862
05:19
And in fact事实, that's the high-value高价值
takeaway带走 from this talk.
102
307007
4767
实际上,这就是今天这个演讲的核心。
如果你在我的演讲中只记住一件事,
05:23
If you want to remember记得 one thing,
103
311798
2055
那就是:如果你死了,
你就不能去端咖啡了。
05:25
it's that you can't fetch
the coffee咖啡 if you're dead.
104
313877
2675
(笑声)
05:28
(Laughter笑声)
105
316576
1061
这很简单。记住它就行了。
每天对自己重复三遍。
05:29
It's very simple简单. Just remember记得 that.
Repeat重复 it to yourself你自己 three times a day.
106
317661
3829
(笑声)
05:33
(Laughter笑声)
107
321514
1821
实际上,这正是电影
05:35
And in fact事实, this is exactly究竟 the plot情节
108
323359
2754
《2001太空漫步》的剧情。
05:38
of "2001: [A Space空间 Odyssey奥德赛]"
109
326137
2648
05:41
HALHAL has an objective目的, a mission任务,
110
329226
2090
HAL有一个目标,一个任务,
但这个目标和人类的目标不一致,
05:43
which哪一个 is not aligned对齐
with the objectives目标 of the humans人类,
111
331340
3732
这就导致了矛盾的产生。
05:47
and that leads引线 to this conflict冲突.
112
335096
1810
05:49
Now fortunately幸好, HALHAL
is not superintelligent超智.
113
337494
2969
幸运的是,HAL并不具备超级智能,
他挺聪明的,但还是
比不过人类主角戴夫,
05:52
He's pretty漂亮 smart聪明,
but eventually终于 Dave戴夫 outwitsoutwits him
114
340487
3587
戴夫成功地把HAL关掉了。
05:56
and manages管理 to switch开关 him off.
115
344098
1849
但我们可能就没有这么幸运了。
06:01
But we might威力 not be so lucky幸运.
116
349828
1619
06:08
So what are we going to do?
117
356193
1592
那我们应该怎么办呢?
06:12
I'm trying to redefine重新定义 AIAI
118
360371
2601
我想要重新定义人工智能,
远离传统的定义,
06:14
to get away from this classical古典 notion概念
119
362996
2061
将其仅限定为
机器通过智能去达成目标。
06:17
of machines that intelligently智能
pursue追求 objectives目标.
120
365081
4567
06:22
There are three principles原则 involved参与.
121
370712
1798
新的定义涉及到三个原则:
第一个原则是利他主义原则,
06:24
The first one is a principle原理
of altruism利他主义, if you like,
122
372534
3289
也就是说,机器的唯一目标
06:27
that the robot's机器人 only objective目的
123
375847
3262
就是去最大化地实现人类的目标,
06:31
is to maximize最大化 the realization实现
of human人的 objectives目标,
124
379133
4246
人类的价值。
06:35
of human人的 values.
125
383403
1390
至于价值,我指的不是感情化的价值,
06:36
And by values here I don't mean
touchy-feely煽情, goody-goody伪善 values.
126
384817
3330
而是指人类对生活所向往的,
06:40
I just mean whatever随你 it is
that the human人的 would prefer比较喜欢
127
388171
3787
无论是什么。
06:43
their life to be like.
128
391982
1343
06:47
And so this actually其实 violates违反 Asimov's阿西莫夫 law
129
395364
2309
这实际上违背了阿西莫夫定律,
他指出机器人一定要维护自己的生存。
06:49
that the robot机器人 has to protect保护
its own拥有 existence存在.
130
397697
2329
但我定义的机器
对维护自身生存毫无兴趣。
06:52
It has no interest利益 in preserving
its existence存在 whatsoever任何.
131
400050
3723
06:57
The second第二 law is a law
of humility谦逊, if you like.
132
405420
3768
第二个原则不妨称之为谦逊原则。
07:01
And this turns out to be really
important重要 to make robots机器人 safe安全.
133
409974
3743
这一条对于制造安全的机器十分重要。
它说的是机器不知道
07:05
It says that the robot机器人 does not know
134
413741
3142
人类的价值是什么,
07:08
what those human人的 values are,
135
416907
2028
机器知道它需要将人类的价值最大化,
却不知道这价值究竟是什么。
07:10
so it has to maximize最大化 them,
but it doesn't know what they are.
136
418959
3178
07:15
And that avoids避免 this problem问题
of single-minded专一 pursuit追求
137
423254
2626
为了避免一根筋地追求
某一目标,
07:17
of an objective目的.
138
425904
1212
这种不确定性是至关重要的。
07:19
This uncertainty不确定 turns out to be crucial关键.
139
427140
2172
07:21
Now, in order订购 to be useful有用 to us,
140
429726
1639
那机器为了对我们有用,
它就得掌握一些
关于我们想要什么的信息。
07:23
it has to have some idea理念 of what we want.
141
431389
2731
07:27
It obtains取得 that information信息 primarily主要
by observation意见 of human人的 choices选择,
142
435223
5427
它主要通过观察人类
做的选择来获取这样的信息,
我们自己做出的选择会包含着
07:32
so our own拥有 choices选择 reveal揭示 information信息
143
440674
2801
关于我们希望我们的生活
是什么样的信息,
07:35
about what it is that we prefer比较喜欢
our lives生活 to be like.
144
443499
3300
07:40
So those are the three principles原则.
145
448632
1683
这就是三条原则。
让我们来看看它们是如何应用到
07:42
Let's see how that applies适用
to this question of:
146
450339
2318
像图灵说的那样,
“将机器关掉”这个问题上来。
07:44
"Can you switch开关 the machine off?"
as Turing图灵 suggested建议.
147
452681
2789
07:49
So here's这里的 a PRPR2 robot机器人.
148
457073
2120
这是一个PR2机器人。
我们实验室里有一个。
07:51
This is one that we have in our lab实验室,
149
459217
1821
它的背面有一个大大的红色的开关。
07:53
and it has a big red "off" switch开关
right on the back.
150
461062
2903
07:56
The question is: Is it
going to let you switch开关 it off?
151
464541
2615
那问题来了:它会让你把它关掉吗?
如果我们按传统的方法,
07:59
If we do it the classical古典 way,
152
467180
1465
给它一个目标,让它拿咖啡,
它会想:”我必须去拿咖啡,
08:00
we give it the objective目的 of, "Fetch
the coffee咖啡, I must必须 fetch the coffee咖啡,
153
468669
3482
但我死了就不能拿咖啡了。“
08:04
I can't fetch the coffee咖啡 if I'm dead,"
154
472175
2580
显然PR2听过我的演讲了,
08:06
so obviously明显 the PRPR2
has been listening to my talk,
155
474779
3341
所以它说:”我必须让我的开关失灵,
08:10
and so it says, therefore因此,
"I must必须 disable禁用 my 'off'“关” switch开关,
156
478144
3753
08:14
and probably大概 taser泰瑟枪 all the other
people in Starbucks星巴克
157
482976
2694
可能还要把那些在星巴克里,
可能干扰我的人都电击一下。“
08:17
who might威力 interfere干扰 with me."
158
485694
1560
(笑声)
08:19
(Laughter笑声)
159
487278
2062
这看起来必然会发生,对吗?
08:21
So this seems似乎 to be inevitable必然, right?
160
489364
2153
这种失败看起来是必然的,
08:23
This kind of failure失败 mode模式
seems似乎 to be inevitable必然,
161
491541
2398
因为机器人在遵循
一个十分确定的目标。
08:25
and it follows如下 from having
a concrete具体, definite objective目的.
162
493963
3543
08:30
So what happens发生 if the machine
is uncertain不确定 about the objective目的?
163
498812
3144
那如果机器对目标
不那么确定会发生什么呢?
那它的思路就不一样了。
08:33
Well, it reasons原因 in a different不同 way.
164
501980
2127
它会说:”好的,人类可能会把我关掉,
08:36
It says, "OK, the human人的
might威力 switch开关 me off,
165
504131
2424
08:39
but only if I'm doing something wrong错误.
166
507144
1866
但只在我做错事的时候。
08:41
Well, I don't really know what wrong错误 is,
167
509747
2475
我不知道什么是错事,
但我知道我不该做那些事。”
08:44
but I know that I don't want to do it."
168
512246
2044
这就是第一和第二原则。
08:46
So that's the first and second第二
principles原则 right there.
169
514314
3010
“那我就应该让人类把我关掉。”
08:49
"So I should let the human人的 switch开关 me off."
170
517348
3359
08:53
And in fact事实 you can calculate计算
the incentive激励 that the robot机器人 has
171
521721
3956
事实上你可以计算出机器人
让人类把它关掉的动机,
08:57
to allow允许 the human人的 to switch开关 it off,
172
525701
2493
而且这个动机是
09:00
and it's directly tied to the degree
173
528218
1914
与对目标的不确定程度直接相关的。
09:02
of uncertainty不确定 about
the underlying底层 objective目的.
174
530156
2746
09:05
And then when the machine is switched交换的 off,
175
533977
2949
当机器被关闭后,
第三条原则就起作用了。
09:08
that third第三 principle原理 comes into play.
176
536950
1805
机器开始学习它所追求的目标,
09:10
It learns获悉 something about the objectives目标
it should be pursuing追求,
177
538779
3062
因为它知道它刚做的事是不对的。
09:13
because it learns获悉 that
what it did wasn't right.
178
541865
2533
实际上,我们可以用希腊字母
09:16
In fact事实, we can, with suitable适当 use
of Greek希腊语 symbols符号,
179
544422
3570
就像数学家们经常做的那样,
09:20
as mathematicians数学家 usually平时 do,
180
548016
2131
直接证明这一定理,
09:22
we can actually其实 prove证明 a theorem定理
181
550171
1984
那就是这样的一个机器人
对人们是绝对有利的。
09:24
that says that such这样 a robot机器人
is provably可证明 beneficial有利 to the human人的.
182
552179
3553
可以证明我们的生活
有如此设计的机器人会变得
09:27
You are provably可证明 better off
with a machine that's designed设计 in this way
183
555756
3803
比没有这样的机器人更好。
09:31
than without it.
184
559583
1246
09:33
So this is a very simple简单 example,
but this is the first step
185
561237
2906
这是一个很简单的例子,但这只是
我们尝试实现与人类
兼容的人工智能的第一步。
09:36
in what we're trying to do
with human-compatible与人相容 AIAI.
186
564167
3903
09:42
Now, this third第三 principle原理,
187
570657
3257
现在来看第三个原则。
我知道你们可能正在
为这一个原则而大伤脑筋。
09:45
I think is the one that you're probably大概
scratching搔抓 your head over.
188
573938
3112
你可能会想:“你知道,
我有时不按规矩办事。
09:49
You're probably大概 thinking思维, "Well,
you know, I behave表现 badly.
189
577074
3239
我可不希望我的机器人
像我一样行事。
09:52
I don't want my robot机器人 to behave表现 like me.
190
580337
2929
我有时大半夜偷偷摸摸地
从冰箱里找东西吃,
09:55
I sneak潜行 down in the middle中间 of the night
and take stuff东东 from the fridge冰箱.
191
583290
3434
诸如此类的事。”
09:58
I do this and that."
192
586748
1168
有各种各样的事你是
不希望机器人去做的。
09:59
There's all kinds of things
you don't want the robot机器人 doing.
193
587940
2797
但实际上并不一定会这样。
10:02
But in fact事实, it doesn't
quite相当 work that way.
194
590761
2071
仅仅是因为你表现不好,
10:04
Just because you behave表现 badly
195
592856
2155
并不代表机器人就会复制你的行为。
10:07
doesn't mean the robot机器人
is going to copy复制 your behavior行为.
196
595035
2623
它会去尝试理解你做事的动机,
而且可能会在合适的情况下制止你去做
10:09
It's going to understand理解 your motivations动机
and maybe help you resist them,
197
597682
3910
那些不该做的事。
10:13
if appropriate适当.
198
601616
1320
10:16
But it's still difficult.
199
604206
1464
但这仍然十分困难。
10:18
What we're trying to do, in fact事实,
200
606302
2545
实际上,我们在做的是
让机器去预测任何一个人,
在他们的任何一种
10:20
is to allow允许 machines to predict预测
for any person and for any possible可能 life
201
608871
5796
可能的生活中
10:26
that they could live生活,
202
614691
1161
以及别人的生活中,
10:27
and the lives生活 of everybody每个人 else其他:
203
615876
1597
10:29
Which哪一个 would they prefer比较喜欢?
204
617497
2517
他们会更倾向于哪一种?
10:34
And there are many许多, many许多
difficulties困难 involved参与 in doing this;
205
622061
2954
这涉及到诸多困难;
我不认为这会很快地就被解决。
10:37
I don't expect期望 that this
is going to get solved解决了 very quickly很快.
206
625039
2932
实际上,真正的困难是我们自己。
10:39
The real真实 difficulties困难, in fact事实, are us.
207
627995
2643
10:44
As I have already已经 mentioned提到,
we behave表现 badly.
208
632149
3117
就像我刚说的那样,
我们做事不守规矩,
我们中有的人甚至行为肮脏。
10:47
In fact事实, some of us are downright彻头彻尾 nasty讨厌.
209
635290
2321
10:50
Now the robot机器人, as I said,
doesn't have to copy复制 the behavior行为.
210
638431
3052
就像我说的,
机器人并不会复制那些行为,
机器人没有自己的目标,
10:53
The robot机器人 does not have
any objective目的 of its own拥有.
211
641507
2791
它是完全无私的。
10:56
It's purely纯粹 altruistic利他.
212
644322
1737
10:59
And it's not designed设计 just to satisfy满足
the desires欲望 of one person, the user用户,
213
647293
5221
它的设计不是去满足
某一个人、一个用户的欲望,
而是去尊重所有人的意愿。
11:04
but in fact事实 it has to respect尊重
the preferences优先 of everybody每个人.
214
652538
3138
11:09
So it can deal合同 with a certain某些
amount of nastiness污秽,
215
657263
2570
所以它能对付一定程度的肮脏行为。
它甚至能理解你的不端行为,比如说
11:11
and it can even understand理解
that your nastiness污秽, for example,
216
659857
3701
假如你是一个边境护照官员,
很可能收取贿赂,
11:15
you may可能 take bribes行贿 as a passport护照 official官方
217
663582
2671
因为你得养家、
得供你的孩子们上学。
11:18
because you need to feed饲料 your family家庭
and send发送 your kids孩子 to school学校.
218
666277
3812
机器人能理解这一点,
它不会因此去偷,
11:22
It can understand理解 that;
it doesn't mean it's going to steal.
219
670113
2906
它反而会帮助你去供孩子们上学。
11:25
In fact事实, it'll它会 just help you
send发送 your kids孩子 to school学校.
220
673043
2679
11:28
We are also computationally计算 limited有限.
221
676976
3012
我们的计算能力也是有限的。
李世石是一个杰出的围棋大师,
11:32
Lee背风处 SedolSEDOL is a brilliant辉煌 Go player播放机,
222
680012
2505
但他还是输了。
11:34
but he still lost丢失.
223
682541
1325
如果我们看他的行动,
他最终输掉了棋局。
11:35
So if we look at his actions行动,
he took an action行动 that lost丢失 the game游戏.
224
683890
4239
但这不意味着他想要输。
11:40
That doesn't mean he wanted to lose失去.
225
688153
2161
所以要理解他的行为,
11:43
So to understand理解 his behavior行为,
226
691340
2040
我们得从人类认知模型来反过来想,
11:45
we actually其实 have to invert倒置
through通过 a model模型 of human人的 cognition认识
227
693404
3644
这包含了我们的计算能力限制,
是一个很复杂的模型,
11:49
that includes包括 our computational计算
limitations限制 -- a very complicated复杂 model模型.
228
697072
4977
但仍然是我们可以尝试去理解的。
11:54
But it's still something
that we can work on understanding理解.
229
702073
2993
11:57
Probably大概 the most difficult part部分,
from my point of view视图 as an AIAI researcher研究员,
230
705876
4320
可能对于我这样一个
人工智能研究人员来说最大的困难,
是我们彼此各不相同。
12:02
is the fact事实 that there are lots of us,
231
710220
2575
12:06
and so the machine has to somehow不知何故
trade贸易 off, weigh称重 up the preferences优先
232
714294
3581
所以机器必须想办法去判别衡量
不同人的不同需求,
12:09
of many许多 different不同 people,
233
717899
2225
而又有众多方法去做这样的判断。
12:12
and there are different不同 ways方法 to do that.
234
720148
1906
经济学家、社会学家、
哲学家都理解这一点,
12:14
Economists经济学家, sociologists社会学家,
moral道德 philosophers哲学家 have understood了解 that,
235
722078
3689
我们正在积极地去寻求合作。
12:17
and we are actively积极地
looking for collaboration合作.
236
725791
2455
让我们来看看如果我们
把这一步弄错了会怎么样。
12:20
Let's have a look and see what happens发生
when you get that wrong错误.
237
728270
3251
举例来说,你可能会
与你的人工智能助理,
12:23
So you can have
a conversation会话, for example,
238
731545
2133
有这样的对话:
12:25
with your intelligent智能 personal个人 assistant助理
239
733702
1944
这样的人工智能可能几年内就会出现,
12:27
that might威力 be available可得到
in a few少数 years'年份' time.
240
735670
2285
可以把它想做加强版的Siri。
12:29
Think of a SiriSiri的 on steroids类固醇.
241
737979
2524
12:33
So SiriSiri的 says, "Your wife妻子 called
to remind提醒 you about dinner晚餐 tonight今晚."
242
741627
4322
Siri对你说:“你的妻子打电话
提醒你今晚要跟她共进晚餐。”
12:38
And of course课程, you've forgotten忘记了.
"What? What dinner晚餐?
243
746616
2508
而你呢,自然忘了这回事:
“什么?什么晚饭?
你在说什么?”
12:41
What are you talking about?"
244
749148
1425
12:42
"Uh, your 20th anniversary周年 at 7pm下午."
245
750597
3746
“啊,你们晚上7点,
庆祝结婚20周年纪念日。”
12:48
"I can't do that. I'm meeting会议
with the secretary-general秘书长 at 7:30.
246
756915
3719
“我可去不了。
我约了晚上7点半见领导。
怎么会这样呢?”
12:52
How could this have happened发生?"
247
760658
1692
“呃,我可是提醒过你的,
但你不听我的建议。”
12:54
"Well, I did warn警告 you, but you overrode凌驾于
my recommendation建议."
248
762374
4660
13:00
"Well, what am I going to do?
I can't just tell him I'm too busy."
249
768146
3328
“我该怎么办呢?我可不能
跟领导说我有事,没空见他。”
13:04
"Don't worry担心. I arranged安排
for his plane平面 to be delayed延迟."
250
772490
3281
“别担心。我已经安排了,
让他的航班延误。
(笑声)
13:07
(Laughter笑声)
251
775795
1682
13:10
"Some kind of computer电脑 malfunction故障."
252
778249
2101
“像是因为某种计算机故障那样。”
(笑声)
13:12
(Laughter笑声)
253
780374
1212
“真的吗?这个你也能做到?”
13:13
"Really? You can do that?"
254
781610
1617
13:16
"He sends发送 his profound深刻 apologies道歉
255
784400
2179
“领导很不好意思,跟你道歉,
并且告诉你明天
中午午饭不见不散。”
13:18
and looks容貌 forward前锋 to meeting会议 you
for lunch午餐 tomorrow明天."
256
786603
2555
(笑声)
13:21
(Laughter笑声)
257
789182
1299
这里就有一个小小的问题。
13:22
So the values here --
there's a slight轻微 mistake错误 going on.
258
790505
4403
这显然是在遵循我妻子的价值论,
13:26
This is clearly明确地 following以下 my wife's妻子 values
259
794932
3009
那就是“老婆开心,生活舒心”。
13:29
which哪一个 is "Happy快乐 wife妻子, happy快乐 life."
260
797965
2069
(笑声)
13:32
(Laughter笑声)
261
800058
1583
它也有可能发展成另一种情况。
13:33
It could go the other way.
262
801665
1444
13:35
You could come home
after a hard day's work,
263
803821
2201
你忙碌一天,回到家里,
电脑对你说:“像是繁忙的一天啊?”
13:38
and the computer电脑 says, "Long day?"
264
806046
2195
“是啊,我连午饭都没来得及吃。”
13:40
"Yes, I didn't even have time for lunch午餐."
265
808265
2288
“那你一定很饿了吧。”
13:42
"You must必须 be very hungry饥饿."
266
810577
1282
“快饿晕了。你能做点晚饭吗?”
13:43
"Starving饥饿, yeah.
Could you make some dinner晚餐?"
267
811883
2646
13:48
"There's something I need to tell you."
268
816070
2090
“有一件事我得告诉你。
(笑声)
13:50
(Laughter笑声)
269
818184
1155
13:52
"There are humans人类 in South Sudan苏丹
who are in more urgent紧急 need than you."
270
820193
4905
”南苏丹的人们可比你更需要照顾。
(笑声)
13:57
(Laughter笑声)
271
825122
1104
“所以我要离开了。
你自己做饭去吧。”
13:58
"So I'm leaving离开. Make your own拥有 dinner晚餐."
272
826250
2075
(笑声)
14:00
(Laughter笑声)
273
828349
2000
我们得解决这些问题,
14:02
So we have to solve解决 these problems问题,
274
830823
1739
我也很期待去解决。
14:04
and I'm looking forward前锋
to working加工 on them.
275
832586
2515
我们有理由感到乐观。
14:07
There are reasons原因 for optimism乐观.
276
835125
1843
理由之一是
14:08
One reason原因 is,
277
836992
1159
我们有大量的数据,
14:10
there is a massive大规模的 amount of data数据.
278
838175
1868
记住,我说过机器将能够阅读一切
14:12
Because remember记得 -- I said
they're going to read everything
279
840067
2794
人类所写下来的东西,
14:14
the human人的 race种族 has ever written书面.
280
842885
1546
而我们写下的大多数是
我们做的什么事情,
14:16
Most of what we write about
is human人的 beings众生 doing things
281
844455
2724
以及其他人对此有什么意见。
14:19
and other people getting得到 upset烦乱 about it.
282
847203
1914
所以机器可以从大量的数据中去学习。
14:21
So there's a massive大规模的 amount
of data数据 to learn学习 from.
283
849141
2398
同时从经济的角度,
我们也有足够的动机
14:23
There's also a very
strong强大 economic经济 incentive激励
284
851563
2236
14:27
to get this right.
285
855331
1186
去把这件事做对。
想象一下,你家里有个居家机器人,
14:28
So imagine想像 your domestic国内 robot's机器人 at home.
286
856541
2001
而你又得加班,
机器人得给孩子们做饭,
14:30
You're late晚了 from work again
and the robot机器人 has to feed饲料 the kids孩子,
287
858566
3067
孩子们很饿,
但冰箱里什么都没有。
14:33
and the kids孩子 are hungry饥饿
and there's nothing in the fridge冰箱.
288
861657
2823
然后机器人看到了家里的猫,
14:36
And the robot机器人 sees看到 the cat.
289
864504
2605
(笑声)
14:39
(Laughter笑声)
290
867133
1692
机器人还没学透人类的价值论,
14:40
And the robot机器人 hasn't有没有 quite相当 learned学到了
the human人的 value function功能 properly正确,
291
868849
4190
所以它不知道
14:45
so it doesn't understand理解
292
873063
1251
猫的感情价值
大于猫的营养价值。
14:46
the sentimental感伤 value of the cat outweighs胜过
the nutritional营养 value of the cat.
293
874338
4844
(笑声)
14:51
(Laughter笑声)
294
879206
1095
接下来会发生什么?
14:52
So then what happens发生?
295
880325
1748
差不多是这样的:
14:54
Well, it happens发生 like this:
296
882097
3297
头版头条:“疯狂的机器人
把猫煮了给主人当晚饭!”
14:57
"Deranged发疯 robot机器人 cooks厨师 kitty猫咪
for family家庭 dinner晚餐."
297
885418
2964
这一个事故就足以结束
整个居家机器人产业。
15:00
That one incident事件 would be the end结束
of the domestic国内 robot机器人 industry行业.
298
888406
4523
所以我们有足够的动机在我们实现
15:04
So there's a huge巨大 incentive激励
to get this right
299
892953
3372
超级智能机器让它更加完善。
15:08
long before we reach达到
superintelligent超智 machines.
300
896349
2715
15:12
So to summarize总结:
301
900128
1535
总结来说:
我想要改变人工智能的定义,
15:13
I'm actually其实 trying to change更改
the definition定义 of AIAI
302
901687
2881
让我们可以证明机器对我们是有利的。
15:16
so that we have provably可证明
beneficial有利 machines.
303
904592
2993
这三个原则是:
15:19
And the principles原则 are:
304
907609
1222
机器是利他的,
15:20
machines that are altruistic利他,
305
908855
1398
只想着实现我们的目标,
15:22
that want to achieve实现 only our objectives目标,
306
910277
2804
但它不确定我们的目标是什么,
15:25
but that are uncertain不确定
about what those objectives目标 are,
307
913105
3116
所以它会观察我们,
15:28
and will watch all of us
308
916245
1998
从中学习我们想要的究竟是什么。
15:30
to learn学习 more about what it is
that we really want.
309
918267
3203
15:34
And hopefully希望 in the process处理,
we will learn学习 to be better people.
310
922373
3559
希望在这个过程中,
我们也能学会成为更好的人。
谢谢大家。
15:37
Thank you very much.
311
925956
1191
(掌声)
15:39
(Applause掌声)
312
927171
3709
克里斯安德森:
非常有意思,斯图尔特。
15:42
Chris克里斯 Anderson安德森: So interesting有趣, Stuart斯图尔特.
313
930904
1868
我们趁着工作人员
为下一位演讲者布置的时候
15:44
We're going to stand here a bit
because I think they're setting设置 up
314
932796
3170
来简单聊几句。
15:47
for our next下一个 speaker扬声器.
315
935990
1151
15:49
A couple一对 of questions问题.
316
937165
1538
我有几个问题。
从直觉上来看,将无知编入到程序中
似乎是一个很重要的理念,
15:50
So the idea理念 of programming程序设计 in ignorance无知
seems似乎 intuitively直观地 really powerful强大.
317
938727
5453
当你要实现超级智能时,
15:56
As you get to superintelligence超级智能,
318
944204
1594
什么能阻止机器人?
15:57
what's going to stop a robot机器人
319
945822
2258
当它在阅读和学习的过程中发现,
16:00
reading literature文学 and discovering发现
this idea理念 that knowledge知识
320
948104
2852
16:02
is actually其实 better than ignorance无知
321
950980
1572
知识比无知更强大,
16:04
and still just shifting its own拥有 goals目标
and rewriting重写 that programming程序设计?
322
952576
4218
然后就改变它的目标
去重新编写程序呢?
斯图尔特拉塞尔:是的,
我们想要它去学习,就像我说的,
16:09
Stuart斯图尔特 Russell罗素: Yes, so we want
it to learn学习 more, as I said,
323
957692
6356
学习我们的目标。
16:16
about our objectives目标.
324
964072
1287
16:17
It'll它会 only become成为 more certain某些
as it becomes more correct正确,
325
965383
5521
它只有在理解得越来越正确的时候,
才会变得更确定,
16:22
so the evidence证据 is there
326
970928
1945
我们有证据显示,
它的设计使它能按正确的方式理解。
16:24
and it's going to be designed设计
to interpret it correctly正确地.
327
972897
2724
16:27
It will understand理解, for example,
that books图书 are very biased
328
975645
3956
比如说,它能够理解书中的论证是
带有非常强的偏见的。
16:31
in the evidence证据 they contain包含.
329
979625
1483
书中只会讲述国王、王子
16:33
They only talk about kings国王 and princes王子
330
981132
2397
和那些精英白人男性做的事。
16:35
and elite原种 white白色 male people doing stuff东东.
331
983553
2800
这是一个复杂的问题,
16:38
So it's a complicated复杂 problem问题,
332
986377
2096
但当它更深入地学习我们的目标时,
16:40
but as it learns获悉 more about our objectives目标
333
988497
3872
16:44
it will become成为 more and more useful有用 to us.
334
992393
2063
它就变得对我们更有用。
CA:那你不能把这些
都集中在一条准则里吗?
16:46
CACA: And you couldn't不能
just boil it down to one law,
335
994480
2526
把这样的命令写在它的程序里:
16:49
you know, hardwired硬线 in:
336
997030
1650
“如果人类什么时候想把我关掉,
16:50
"if any human人的 ever tries尝试 to switch开关 me off,
337
998704
3293
我服从。我服从。”
16:54
I comply执行. I comply执行."
338
1002021
1935
SR:绝对不行,
16:55
SRSR: Absolutely绝对 not.
339
1003980
1182
那将是一个很糟糕的主意。
16:57
That would be a terrible可怕 idea理念.
340
1005186
1499
试想一下,你有一辆无人驾驶汽车,
16:58
So imagine想像 that you have
a self-driving自驾车 car汽车
341
1006709
2689
你想让它送你五岁的孩子
17:01
and you want to send发送 your five-year-old五十岁
342
1009422
2433
去上学。
17:03
off to preschool幼儿.
343
1011879
1174
你希望你五岁的孩子
能在汽车运行过程中
17:05
Do you want your five-year-old五十岁
to be able能够 to switch开关 off the car汽车
344
1013077
3101
将它关闭吗?
17:08
while it's driving主动 along沿?
345
1016202
1213
应该不会吧。
17:09
Probably大概 not.
346
1017439
1159
它得理解下指令的人有多理智,
是不是讲道理。
17:10
So it needs需求 to understand理解 how rational合理的
and sensible明智 the person is.
347
1018622
4703
这个人越理智,
17:15
The more rational合理的 the person,
348
1023349
1676
它就越愿意自己被关掉。
17:17
the more willing愿意 you are
to be switched交换的 off.
349
1025049
2103
如果这个人是完全思绪混乱
或者甚至是有恶意的,
17:19
If the person is completely全然
random随机 or even malicious恶毒,
350
1027176
2543
那你就不愿意它被关掉。
17:21
then you're less willing愿意
to be switched交换的 off.
351
1029743
2512
CA:好吧。斯图尔特,我得说
17:24
CACA: All right. Stuart斯图尔特, can I just say,
352
1032279
1866
我真的希望你为我们
能把这一切研究出来,
17:26
I really, really hope希望 you
figure数字 this out for us.
353
1034169
2314
很感谢你的演讲,太精彩了。
17:28
Thank you so much for that talk.
That was amazing惊人.
354
1036507
2375
SR:谢谢。
17:30
SRSR: Thank you.
355
1038906
1167
(掌声)
17:32
(Applause掌声)
356
1040097
1837
Translated by Yichen Zheng
Reviewed by Yanyan Hong

▲Back to top

ABOUT THE SPEAKER
Stuart Russell - AI expert
Stuart Russell wrote the standard text on AI; now he thinks deeply on AI's future -- and the future of us humans, too.

Why you should listen

Stuart Russell is a professor (and formerly chair) of Electrical Engineering and Computer Sciences at University of California at Berkeley. His book Artificial Intelligence: A Modern Approach (with Peter Norvig) is the standard text in AI; it has been translated into 13 languages and is used in more than 1,300 universities in 118 countries. His research covers a wide range of topics in artificial intelligence including machine learning, probabilistic reasoning, knowledge representation, planning, real-time decision making, multitarget tracking, computer vision, computational physiology, global seismic monitoring and philosophical foundations.

He also works for the United Nations, developing a new global seismic monitoring system for the nuclear-test-ban treaty. His current concerns include the threat of autonomous weapons and the long-term future of artificial intelligence and its relation to humanity.

More profile about the speaker
Stuart Russell | Speaker | TED.com

Data provided by TED.

This site was created in May 2015 and the last update was on January 12, 2020. It will no longer be updated.

We are currently creating a new site called "eng.lish.video" and would be grateful if you could access it.

If you have any questions or suggestions, please feel free to write comments in your language on the contact form.

Privacy Policy

Developer's Blog

Buy Me A Coffee