ABOUT THE SPEAKER
Albert-László Barabási - Network scientist
A pioneer in network science, Albert-László Barabási uncovers the hidden order behind complex systems.

Why you should listen

Albert-László Barabási is fascinated by a wide range of topics, from the structure of the brain and treating diseases with network medicine to the emergence of success in art and how science really works. His work uses the quantitative tools of network science, a research field that he pioneered, and led to the discovery of scale-free networks, helping explain the emergence of many natural, technological and social networks.

Barabási is the Robert Gray Dodge Professor of Network Science at Northeastern University and holds an appointment in the Department of Medicine at Harvard Medical School. He splits his time with Budapest, where he runs a European Research Council project at Central European University. A Hungarian born native of Transylvania, Romania, he received his masters in theoretical physics at the Eötvös University in Budapest, Hungary and his PhD three years later at Boston University.

Barabási’s latest book is The Formula: The Universal Laws of Success. He is also the author of Network ScienceLinked and Bursts. He co-edited Network Medicine and The Structure and Dynamics of Networks. His books have been translated into over twenty languages.

More profile about the speaker
Albert-László Barabási | Speaker | TED.com
TEDxMidAtlantic

Albert-László Barabási: The real relationship between your age and your chance of success

艾伯特拉斯洛 · 巴拉巴西: 年齡和成功機會之間的真正關係

Filmed:
2,762,222 views

透過數學分析,網路理論家艾伯特拉斯洛 · 巴拉巴西帶大家探究驅使成功背後隱藏的機制,不論你的領域是什麼。他還揭露出年齡和成功機會之間的有趣關聯。
- Network scientist
A pioneer in network science, Albert-László Barabási uncovers the hidden order behind complex systems. Full bio

Double-click the English transcript below to play the video.

00:12
Today今天, actually其實, is
a very special特別 day for me,
0
249
2266
今天對我來說是個很特別的一天,
00:14
because it is my birthday生日.
1
2539
2121
因為今天是我的生日。
00:16
(Applause掌聲)
2
4684
3973
(掌聲)
00:20
And so, thanks謝謝 to all of you
for joining加盟 the party派對.
3
8681
3441
謝謝大家來參加這場派對。
00:24
(Laughter笑聲)
4
12146
1167
(笑聲)
00:25
But every一切 time you throw a party派對,
there's someone有人 there to spoil溺愛 it. Right?
5
13337
4786
但,每次你辦派對時,
總會掃興的人,對吧?
00:30
(Laughter笑聲)
6
18147
1072
(笑聲)
00:31
And I'm a physicist物理學家,
7
19243
1359
我是物理學家,
00:32
and this time I brought
another另一個 physicist物理學家 along沿 to do so.
8
20626
4157
這次,我帶來了
另一位來掃興的物理學家。
00:36
His name名稱 is Albert阿爾伯特 Einstein愛因斯坦 --
also Albert阿爾伯特 -- and he's the one who said
9
24807
4562
他叫做阿爾伯特愛因斯坦——
也叫阿爾伯特——他說過
00:41
that the person who has not made製作
his great contributions捐款 to science科學
10
29393
4830
如果一個人到了三十歲
都還沒有對科學
做出偉大的貢獻,
就永遠不會有貢獻了。
00:46
by the age年齡 of 30
11
34247
1559
00:47
will never do so.
12
35830
1396
00:49
(Laughter笑聲)
13
37250
1012
(笑聲)
00:50
Now, you don't need to check Wikipedia維基百科
14
38286
2340
各位不需要去維基百科查證,
00:52
that I'm beyond 30.
15
40650
1571
我已經超過三十歲了。
00:54
(Laughter笑聲)
16
42245
1416
(笑聲)
00:55
So, effectively有效, what
he is telling告訴 me, and us,
17
43685
3606
所以,實際上,他要
告訴我以及我們的是,
00:59
is that when it comes to my science科學,
18
47315
2544
在我的科學領域中,
01:01
I'm deadwood朽木.
19
49883
1203
我已經是枯枝。
01:04
Well, luckily, I had my share分享
of luck運氣 within my career事業.
20
52078
5586
嗯,幸運的是,我在
我的職涯中有好運氣。
01:10
Around age年齡 28, I became成為
very interested有興趣 in networks網絡,
21
58132
3822
大約二十八歲時,
我對於網路非常感興趣,
01:13
and a few少數 years年份 later後來, we managed管理
to publish發布 a few少數 key papers文件
22
61978
4076
幾年後,我們出版了
幾篇重要論文,
01:18
that reported報導 the discovery發現
of scale-free無刻度 networks網絡
23
66078
4097
闡述我們發現了無尺度網路,
01:22
and really gave birth分娩 to a new discipline學科
that we call network網絡 science科學 today今天.
24
70199
4578
創造出了一門新的學科,
就是現今所稱的網路科學。
01:26
And if you really care關心 about it,
you can get a PhD博士 now in network網絡 science科學
25
74801
3678
如果各位想知道,現在可以
取得網路科學博士學位的地方
01:30
in Budapest布達佩斯, in Boston波士頓,
26
78503
2028
包括布達佩斯、波士頓,
01:32
and you can study研究 it all over the world世界.
27
80555
2308
且在全世界各地都可以研讀它。
01:35
A few少數 years年份 later後來,
28
83466
1595
幾年後,
01:37
when I moved移動 to Harvard哈佛
first as a sabbatical休假,
29
85085
3230
我搬到哈佛,一開始是學術休假,
01:40
I became成為 interested有興趣
in another另一個 type類型 of network網絡:
30
88339
3092
我開始對另一種網路產生了興趣:
01:43
that time, the networks網絡 within ourselves我們自己,
31
91455
3027
我們體內的網路,
01:46
how the genes基因 and the proteins蛋白質
and the metabolites代謝產物 link鏈接 to each other
32
94506
3726
基因、蛋白質、代謝物
彼此之間如何連結,
01:50
and how they connect to disease疾病.
33
98256
2493
以及它們和疾病的關係。
01:53
And that interest利益 led
to a major重大的 explosion爆炸 within medicine醫學,
34
101368
4592
那項興趣導致了醫學上的大爆炸,
01:57
including包含 the Network網絡 Medicine醫學
Division at Harvard哈佛,
35
105984
3979
包括哈佛的網路醫學部門,
02:01
that has more than 300 researchers研究人員
who are using運用 this perspective透視
36
109987
3395
有超過三百名研究者使用這種觀點
02:05
to treat對待 patients耐心 and develop發展 new cures治愈.
37
113406
2897
來治療病人和開發新解藥。
02:09
And a few少數 years年份 ago,
38
117457
1770
幾年前,
02:11
I thought that I would take
this idea理念 of networks網絡
39
119251
2526
我認為我可以把網路的這個點子
02:13
and the expertise專門知識 we had in networks網絡
40
121801
1766
以及我們對網路的專長
帶到不同的領域去,
02:15
in a different不同 area,
41
123591
1392
02:17
that is, to understand理解 success成功.
42
125007
1982
也就是,用來了解成功。
02:19
And why did we do that?
43
127704
1210
為什麼要那樣做?
02:20
Well, we thought that, to some degree,
44
128938
2281
嗯,我們認為,在某種程度上,
02:23
our success成功 is determined決心
by the networks網絡 we're part部分 of --
45
131243
3377
我們的成功是由我們所屬的網路決定,
02:26
that our networks網絡 can push us forward前鋒,
they can pull us back.
46
134644
3847
我們的網路將我們向前推進,
也可以讓我們遲滯不前。
02:30
And I was curious好奇 if we could use
the knowledge知識 and big data數據 and expertise專門知識
47
138925
4128
我很好奇,我們是否
能用這知識和大數據
及我們開發網路的專門技術
來將成功的發生給量化。
02:35
where we develop發展 the networks網絡
48
143077
1403
02:36
to really quantify量化
how these things happen發生.
49
144504
3296
這就是研究的結果。
02:40
This is a result結果 from that.
50
148404
1342
02:41
What you see here is a network網絡
of galleries畫廊 in museums博物館
51
149770
2947
各位現在看到的是
博物館的畫廊的網路,
02:44
that connect to each other.
52
152741
1632
它們彼此連結。
02:46
And through通過 this map地圖
that we mapped映射 out last year,
53
154806
4055
透過我們去年畫的這張地圖,
02:50
we are able能夠 to predict預測 very accurately準確
the success成功 of an artist藝術家
54
158885
4848
我們就可以很精確地預測
一位藝術家是否會成功,
02:55
if you give me the first five exhibits展品
that he or she had in their career事業.
55
163757
4021
只要給我這位藝術家
在職涯中的最早五件展示品。
03:01
Well, as we thought about success成功,
56
169404
2706
當我們在思考成功時,
03:04
we realized實現 that success成功
is not only about networks網絡;
57
172134
3067
我們發現,成功不只和網路有關;
03:07
there are so many許多
other dimensions尺寸 to that.
58
175225
2396
還有好多其他的維度。
03:10
And one of the things
we need for success成功, obviously明顯,
59
178145
3247
很顯然,我們想要成功
就一定需要的一樣東西
03:13
is performance性能.
60
181416
1170
就是表現。
03:14
So let's define確定 what's the difference區別
between之間 performance性能 and success成功.
61
182610
3504
所以,咱們來定義一下
表現和成功之間的差別。
03:18
Well, performance性能 is what you do:
62
186465
1997
表現是你所做的事:
03:20
how fast快速 you run,
what kind of paintings繪畫 you paint塗料,
63
188486
3032
你能跑多快、你畫出什麼樣的畫、
03:23
what kind of papers文件 you publish發布.
64
191542
1881
你出版什麼樣的論文。
03:25
However然而, in our working加工 definition定義,
65
193835
2614
然而,根據我們的工作定義,
03:28
success成功 is about what the community社區
notices通告 from what you did,
66
196473
4205
成功的重點在於大家
能注意到你做了什麼、
03:32
from your performance性能:
67
200702
1612
你的表現如何:
03:34
How does it acknowledge確認 it,
and how does it reward獎勵 you for it?
68
202338
4132
怎麼認可你的表現,
你的表現帶給你什麼報償?
03:38
In other terms條款,
69
206494
1182
換言之,
03:39
your performance性能 is about you,
but your success成功 is about all of us.
70
207700
4596
你的表現是你的事,
但你的成功是我們所有人的事。
03:45
And this was a very
important重要 shift轉移 for us,
71
213392
3334
這對我們來說是很重要的轉變,
03:48
because the moment時刻 we defined定義 success成功
as being存在 a collective集體 measure測量
72
216750
4024
因為當我們把成功定義為
團體提供我們的一個集體測量值,
它就變成可測量的,
03:52
that the community社區 provides提供 to us,
73
220798
2106
03:54
it became成為 measurable可測量,
74
222928
1510
03:56
because if it's in the community社區,
there are multiple data數據 points about that.
75
224462
4510
因為如果它是在團體中,
就有相關的許多資料點。
04:00
So we go to school學校,
we exercise行使, we practice實踐,
76
228996
5280
所以我們去學校,
我們做作業,我們練習,
04:06
because we believe
that performance性能 leads引線 to success成功.
77
234300
2991
因為我們相信表現會導致成功。
但我們這樣開始探究之後,
04:09
But the way we actually其實
started開始 to explore探索,
78
237832
2015
04:11
we realized實現 that performance性能 and success成功
are very, very different不同 animals動物
79
239871
3527
便了解到在數學問題上,
表現和成功非常不同。
04:15
when it comes to
the mathematics數學 of the problem問題.
80
243422
2444
04:18
And let me illustrate說明 that.
81
246429
1432
讓我說明一下。
04:20
So what you see here is
the fastest最快的 man on earth地球, Usain烏塞恩 Bolt螺栓.
82
248329
4947
各位在這裡看到的是世界上
最快的人,尤塞恩博爾特。
04:25
And of course課程, he wins most of
the competitions比賽 that he enters進入.
83
253832
3910
當然,他參加的比賽,
他大部分都有贏。
04:30
And we know he's the fastest最快的 on earth地球
because we have a chronometer天文
84
258393
3175
我們知道他跑得最快,因為我們
有精密計時器來測量速度。
04:33
to measure測量 his speed速度.
85
261592
1160
04:34
Well, what is interesting有趣 about him
is that when he wins,
86
262776
4119
關於他,有一點很有趣,
那就是當他贏的時候,
04:38
he doesn't do so by really significantly顯著
outrunning逃脫 his competition競爭.
87
266919
5502
他並不是明顯超越他的對手許多。
04:44
He's running賽跑 at most a percent百分 faster更快
than the one who loses失去 the race種族.
88
272445
4519
他最多是比輸家快 1% 而已。
04:49
And not only does he run only
one percent百分 faster更快 than the second第二 one,
89
277631
3638
他不僅只比第二名快 1%,
04:53
but he doesn't run
10 times faster更快 than I do --
90
281293
2849
他也沒有跑得比我快十倍——
04:56
and I'm not a good runner跑步者,
trust相信 me on that.
91
284166
2181
我不是個好跑者,相信我。
04:58
(Laughter笑聲)
92
286371
1197
(笑聲)
04:59
And every一切 time we are able能夠
to measure測量 performance性能,
93
287592
3502
每當我們能夠測量表現時,
05:03
we notice注意 something very interesting有趣;
94
291118
2050
我們就會注意到一件很有趣的事;
05:05
that is, performance性能 is bounded.
95
293192
2511
那就是,表現是受限的。
05:07
What it means手段 is that there are
no huge巨大 variations變化 in human人的 performance性能.
96
295727
3757
意思就是說,人類的表現
並沒有太大的變動。
05:11
It varies變化 only in a narrow狹窄 range範圍,
97
299508
3432
人類表現只在一個小範圍中變動,
05:14
and we do need the chronometer天文
to measure測量 the differences分歧.
98
302964
3279
我們的確需要很精密的
計時器才能測出差別。
05:18
This is not to say that we cannot不能
see the good from the best最好 ones那些,
99
306267
3168
這並不是說我們分不出
好和最好的差別,
05:21
but the best最好 ones那些
are very hard to distinguish區分.
100
309459
2733
而是很難分辨出最好的人。
05:24
And the problem問題 with that
is that most of us work in areas
101
312216
2992
那所造成的問題就是,
我們大部分人工作的領域中
05:27
where we do not have a chronometer天文
to gauge測量 our performance性能.
102
315232
3922
並沒有精密的計時器
來測量我們的表現。
05:31
Alright好的, performance性能 is bounded,
103
319178
1564
好,表現是受限的,
05:32
there are no huge巨大 differences分歧 between之間 us
when it comes to our performance性能.
104
320766
3532
我們之間在表現上
沒有很大的差異。
05:36
How about success成功?
105
324322
1157
那成功呢?
05:37
Well, let's switch開關 to
a different不同 topic話題, like books圖書.
106
325995
2930
咱們切換到一個不同的
主題,以書籍為例。
05:40
One measure測量 of success成功 for writers作家 is
how many許多 people read your work.
107
328949
5015
對作家來說,成功的測量值之一
就是有多少人讀你的作品。
05:46
And so when my previous以前 book
came來了 out in 2009,
108
334662
4410
我的上一本書在 2009 年推出時,
05:51
I was in Europe歐洲 talking with my editor編輯,
109
339096
1902
我在歐洲跟我的編輯談,
05:53
and I was interested有興趣:
Who is the competition競爭?
110
341022
2462
我很感興趣:競爭對手是誰?
05:56
And I had some fabulous極好 ones那些.
111
344253
2735
我有一些很棒的對手。
05:59
That week --
112
347012
1169
那週——
06:00
(Laughter笑聲)
113
348205
1024
(笑聲)
06:01
Dan Brown棕色 came來了 out with "The Lost丟失 Symbol象徵,"
114
349253
3557
丹布朗推出《失落的符號》,
《最後一首歌》也推出了,
06:04
and "The Last Song歌曲" also came來了 out,
115
352834
2982
尼可拉斯史派克的作品。
06:07
Nicholas尼古拉斯 Sparks斯帕克斯.
116
355840
1429
06:09
And when you just look at the list名單,
117
357293
2988
當你只是看列表,
06:12
you realize實現, you know, performance-wise性能方面,
there's hardly幾乎不 any difference區別
118
360305
3453
你會知道,就表現來說,
這些書和我的書之間
幾乎沒有什麼差別。
06:15
between之間 these books圖書 or mine.
119
363782
1598
06:17
Right?
120
365404
1175
對吧?
06:18
So maybe if Nicholas尼古拉斯 Sparks's火花的 team球隊
works作品 a little harder更難,
121
366603
4668
所以,也許尼可拉斯史派克的
團隊更努力一點,
06:23
he could easily容易 be number one,
122
371295
1722
他很容易成為第一名,
06:25
because it's almost幾乎 by accident事故
who ended結束 up at the top最佳.
123
373041
2898
因為誰會在頂端幾乎都是意外。
06:28
So I said, let's look at the numbers數字 --
I'm a data數據 person, right?
124
376486
3153
所以,我說,咱們來看看數字,
我是研究資料的人,對吧?
06:31
So let's see what were
the sales銷售 for Nicholas尼古拉斯 Sparks斯帕克斯.
125
379663
4318
咱們來看看尼可拉斯
史派克的銷售額如何。
06:36
And it turns out that
that opening開盤 weekend週末,
126
384005
2054
結果發現,在第一個週末,
06:38
Nicholas尼古拉斯 Sparks斯帕克斯 sold出售 more than
a hundred thousand copies副本,
127
386083
2975
尼可拉斯史派克
賣出了超過十萬本書,
06:41
which哪一個 is an amazing驚人 number.
128
389082
1705
這個數字很驚人。
06:42
You can actually其實 get to the top最佳
of the "New York紐約 Times" best-seller暢銷書 list名單
129
390811
3396
只要一週銷售一萬本,
就可以登上《紐約時報》
暢銷書排行榜了,
06:46
by selling銷售 10,000 copies副本 a week,
130
394231
2110
06:48
so he tenfold十倍 overcame克服了
what he needed需要 to be number one.
131
396365
3752
所以他超越了成為第一名
需要的數字足足十倍。
06:52
Yet然而 he wasn't number one.
132
400141
1430
但,他並非第一名。為什麼?
06:53
Why?
133
401595
1308
06:54
Because there was Dan Brown棕色,
who sold出售 1.2 million百萬 copies副本 that weekend週末.
134
402927
4078
因為還有丹布朗,那個週末,
他的書賣了一百二十萬本。
06:59
(Laughter笑聲)
135
407029
2136
(笑聲)
07:01
And the reason原因 I like this number
is because it shows節目 that, really,
136
409189
3971
我喜歡這些數字是因為,
它呈現出成功是沒有限制的,
07:05
when it comes to success成功, it's unbounded無界,
137
413184
3730
07:08
that the best最好 doesn't only get
slightly more than the second第二 best最好
138
416938
5861
第一名並不會只比第二名多一點,
07:14
but gets得到 orders命令 of magnitude大小 more,
139
422823
2697
而是用指數倍數來算,
07:17
because success成功 is a collective集體 measure測量.
140
425544
2794
因為成功是集體的測量值。
07:20
We give it to them, rather than
we earn it through通過 our performance性能.
141
428362
4376
我們把成功給他們,而不是
透過自己的表現贏來成功的。
07:24
So one of things we realized實現 is that
performance性能, what we do, is bounded,
142
432762
5376
我們了解到,表現,
也就是我們所做的,會受限,
07:30
but success成功, which哪一個 is
collective集體, is unbounded無界,
143
438162
2682
但成功,是集體的,沒有限制,
07:32
which哪一個 makes品牌 you wonder奇蹟:
144
440868
1312
這就會讓人納悶:
07:34
How do you get these
huge巨大 differences分歧 in success成功
145
442204
2911
如果在表現上只能有小小的差別,
07:37
when you have such這樣 tiny
differences分歧 in performance性能?
146
445139
2906
在成功上如何造成
這麼巨大的差別?
07:40
And recently最近, I published發表 a book
that I devoted忠誠 to that very question.
147
448537
3787
最近,我出版了一本書,
就是針對這個問題而寫的。
07:44
And they didn't give me enough足夠 time
to go over all of that,
148
452348
2839
他們沒有給我足夠的時間
去談所有這些,
07:47
so I'm going to go back
to the question of,
149
455211
2071
所以我要回到這個問題,
07:49
alright好的, you have success成功;
when should that appear出現?
150
457306
3135
好,你有成功;它會何時出現?
07:52
So let's go back to the party派對 spoiler擾流板
and ask ourselves我們自己:
151
460465
3758
咱們回到讓派對掃興的
那個人,問問我們自己:
07:57
Why did Einstein愛因斯坦 make
this ridiculous荒謬 statement聲明,
152
465215
3339
為什麼愛因斯坦
會說出那句荒謬的話,
08:00
that only before 30
you could actually其實 be creative創作的?
153
468578
3156
說只有在三十歲之前
你才可能真的有創意?
08:03
Well, because he looked看著 around himself他自己
and he saw all these fabulous極好 physicists物理學家
154
471758
4680
因為他看看自己身邊,
這些很出色的物理學家,
08:08
that created創建 quantum量子 mechanics機械學
and modern現代 physics物理,
155
476462
2587
發明了量子力學和近代物理的人,
08:11
and they were all in their 20s
and early 30s when they did so.
156
479073
3736
他們提出發明時都是
二十多歲或三十初頭。
08:15
And it's not only him.
157
483730
1220
不只是他而已。
08:16
It's not only observational觀察 bias偏壓,
158
484974
1623
這並不是觀察偏見,
08:18
because there's actually其實
a whole整個 field領域 of genius天才 research研究
159
486621
3997
因為有一整個領域的天才研究
08:22
that has documented記錄 the fact事實 that,
160
490642
2256
記錄這個事實,
08:24
if we look at the people
we admire欣賞 from the past過去
161
492922
3160
如果我們去看我們
所欣賞的過去人物,
08:28
and then look at what age年齡
they made製作 their biggest最大 contribution貢獻,
162
496106
3358
看看他們做出最大貢獻的年齡,
08:31
whether是否 that's music音樂,
whether是否 that's science科學,
163
499488
2096
不論是音樂、不論是科學、
08:33
whether是否 that's engineering工程,
164
501608
1619
不論是工程,
08:35
most of them tend趨向 to do so
in their 20s, 30s, early 40s at most.
165
503251
6123
大部分都是在二、三十歲時達成,
最多四十初頭。
08:41
But there's a problem問題
with this genius天才 research研究.
166
509914
2791
但這種天才研究有一個問題。
08:45
Well, first of all, it created創建
the impression印象 to us
167
513197
3280
首先,它讓我們有一種印象,
08:48
that creativity創造力 equals等於 youth青年,
168
516501
3479
認為創意等同年輕,
08:52
which哪一個 is painful痛苦, right?
169
520004
1610
這很痛,對吧?
08:53
(Laughter笑聲)
170
521638
1951
(笑聲)
08:55
And it also has an observational觀察 bias偏壓,
171
523613
4088
它也有存在觀察偏見,
08:59
because it only looks容貌 at geniuses天才
and doesn't look at ordinary普通 scientists科學家們
172
527725
4962
因為它只研究天才,
沒有研究一般科學家,
09:04
and doesn't look at all of us and ask,
173
532711
1965
且沒有研究我們所有人並問:
09:06
is it really true真正 that creativity創造力
vanishes消失 as we age年齡?
174
534700
3185
真的在我們年長之後
創意就消失嗎?
09:10
So that's exactly究竟 what we tried試著 to do,
175
538382
1877
那就是我們試圖要做的,
09:12
and this is important重要 for that
to actually其實 have references引用.
176
540283
3803
能真正有參考是很重要的。
09:16
So let's look at an ordinary普通
scientist科學家 like myself,
177
544110
2643
咱們來看看一般的
科學家,像我自己,
09:18
and let's look at my career事業.
178
546777
1522
來看看我的職涯。
09:20
So what you see here is all the papers文件
that I've published發表
179
548323
3202
這裡是我出版過的所有論文,
09:23
from my very first paper, in 1989;
I was still in Romania羅馬尼亞 when I did so,
180
551549
5115
我的第一篇論文在 1989 年出版,
當時我還在羅馬尼亞,
09:28
till直到 kind of this year.
181
556688
1593
直到今年。
09:30
And vertically垂直, you see
the impact碰撞 of the paper,
182
558940
2518
垂直來看,可以看到論文的影響,
09:33
that is, how many許多 citations引用,
183
561482
1403
也就是引用數,
09:34
how many許多 other papers文件
have been written書面 that cited引用 that work.
184
562909
3988
有多少篇其他論文
曾經引用過那篇文章。
如果去看那些,就會發現
我的職涯大致可以分為三個階段。
09:39
And when you look at that,
185
567397
1300
09:40
you see that my career事業
has roughly大致 three different不同 stages階段.
186
568721
2813
前十年,我很努力工作,
沒有很高的成就。
09:43
I had the first 10 years年份
where I had to work a lot
187
571558
2435
09:46
and I don't achieve實現 much.
188
574017
1276
似乎沒有人在乎我做什麼,對吧?
09:47
No one seems似乎 to care關心
about what I do, right?
189
575317
2118
09:49
There's hardly幾乎不 any impact碰撞.
190
577459
1681
幾乎沒有任何影響力。
09:51
(Laughter笑聲)
191
579164
1404
(笑聲)
09:52
That time, I was doing material材料 science科學,
192
580592
2887
那段時間,我在做材料科學,
09:55
and then I kind of discovered發現
for myself networks網絡
193
583503
3691
接著,我發現了網路,
09:59
and then started開始 publishing出版 in networks網絡.
194
587218
1947
接著開始出版網路的文章。
10:01
And that led from one high-impact重大影響
paper to the other one.
195
589189
3073
導致了一篇又一篇的
高影響力論文出現。
10:04
And it really felt good.
That was that stage階段 of my career事業.
196
592286
3104
感覺真的很好,我職涯的那個階段。
10:07
(Laughter笑聲)
197
595414
1282
(笑聲)
10:08
So the question is,
what happens發生 right now?
198
596720
3208
問題是,現在會發生什麼事?
10:12
And we don't know, because there
hasn't有沒有 been enough足夠 time passed通過 yet然而
199
600587
3239
我們不知道,因為
還沒有經過那麼多時間,
無法得知那些論文的影響會有
多大;那需要時間才能知道。
10:15
to actually其實 figure數字 out how much impact碰撞
those papers文件 will get;
200
603850
2987
10:18
it takes time to acquire獲得.
201
606861
1227
如果去看資料,似乎,愛因斯坦,
那些天才研究,是對的,
10:20
Well, when you look at the data數據,
202
608112
1569
10:21
it seems似乎 to be that Einstein愛因斯坦,
the genius天才 research研究, is right,
203
609705
2854
10:24
and I'm at that stage階段 of my career事業.
204
612583
1811
我正在職涯的那個階段。
10:26
(Laughter笑聲)
205
614418
2308
(笑聲)
10:28
So we said, OK, let's figure數字 out
how does this really happen發生,
206
616750
5974
所以,我們說,好,
咱們來研究看看這是如何發生的,
10:34
first in science科學.
207
622748
1778
先看科學。
10:36
And in order訂購 not to have
the selection選擇 bias偏壓,
208
624550
3632
為了避免選樣偏誤,
10:40
to look only at geniuses天才,
209
628206
1337
只去研究天才,
10:41
we ended結束 up reconstructing重建 the career事業
of every一切 single scientist科學家
210
629567
3716
我們最後為每一位
科學家都重建了職涯,
10:45
from 1900 till直到 today今天
211
633307
2502
從 1900 年至今的所有科學家,
10:47
and finding發現 for all scientists科學家們
what was their personal個人 best最好,
212
635833
3712
並針對所有科學家,
找出他們個人的顛峰時期,
10:51
whether是否 they got the Nobel諾貝爾 Prize
or they never did,
213
639569
2812
不論他們是否有得到諾貝爾獎,
10:54
or no one knows知道 what they did,
even their personal個人 best最好.
214
642405
3407
或者即使他們在顛峰時
也沒有人知道他們做了什麼。
10:57
And that's what you see in this slide滑動.
215
645836
1915
那就是這張投影片呈現的。
10:59
Each line is a career事業,
216
647775
1573
每一條線就是一段職涯,
11:01
and when you have a light blue藍色 dot
on the top最佳 of that career事業,
217
649372
3003
淡藍色的點就是那職涯的顛峰,
11:04
it says that was their personal個人 best最好.
218
652399
2040
那是他們個人的最佳狀態。
問題是,他們何時
有最重大的發現?
11:06
And the question is,
219
654463
1155
11:07
when did they actually其實 make
their biggest最大 discovery發現?
220
655642
3568
11:11
To quantify量化 that,
221
659234
1165
為了量化它,我們去研究
做出最重大發現的機率,
11:12
we look at what's the probability可能性
that you make your biggest最大 discovery發現,
222
660423
3376
比如,你的職涯開始之後的
一、二、三,或十年?
11:15
let's say, one, two, three
or 10 years年份 into your career事業?
223
663823
2672
11:18
We're not looking at real真實 age年齡.
224
666519
1480
我們研究的不是真實年齡,
而是所謂的「學術年齡」。
11:20
We're looking at
what we call "academic學術的 age年齡."
225
668023
2134
11:22
Your academic學術的 age年齡 starts啟動
when you publish發布 your first papers文件.
226
670181
3250
你的學術年齡開始於
你的第一篇論文被刊出時。
11:25
I know some of you are still babies嬰兒.
227
673455
1779
我知道在座還有一些嬰兒。
11:27
(Laughter笑聲)
228
675258
1397
(笑聲)
11:28
So let's look at the probability可能性
229
676679
2706
咱們來看看你出版
最有影響力的論文的機率。
11:31
that you publish發布
your highest-impact最高影響 paper.
230
679409
2066
11:33
And what you see is, indeed確實,
the genius天才 research研究 is right.
231
681499
3071
各位可以看見,的確,
天才研究是對的。
11:36
Most scientists科學家們 tend趨向 to publish發布
their highest-impact最高影響 paper
232
684594
3024
大部分的科學家傾向會在
職涯的前十、十五年
11:39
in the first 10, 15 years年份 in their career事業,
233
687642
2899
出版他們最有影響力的論文,
11:42
and it tanks坦克 after that.
234
690565
3133
之後就開始下滑。
11:45
It tanks坦克 so fast快速 that I'm about --
I'm exactly究竟 30 years年份 into my career事業,
235
693722
5107
下滑的速度很快,我大約——
我現在正在我職涯的三十年,
11:50
and the chance機會 that I will publish發布 a paper
that would have a higher更高 impact碰撞
236
698853
3540
我有可能出版一篇
比我以前所有論文
都更有影響力的論文的機率,
11:54
than anything that I did before
237
702417
1940
11:56
is less than one percent百分.
238
704381
1353
低於 1%。
11:57
I am in that stage階段 of my career事業,
according根據 to this data數據.
239
705758
3049
根據這些資料,我現在
就處在職涯的那個階段。
12:01
But there's a problem問題 with that.
240
709648
1843
但有個問題。
12:03
We're not doing controls控制 properly正確.
241
711515
3675
我們沒有把控制做好。
12:07
So the control控制 would be,
242
715214
1417
控制指的是,
12:08
what would a scientist科學家 look like
who makes品牌 random隨機 contribution貢獻 to science科學?
243
716655
4607
對科學做出隨機貢獻的科學家
看起來會是什麼樣子的?
12:13
Or what is the productivity生產率
of the scientist科學家?
244
721286
2995
或,那位科學家的產能會是什麼?
12:16
When do they write papers文件?
245
724305
2006
他們何時撰寫論文?
12:18
So we measured測量 the productivity生產率,
246
726335
2444
所以我們測量了產能,
12:20
and amazingly令人驚訝, the productivity生產率,
247
728803
2052
很驚人的是,產能,
12:22
your likelihood可能性 of writing寫作 a paper
in year one, 10 or 20 in your career事業,
248
730879
4131
你在職涯第一、十、二十年
寫一篇論文的可能性,
12:27
is indistinguishable區分 from the likelihood可能性
of having the impact碰撞
249
735034
3606
很接近在你職涯的那個部分
有所影響的可能性。
12:30
in that part部分 of your career事業.
250
738664
1775
12:33
And to make a long story故事 short,
251
741026
1783
長話短說,
12:34
after lots of statistical統計 tests測試,
there's only one explanation說明 for that,
252
742833
4228
經過許多統計檢定,
只找出了一個解釋,
12:39
that really, the way we scientists科學家們 work
253
747085
2894
那就是,我們科學家工作的方式,
12:42
is that every一切 single paper we write,
every一切 project項目 we do,
254
750003
3633
我們所寫的每一篇論文,
我們所做的每一個研究計畫,
12:45
has exactly究竟 the same相同 chance機會
of being存在 our personal個人 best最好.
255
753660
4160
都有同等的機會成為
我們個人的最佳作。
12:49
That is, discovery發現 is like
a lottery抽獎 ticket.
256
757844
4953
也就是說,探究
就像是買彩券一樣。
12:54
And the more lottery抽獎 tickets門票 we buy購買,
257
762821
2351
我們買越多彩券,
12:57
the higher更高 our chances機會.
258
765196
1507
機會就越高。
12:58
And it happens發生 to be so
259
766727
1559
只是剛好
13:00
that most scientists科學家們 buy購買
most of their lottery抽獎 tickets門票
260
768310
2719
大部分的科學家是在
職涯的前十、十五年
13:03
in the first 10, 15 years年份 of their career事業,
261
771053
2460
買了他們大部分的彩券而已,
13:05
and after that,
their productivity生產率 decreases降低.
262
773537
3413
那之後,他們的產能就下降了。
13:09
They're not buying購買
any more lottery抽獎 tickets門票.
263
777411
2084
他們不再買更多的彩券。
13:11
So it looks容貌 as if
they would not be creative創作的.
264
779519
3444
所以看起來就好像是
他們沒有創意了。
13:14
In reality現實, they stopped停止 trying.
265
782987
1999
現實上,他們只是沒再嘗試。
13:17
So when we actually其實 put the data數據 together一起,
the conclusion結論 is very simple簡單:
266
785509
3915
所以當我們把資料拼在一起,
結論就非常簡單:
13:21
success成功 can come at any time.
267
789448
2331
成功隨時都可能到來。
13:23
It could be your very first
or very last paper of your career事業.
268
791803
3735
可能是你職涯中的第一篇
或最後一篇論文。
13:27
It's totally完全 random隨機
in the space空間 of the projects項目.
269
795562
4288
在研究計畫的空間中,
這完全是隨機的。
13:31
It is the productivity生產率 that changes變化.
270
799874
1931
改變的是產能。
13:33
Let me illustrate說明 that.
271
801829
1252
讓我說明一下。
13:35
Here is Frank坦率 Wilczek威爾切克,
who got the Nobel諾貝爾 Prize in Physics物理
272
803105
3269
這是弗朗克韋爾切克,
得過諾貝爾物理獎,
13:38
for the very first paper he ever wrote
in his career事業 as a graduate畢業 student學生.
273
806398
4101
得獎的是他研究生
職涯中的第一篇論文。
13:42
(Laughter笑聲)
274
810523
1007
(笑聲)
13:43
More interesting有趣 is John約翰 Fenn芬恩,
275
811554
3218
更有趣的是約翰芬恩,
13:46
who, at age年齡 70, was forcefully有力地 retired退休
by Yale耶魯 University大學.
276
814796
4598
他在七十歲時被迫
從耶魯大學退休。
13:51
They shut關閉 his lab實驗室 down,
277
819418
2056
他們關掉了他的實驗室,
13:53
and at that moment時刻, he moved移動
to Virginia弗吉尼亞州 Commonwealth英聯邦 University大學,
278
821498
3666
那時,他搬到維吉尼亞聯邦大學,
13:57
opened打開 another另一個 lab實驗室,
279
825188
1786
開了另一間實驗室,
13:58
and it is there, at age年齡 72,
that he published發表 a paper
280
826998
3033
在那裡,七十二歲時,
他刊出了一篇論文,
14:02
for which哪一個, 15 years年份 later後來, he got
the Nobel諾貝爾 Prize for Chemistry化學.
281
830055
3845
十五年後,那篇論文
讓他得了諾貝爾化學獎。
14:06
And you think, OK,
well, science科學 is special特別,
282
834940
3042
你們會想,好,科學是比較特別,
14:10
but what about other areas
where we need to be creative創作的?
283
838006
3463
但其他需要有創意的領域呢?
14:13
So let me take another另一個
typical典型 example: entrepreneurship創業.
284
841493
4936
讓我舉另一個很典型的例子:
企業家精神。
14:18
Silicon Valley,
285
846834
1579
矽谷,
14:20
the land土地 of the youth青年, right?
286
848437
2066
年輕人之地,對吧?
14:22
And indeed確實, when you look at it,
287
850527
1595
的確,當你去看它時,
14:24
you realize實現 that the biggest最大 awards獎項,
the TechCrunchTechCrunch的 Awards獎項 and other awards獎項,
288
852146
4642
你會發現,最大的獎項
TechCrunch 獎及其他獎項
14:28
are all going to people
289
856812
2173
得獎人平均都是
14:31
whose誰的 average平均 age年齡
is late晚了 20s, very early 30s.
290
859009
5015
快要三十歲或三十歲初頭的人。
14:36
You look at who the VCs風險投資 give the money to,
some of the biggest最大 VC虛電路 firms公司 --
291
864465
5602
可以去看創投公司把錢給誰,
有些最大的創投公司——
14:42
all people in their early 30s.
292
870091
2241
都是三十初頭的人。
當然,我們知道;
14:44
Which哪一個, of course課程, we know;
293
872951
1265
14:46
there is this ethos社會思潮 in Silicon Valley
that youth青年 equals等於 success成功.
294
874240
4453
在矽谷有一種風氣,
就是年輕等同成功。
14:51
Not when you look at the data數據,
295
879653
2183
資料可不是這麼說的。
14:53
because it's not only
about forming成型 a company公司 --
296
881860
2304
因為重點並不只是成立公司——
成立公司就像是產能,
嘗試、嘗試、嘗試——
14:56
forming成型 a company公司 is like productivity生產率,
trying, trying, trying --
297
884188
3140
14:59
when you look at which哪一個
of these individuals個人 actually其實 put out
298
887352
3484
如果你只是去看
這些人當中有誰設立了
15:02
a successful成功 company公司, a successful成功 exit出口.
299
890860
2782
成功的公司、成功的退場。
15:05
And recently最近, some of our colleagues同事
looked看著 at exactly究竟 that question.
300
893666
3720
最近,我們的一些同事
就在探究這個問題。
15:09
And it turns out that yes,
those in the 20s and 30s
301
897410
3156
結果發現,是的,二、三十歲的人
15:12
put out a huge巨大 number of companies公司,
form形成 lots of companies公司,
302
900590
3348
成立了很多公司,
創辦了很多公司,
15:15
but most of them go bust胸圍.
303
903962
1531
但大部分都破產收場。
15:18
And when you look at the successful成功 exits退出,
what you see in this particular特定 plot情節,
304
906089
4195
如果去看成功退場的公司,
各位在這張圖上可以看到,
15:22
the older舊的 you are, the more likely容易 that
you will actually其實 hit擊中 the stock股票 market市場
305
910308
3695
你的年紀越大,
你就越有可能上市,
15:26
or the sell the company公司 successfully順利.
306
914027
2312
或者成功把公司賣掉。
15:28
This is so strong強大, actually其實,
that if you are in the 50s,
307
916847
3113
這個機率強到,
如果你是五十幾歲,
15:31
you are twice兩次 as likely容易
to actually其實 have a successful成功 exit出口
308
919984
3588
你有可能成功退場的機會,
是你三十幾歲時的兩倍。
15:35
than if you are in your 30s.
309
923596
1890
15:38
(Applause掌聲)
310
926613
4325
(掌聲)
15:43
So in the end結束, what is it
that we see, actually其實?
311
931645
3009
所以,最後,這些到底是什麼意思?
15:46
What we see is that creativity創造力 has no age年齡.
312
934678
4083
我們看到的是,創意不分年齡。
15:50
Productivity生產率 does, right?
313
938785
2202
產能倒是會有差,對吧?
15:53
Which哪一個 is telling告訴 me that
at the end結束 of the day,
314
941424
4135
這就是告訴我,到頭來,
15:57
if you keep trying --
315
945583
2000
如果你繼續嘗試——
15:59
(Laughter笑聲)
316
947607
2403
(笑聲)
16:02
you could still succeed成功
and succeed成功 over and over.
317
950034
3572
你仍然有可能成功,且一再成功。
16:05
So my conclusion結論 is very simple簡單:
318
953630
2391
所以我的結論非常簡單:
16:08
I am off the stage階段, back in my lab實驗室.
319
956045
2093
我要下台,回到我的實驗室了。
16:10
Thank you.
320
958162
1171
謝謝。
16:11
(Applause掌聲)
321
959357
3309
(掌聲)
Translated by Lilian Chiu
Reviewed by Sharon Hsiao

▲Back to top

ABOUT THE SPEAKER
Albert-László Barabási - Network scientist
A pioneer in network science, Albert-László Barabási uncovers the hidden order behind complex systems.

Why you should listen

Albert-László Barabási is fascinated by a wide range of topics, from the structure of the brain and treating diseases with network medicine to the emergence of success in art and how science really works. His work uses the quantitative tools of network science, a research field that he pioneered, and led to the discovery of scale-free networks, helping explain the emergence of many natural, technological and social networks.

Barabási is the Robert Gray Dodge Professor of Network Science at Northeastern University and holds an appointment in the Department of Medicine at Harvard Medical School. He splits his time with Budapest, where he runs a European Research Council project at Central European University. A Hungarian born native of Transylvania, Romania, he received his masters in theoretical physics at the Eötvös University in Budapest, Hungary and his PhD three years later at Boston University.

Barabási’s latest book is The Formula: The Universal Laws of Success. He is also the author of Network ScienceLinked and Bursts. He co-edited Network Medicine and The Structure and Dynamics of Networks. His books have been translated into over twenty languages.

More profile about the speaker
Albert-László Barabási | Speaker | TED.com

Data provided by TED.

This site was created in May 2015 and the last update was on January 12, 2020. It will no longer be updated.

We are currently creating a new site called "eng.lish.video" and would be grateful if you could access it.

If you have any questions or suggestions, please feel free to write comments in your language on the contact form.

Privacy Policy

Developer's Blog

Buy Me A Coffee