ABOUT THE SPEAKER
Kwabena Boahen - Bioengineer
Kwabena Boahen wants to understand how brains work -- and to build a computer that works like the brain by reverse-engineering the nervous system. His group at Stanford is developing Neurogrid, a hardware platform that will emulate the cortex’s inner workings.

Why you should listen

Kwabena Boahen is the principal investigator at the Brains in Silicon lab at Stanford. He writes of himself:

Being a scientist at heart, I want to understand how cognition arises from neuronal properties. Being an engineer by training, I am using silicon integrated circuits to emulate the way neurons compute, linking the seemingly disparate fields of electronics and computer science with neurobiology and medicine.

My group's contributions to the field of neuromorphic engineering include a silicon retina that could be used to give the blind sight and a self-organizing chip that emulates the way the developing brain wires itself up. Our work is widely recognized, with over sixty publications, including a cover story in the May 2005 issue of Scientific American.

My current research interest is building a simulation platform that will enable the cortex's inner workings to be modeled in detail. While progress has been made linking neuronal properties to brain rhythms, the task of scaling up these models to link neuronal properties to cognition still remains. Making the supercomputer-performance required affordable is the goal of our Neurogrid project. It is at the vanguard of a profound shift in computing, away from the sequential, step-by-step Von Neumann machine towards a parallel, interconnected architecture more like the brain.

More profile about the speaker
Kwabena Boahen | Speaker | TED.com
TEDGlobal 2007

Kwabena Boahen: A computer that works like the brain

Kwabena Boahen o računalu koje funkcionira poput mozga

Filmed:
718,375 views

Istraživač Kwabena Boahen traži načine kako oponašati super računalne moći mozga u silikonu -- jer zbrkani, suvišni procesi u našim glavama zapravo čine malo, lagano, super brzo računalo.
- Bioengineer
Kwabena Boahen wants to understand how brains work -- and to build a computer that works like the brain by reverse-engineering the nervous system. His group at Stanford is developing Neurogrid, a hardware platform that will emulate the cortex’s inner workings. Full bio

Double-click the English transcript below to play the video.

00:18
I got my first computerračunalo when I was a teenagertinejdžer growingrastući up in AccraAccra,
0
0
5000
Dobio sam svoje prvo računalo kada sam bio tinejdžer i odrastao u Akri
00:23
and it was a really coolsvjež deviceuređaj.
1
5000
3000
i to je bila zbilja cool naprava.
00:26
You could playigrati gamesigre with it. You could programprogram it in BASICBASIC.
2
8000
5000
Mogao si igrati igre na njemu. Mogao si programirati u BASIC-u.
00:31
And I was fascinatedopčinjen.
3
13000
2000
I bio sam fasciniran.
00:33
So I wentotišao into the libraryknjižnica to figurelik out how did this thing work.
4
15000
6000
Dakle, otišao sam u knjižnicu da shvatim kako ta stvar radi.
00:39
I readčitati about how the CPUCENTRALNA PROCESORSKA JEDINICA is constantlykonstantno shufflingmiješanje datapodaci back and forthdalje
5
21000
5000
Čitao sam kako CPU stalno prebacuje podatke naprijed natrag
00:44
betweenizmeđu the memorymemorija, the RAMRAM-A and the ALUALU,
6
26000
4000
kroz memoriju, o RAM-u i o ALU-u,
00:48
the arithmeticaritmetika and logiclogika unitjedinica.
7
30000
2000
o aritmetičkoj i logaritamskoj jedinici.
00:50
And I thought to myselfsebe, this CPUCENTRALNA PROCESORSKA JEDINICA really has to work like crazylud
8
32000
4000
I mislio sam si: ovaj CPU zbilja mora raditi kao lud
00:54
just to keep all this datapodaci movingkreće throughkroz the systemsistem.
9
36000
4000
samo da održi sve te podatke koji se pomiču kroz sistem.
00:58
But nobodynitko was really worriedzabrinut about this.
10
40000
3000
Ali, nitko se zapravo nije brinuo oko toga.
01:01
When computersračunala were first introduceduvedena,
11
43000
2000
Kada su računala prvi puta predstavljena,
01:03
they were said to be a millionmilijuna timesputa fasterbrže than neuronsneuroni.
12
45000
3000
rečeno je da su milijun puta brži od neurona.
01:06
People were really exciteduzbuđen. They thought they would soonuskoro outstripnadmašiti
13
48000
5000
Ljudi su zbilja bili uzbuđeni. Mislili su da će uskoro nadmašiti
01:11
the capacitykapacitet of the brainmozak.
14
53000
3000
kapacitete mozga.
01:14
This is a quotecitat, actuallyzapravo, from AlanAlan TuringTuringov:
15
56000
3000
Ovo je zapravo citat Alana Turinga:
01:17
"In 30 yearsgodina, it will be as easylako to askpitati a computerračunalo a questionpitanje
16
59000
4000
„Za 30 godina biti će jednako lako postaviti računalu pitanje
01:21
as to askpitati a personosoba."
17
63000
2000
kao što je pitati čovjeka.“
01:23
This was in 1946. And now, in 2007, it's still not truepravi.
18
65000
7000
To je bilo 1946. I sada, u 2007. To još uvjek nije točno.
01:30
And so, the questionpitanje is, why aren'tnisu we really seeingvidim
19
72000
4000
Dakle, pitanje jest, zašto ne vidimo
01:34
this kindljubazan of powervlast in computersračunala that we see in the brainmozak?
20
76000
4000
istu vrstu moći u računalima kakvu vidimo u mozgu?
01:38
What people didn't realizeostvariti, and I'm just beginningpočetak to realizeostvariti right now,
21
80000
4000
Ono što ljudi nisu shvatili, a ja tek sad počinjem shvaćati,
01:42
is that we payplatiti a hugeogroman pricecijena for the speedubrzati
22
84000
2000
jest da plaćamo golemu cijenu za brzinu
01:44
that we claimzahtjev is a bigvelika advantageprednost of these computersračunala.
23
86000
4000
koja je navodno velika prednost tim računalima.
01:48
Let's take a look at some numbersbrojevi.
24
90000
2000
Pogledajmo neke brojeve.
01:50
This is BluePlava GeneGene, the fastestnajbrži computerračunalo in the worldsvijet.
25
92000
4000
Ovo je Blue Gene, najbrže računalo na svijetu.
01:54
It's got 120,000 processorsprocesori; they can basicallyu osnovi processpostupak
26
96000
5000
Ima 120.000 procesora, oni u principu mogu procesuirati
01:59
10 quadrillionquadrillion bitskomadići of informationinformacija perpo seconddrugi.
27
101000
3000
10 kvadrilijon bita informacije po sekundi.
02:02
That's 10 to the sixteenthšesnaesta. And they consumepojesti one and a halfpola megawattsmegavata of powervlast.
28
104000
7000
To je 10 na šesnaestu. I oni troše jedan i pol megavata snage.
02:09
So that would be really great, if you could adddodati that
29
111000
3000
To bi bilo zbilja dobro, dodati to kapacitetu
02:12
to the productionproizvodnja capacitykapacitet in TanzaniaTanzanija.
30
114000
2000
proizvodnje Tanzanije.
02:14
It would really boostpoticaj the economyEkonomija.
31
116000
2000
To bi im povećalo proizvodnju.
02:16
Just to go back to the StatesDržava,
32
118000
4000
Samo da se vratimo u SAD,
02:20
if you translatePrevedi the amountiznos of powervlast or electricityelektricitet
33
122000
2000
ako prevedete količinu elektriciteta
02:22
this computerračunalo usesnamjene to the amountiznos of householdsdomaćinstva in the StatesDržava,
34
124000
3000
koji ovo računalo koristi na količini kućanstava u SAD-u,
02:25
you get 1,200 householdsdomaćinstva in the U.S.
35
127000
4000
dobijete 1.200 kućanstava.
02:29
That's how much powervlast this computerračunalo usesnamjene.
36
131000
2000
Toliko koristi ovo računalo.
02:31
Now, let's compareusporediti this with the brainmozak.
37
133000
3000
Sada, usporedimo to s mozgom.
02:34
This is a pictureslika of, actuallyzapravo RoryRory Sayres'Sayres' girlfriend'sdjevojke brainmozak.
38
136000
5000
Ovo je zapravo slika mozga cure Roryja Sayersa.
02:39
RoryRory is a graduatediplomirani studentstudent at StanfordStanford.
39
141000
2000
Rory je apsolvent na Stanfordu.
02:41
He studiesstudije the brainmozak usingkoristeći MRIMRI, and he claimszahtjevi that
40
143000
4000
On proučava mozak koristeći magnetsku rezonanciju, i tvrdi
02:45
this is the mostnajviše beautifullijep brainmozak that he has ever scannedskeniran.
41
147000
3000
da je ovo najljepši mozak koji je ikada skenirao.
02:48
(LaughterSmijeh)
42
150000
2000
(Smijeh)
02:50
So that's truepravi love, right there.
43
152000
3000
Eto, to je prava ljubav.
02:53
Now, how much computationračunanje does the brainmozak do?
44
155000
3000
Koliko izračuna radi mozak?
02:56
I estimateprocjena 10 to the 16 bitskomadići perpo seconddrugi,
45
158000
2000
Ja procjenjujem 10 na šesnaestu bita po sekundi,
02:58
whichkoji is actuallyzapravo about very similarsličan to what BluePlava GeneGene does.
46
160000
4000
što je otprilike slično koliko i Blue Gene.
03:02
So that's the questionpitanje. The questionpitanje is, how much --
47
164000
2000
Dakle, to je pitanje. Pitanje je, koliko --
03:04
they are doing a similarsličan amountiznos of processingobrada, similarsličan amountiznos of datapodaci --
48
166000
3000
oni rade sličnu količinu procesiranja, sličnu količinu podataka --
03:07
the questionpitanje is how much energyenergija or electricityelektricitet does the brainmozak use?
49
169000
5000
pitanje je koliko energije ili elektriciteta mozak koristi?
03:12
And it's actuallyzapravo as much as your laptoplaptop computerračunalo:
50
174000
3000
I, to je zapravo onoliko koliko troši vaš laptop:
03:15
it's just 10 wattsvata.
51
177000
2000
to je samo 10 W.
03:17
So what we are doing right now with computersračunala
52
179000
3000
Dakle, što radimo s računalima
03:20
with the energyenergija consumedkonzumira by 1,200 houseskuća,
53
182000
3000
koji troše energije kao 1.200 kućanstava,
03:23
the brainmozak is doing with the energyenergija consumedkonzumira by your laptoplaptop.
54
185000
5000
mozak radi s utroškom energije koji ima vaš laptop.
03:28
So the questionpitanje is, how is the brainmozak ableu stanju to achievepostići this kindljubazan of efficiencyefikasnost?
55
190000
3000
Pitanje jest kako mozak uspjeva postići ovu razinu učinkovitosti?
03:31
And let me just summarizerezimirati. So the bottomdno linecrta:
56
193000
2000
Dozvolite mi da sažmem. Na kraju krajeva,
03:33
the brainmozak processesprocesi informationinformacija usingkoristeći 100,000 timesputa lessmanje energyenergija
57
195000
4000
mozak procesira informacije koristeći 100.000 puta manje energije
03:37
than we do right now with this computerračunalo technologytehnologija that we have.
58
199000
4000
nego što mi trošimo s ovom računalnom tehnologijom.
03:41
How is the brainmozak ableu stanju to do this?
59
203000
2000
Kako to mozak uspijeva?
03:43
Let's just take a look about how the brainmozak worksdjela,
60
205000
3000
Pogledajmo samo način na koji mozak radi,
03:46
and then I'll compareusporediti that with how computersračunala work.
61
208000
4000
i onda ću to usporediti s radom računala.
03:50
So, this clipspojnica is from the PBSPBS seriesniz, "The SecretTajna Life of the BrainMozak."
62
212000
4000
Ovo je video iz PBS-ove serije „Tajni život Mozga“.
03:54
It showspokazuje you these cellsStanice that processpostupak informationinformacija.
63
216000
3000
Pokazuje vam stanice koje procesiraju informacije.
03:57
They are calledzvao neuronsneuroni.
64
219000
1000
One se nazivaju neuroni.
03:58
They sendposlati little pulsesimpulsa of electricityelektricitet down theirnjihov processesprocesi to eachsvaki other,
65
220000
6000
Oni odašilju male pulsove elektriciteta niz njihove procesore jedne drugima
04:04
and where they contactkontakt eachsvaki other, those little pulsesimpulsa
66
226000
2000
i na mjestima gdje se dodiruju ovi mali impulsi
04:06
of electricityelektricitet can jumpskok from one neuronneuron to the other.
67
228000
2000
mogu skočiti s jednog neurona na drugi.
04:08
That processpostupak is calledzvao a synapsesinapsa.
68
230000
3000
Taj je proces nazvan sinapsa.
04:11
You've got this hugeogroman networkmreža of cellsStanice interactingu interakciji with eachsvaki other --
69
233000
2000
Imate ovu golemu mrežu stanica koje vrše interakcije jedne s drugima --
04:13
about 100 millionmilijuna of them,
70
235000
2000
oko 100 milijuna njih,
04:15
sendingslanje about 10 quadrillionquadrillion of these pulsesimpulsa around everysvaki seconddrugi.
71
237000
4000
koje šalju oko 10 kvadrilijuna pulseva svake sekunde.
04:19
And that's basicallyu osnovi what's going on in your brainmozak right now as you're watchinggledanje this.
72
241000
6000
I to je otprilike što se događa u vašem mozgu sada dok ovo gledate.
04:25
How does that compareusporediti with the way computersračunala work?
73
247000
2000
Kako se to može usporediti s načinom na koji radi računalo?
04:27
In the computerračunalo, you have all the datapodaci
74
249000
2000
U računalu svi podaci
04:29
going throughkroz the centralsredišnji processingobrada unitjedinica,
75
251000
2000
prolaze kroz centralnu procesorsku jedinicu,
04:31
and any piecekomad of datapodaci basicallyu osnovi has to go throughkroz that bottleneckusko grlo,
76
253000
3000
i svaki djelić podatka u osnovi mora proći kroz to usko grlo,
04:34
whereasdok in the brainmozak, what you have is these neuronsneuroni,
77
256000
4000
dok u mozgu imate neurone,
04:38
and the datapodaci just really flowsteče throughkroz a networkmreža of connectionsveze
78
260000
4000
i podatci jednostavno teku kroz mrežu spojeva
04:42
amongmeđu the neuronsneuroni. There's no bottleneckusko grlo here.
79
264000
2000
među neuronima. Nema uskog grla.
04:44
It's really a networkmreža in the literaldoslovan senseosjećaj of the wordriječ.
80
266000
4000
To je zaista mreža u doslovnom smislu riječi.
04:48
The netneto is doing the work in the brainmozak.
81
270000
4000
Mreža radi posao za vaš mozak.
04:52
If you just look at these two picturesSlike,
82
274000
2000
I ako samo pogledate ove dvije slike,
04:54
these kindljubazan of wordsriječi poppop into your mindum.
83
276000
2000
ove riječi uskaču u vaš mozak.
04:56
This is serialserijski and it's rigidkrute -- it's like carsautomobili on a freewayAutocesta,
84
278000
4000
Ovo je serijski spojeno, i kruto je, kao auti na autocesti,
05:00
everything has to happendogoditi se in locksteplockstep --
85
282000
3000
i sve se mora dogoditi u pravilnom razmaku --
05:03
whereasdok this is parallelparalelno and it's fluidtekućine.
86
285000
2000
dok je ovo paralelno i fluidno.
05:05
InformationInformacije processingobrada is very dynamicdinamičan and adaptiveprilagodljiv.
87
287000
3000
Procesiranje informacija je jako dinamično i prilagodljivo.
05:08
So I'm not the first to figurelik this out. This is a quotecitat from BrianBrian EnoEno:
88
290000
4000
Nisam prvi koji je to shvatio. Ovo je citat Briana Ena:
05:12
"the problemproblem with computersračunala is that there is not enoughdovoljno AfricaAfrika in them."
89
294000
4000
„Problem s računalima jest to što u njima nema dosta Afrike“.
05:16
(LaughterSmijeh)
90
298000
6000
(Smijeh)
05:22
BrianBrian actuallyzapravo said this in 1995.
91
304000
3000
Brian je zapravo to rekao 1995.
05:25
And nobodynitko was listeningslušanje then,
92
307000
3000
i onda ga nitko nije slušao,
05:28
but now people are beginningpočetak to listen
93
310000
2000
ali sada ljudi počinju slušati
05:30
because there's a pressingpritiskom, technologicaltehnološki problemproblem that we facelice.
94
312000
5000
jer postoji veliki tehnološki problem s kojim se suočavamo.
05:35
And I'll just take you throughkroz that a little bitbit in the nextSljedeći fewnekoliko slidesslajdova.
95
317000
5000
I sada ću vas pomalo provesti kroz to u sljedećih nekoliko slajdova.
05:40
This is -- it's actuallyzapravo really this remarkableizvanredan convergencekonvergencija
96
322000
4000
Ovo je zapravo izvanredna konvergencija
05:44
betweenizmeđu the devicesuređaji that we use to computeprebrojavati in computersračunala,
97
326000
5000
između naprava koje koristimo da računaju u računalima
05:49
and the devicesuređaji that our brainsmozak use to computeprebrojavati.
98
331000
4000
i naprava koje koriste naši mozgovi.
05:53
The devicesuređaji that computersračunala use are what's calledzvao a transistortranzistor.
99
335000
4000
Naprava koju računala koriste naziva se tranzistor.
05:57
This electrodeelektroda here, calledzvao the gatevrata, controlskontrole the flowteći of currentstruja
100
339000
4000
Ova elektroda ovdje -- naziva se prekidač i kontrolira tok struje
06:01
from the sourceizvor to the drainodvod -- these two electrodeselektrode.
101
343000
3000
od izvora do potrošača -- ovih dviju elektroda.
06:04
And that currentstruja, electricalelektrična currentstruja,
102
346000
2000
A struja -- električna struja --
06:06
is carriedprenosi by electronselektroni, just like in your housekuća and so on.
103
348000
6000
je nošena elektronima baš kao u vašoj kući i tako dalje.
06:12
And what you have here is, when you actuallyzapravo turnskretanje on the gatevrata,
104
354000
5000
Ono što imamo ovdje jest, kada upalimo prekidač,
06:17
you get an increasepovećati in the amountiznos of currentstruja, and you get a steadypostojan flowteći of currentstruja.
105
359000
4000
povećavamo količinu struje i dobivamo stalan tok struje.
06:21
And when you turnskretanje off the gatevrata, there's no currentstruja flowingtekući throughkroz the deviceuređaj.
106
363000
4000
A kada ugasimo prekidač, nema struje koja teče kroz napravu.
06:25
Your computerračunalo usesnamjene this presenceprisutnost of currentstruja to representpredstavljati a one,
107
367000
5000
Vaše računalo koristi prisutnost struje da predstavlja jedinicu,
06:30
and the absenceodsutnost of currentstruja to representpredstavljati a zeronula.
108
372000
4000
a nedostatak struje da predstavi nulu.
06:34
Now, what's happeningdogađa is that as transistorstranzistori are gettinguzimajući smallermanji and smallermanji and smallermanji,
109
376000
6000
Ono što se događa jest da tranzistori postaju sve manji, i manji, i manji
06:40
they no longerviše behaveponašati like this.
110
382000
2000
i više se ne ponašaju tako.
06:42
In factčinjenica, they are startingpolazeći to behaveponašati like the deviceuređaj that neuronsneuroni use to computeprebrojavati,
111
384000
5000
U stvari počnu se ponašati kao naprave koje neuroni koriste za računanje,
06:47
whichkoji is calledzvao an ioniona channelkanal.
112
389000
2000
koji se nazivaju ionski kanali.
06:49
And this is a little proteinprotein moleculemolekula.
113
391000
2000
I ovo je mala molekula proteina.
06:51
I mean, neuronsneuroni have thousandstisuća of these.
114
393000
4000
Mislim, neuroni imaju tisuće njih.
06:55
And it sitssjedi in the membranemembrana of the cellćelija and it's got a porepora in it.
115
397000
4000
I oni leže u membrani stanice koja ima poru u sebi.
06:59
And these are individualpojedinac potassiumkalij ionsioni
116
401000
3000
Ovo su pojedini ioni kalija
07:02
that are flowingtekući throughkroz that porepora.
117
404000
2000
koji prolaze kroz poru.
07:04
Now, this porepora can openotvoren and closeblizu.
118
406000
2000
Ove se pore mogu zatvoriti i otvoriti.
07:06
But, when it's openotvoren, because these ionsioni have to linecrta up
119
408000
5000
Ali, kada su otvorene, ioni prolaze jedan po jedan
07:11
and flowteći throughkroz, one at a time, you get a kindljubazan of sporadicsporadični, not steadypostojan --
120
413000
5000
i zato se moraju poredati da bi prošli, dobijete sporadičnu, neravnomjernu --
07:16
it's a sporadicsporadični flowteći of currentstruja.
121
418000
3000
to je sporadičan tok struje.
07:19
And even when you closeblizu the porepora -- whichkoji neuronsneuroni can do,
122
421000
3000
I čak i kad zatvorite poru -- što neuroni mogu napraviti,
07:22
they can openotvoren and closeblizu these porespore to generategenerirati electricalelektrična activityaktivnost --
123
424000
5000
oni mogu otvoriti i zatvoriti pore da bi stvorili električnu aktivnost --
07:27
even when it's closedzatvoreno, because these ionsioni are so smallmali,
124
429000
3000
čak i kad je zatvorena, zato što su ovi ioni toliko mali,
07:30
they can actuallyzapravo sneakdoušnik throughkroz, a fewnekoliko can sneakdoušnik throughkroz at a time.
125
432000
3000
mogu se prikrasti unutra, nekoliko se može prikrasti s vremena na vrijeme.
07:33
So, what you have is that when the porepora is openotvoren,
126
435000
3000
Dakle, što imamo jest da, kad su pore otvorene
07:36
you get some currentstruja sometimesponekad.
127
438000
2000
ponekad dobijemo struju.
07:38
These are your onesone, but you've got a fewnekoliko zerosnule thrownbačen in.
128
440000
3000
To su jedinice, ali dobijete i par nula ubačenih unutra.
07:41
And when it's closedzatvoreno, you have a zeronula,
129
443000
4000
A kad je zatvoreno, imate nule,
07:45
but you have a fewnekoliko onesone thrownbačen in.
130
447000
3000
ali imate i nekoliko jedinica.
07:48
Now, this is startingpolazeći to happendogoditi se in transistorstranzistori.
131
450000
3000
E sada, ovo se počelo događati u tranzistorima.
07:51
And the reasonrazlog why that's happeningdogađa is that, right now, in 2007 --
132
453000
5000
I razlog zašto se to događa je što upravo sada, 2007. --
07:56
the technologytehnologija that we are usingkoristeći -- a transistortranzistor is bigvelika enoughdovoljno
133
458000
4000
tehnologija koju koristimo, tranzistor, je dovoljno velik
08:00
that severalnekoliko electronselektroni can flowteći throughkroz the channelkanal simultaneouslyistovremeno, sidestrana by sidestrana.
134
462000
5000
da nekoliko elektrona mogu proći kroz kanal istodobno, jedan pored drugoga.
08:05
In factčinjenica, there's about 12 electronselektroni can all be flowingtekući this way.
135
467000
4000
Zapravo, otprilike 12 elektrona mogu teći ovuda.
08:09
And that meanssredstva that a transistortranzistor correspondsodgovara
136
471000
2000
I to znači da tranzistor odgovara
08:11
to about 12 ioniona channelskanali in parallelparalelno.
137
473000
3000
otprilike 12 paralelnih ionskih kanala.
08:14
Now, in a fewnekoliko yearsgodina time, by 2015, we will shrinkse smanjiti transistorstranzistori so much.
138
476000
5000
Za nekoliko godina, u 2015-oj smanjit ćemo elektrone za toliko.
08:19
This is what IntelIntel does to keep addingdodajući more coresjezgre ontona the chipčip.
139
481000
5000
Ovo Intel radi da bi dodao još jezgri na čip,
08:24
Or your memorymemorija sticksštapići that you have now can carrynositi one gigabyteGigabajt
140
486000
3000
ili na USB memorije koje sada nose jedan gigabajt
08:27
of stuffstvari on them -- before, it was 256.
141
489000
2000
stvari na njima -- prije je bilo samo 256 megabajta.
08:29
TransistorsTranzistora are gettinguzimajući smallermanji to allowdopustiti this to happendogoditi se,
142
491000
3000
Tranzistori postaju manji kako bi to omogućili,
08:32
and technologytehnologija has really benefittedimali koristi i from that.
143
494000
3000
a tehnologija od toga zbilja profitira.
08:35
But what's happeningdogađa now is that in 2015, the transistortranzistor is going to becomepostati so smallmali,
144
497000
5000
Ali, ono što se sada događa jest da će 2015. tranzistori postati toliko mali
08:40
that it correspondsodgovara to only one electronelektron at a time
145
502000
3000
da će odgovarati samo jednom elektronu
08:43
can flowteći throughkroz that channelkanal,
146
505000
2000
koji može prolaziti kroz taj kanal,
08:45
and that correspondsodgovara to a singlesingl ioniona channelkanal.
147
507000
2000
i to će odgovarati jednom ionskom kanalu.
08:47
And you startpočetak havingima the sameisti kindljubazan of trafficpromet jamsdžemovi that you have in the ioniona channelkanal.
148
509000
4000
I počet ćemo imati iste prometne gužve kao i u ionskim kanalima.
08:51
The currentstruja will turnskretanje on and off at randomslučajan,
149
513000
3000
Struja će se paliti i gasiti nasumice,
08:54
even when it's supposedtrebala to be on.
150
516000
2000
čak i kad bi trebala biti upaljena.
08:56
And that meanssredstva your computerračunalo is going to get
151
518000
2000
A to znači da će računalo pobrkati
08:58
its onesone and zerosnule mixedmješovit up, and that's going to crashsudar your machinemašina.
152
520000
4000
jedinice i nule i to će srušiti vaše računalo.
09:02
So, we are at the stagefaza where we
153
524000
4000
Dakle, mi smo u fazi kada
09:06
don't really know how to computeprebrojavati with these kindsvrste of devicesuređaji.
154
528000
3000
ne znamo zapravo kako računati s takvim napravama.
09:09
And the only kindljubazan of thing -- the only thing we know right now
155
531000
3000
A jedina stvar -- jedina stvar za koju za sada znamo
09:12
that can computeprebrojavati with these kindsvrste of devicesuređaji are the brainmozak.
156
534000
3000
da može raditi s takvom vrstom naprave, jest mozak.
09:15
OK, so a computerračunalo picksmotika a specificspecifično itemartikal of datapodaci from memorymemorija,
157
537000
4000
Ok, znači računalo izabere određenu jedinicu podatka iz memorije,
09:19
it sendsšalje it into the processorprocesor or the ALUALU,
158
541000
3000
pošalje je u procesor ili ALU
09:22
and then it putsstavlja the resultproizlaziti back into memorymemorija.
159
544000
2000
i onda vrati rezultat natrag u memoriju.
09:24
That's the redcrvena pathstaza that's highlightedistaknut.
160
546000
2000
To je crveno označeni put.
09:26
The way brainsmozak work, I told you all, you have got all these neuronsneuroni.
161
548000
4000
Način na koji mozak radi, rekao sam vam, imate puno takvih neurona.
09:30
And the way they representpredstavljati informationinformacija is
162
552000
2000
I način na koji predstavljaju informacije je
09:32
they breakpauza up that datapodaci into little pieceskomada
163
554000
2000
da podjele te podatke u male dijelove,
09:34
that are representedzastupljeni by pulsesimpulsa and differentdrugačiji neuronsneuroni.
164
556000
3000
koji su predstavljeni impulsima i drugim neuronima.
09:37
So you have all these pieceskomada of datapodaci
165
559000
2000
I sada imate sve te dijelove podataka
09:39
distributeddistribuiran throughoutkroz the networkmreža.
166
561000
2000
podijeljene kroz mrežu.
09:41
And then the way that you processpostupak that datapodaci to get a resultproizlaziti
167
563000
3000
I onda način na koji obrađujete te podatke kako biste dobili rezultate
09:44
is that you translatePrevedi this patternuzorak of activityaktivnost into a newnovi patternuzorak of activityaktivnost,
168
566000
4000
jest da prevedete taj uzorak aktivnosti u novi uzorak aktivnosti,
09:48
just by it flowingtekući throughkroz the networkmreža.
169
570000
3000
prateći samo njegov tok kroz mrežu.
09:51
So you setset up these connectionsveze
170
573000
2000
Dakle spojite te veze tako
09:53
suchtakav that the inputulazni patternuzorak just flowsteče
171
575000
3000
da kao ulazni uzorak samo teče
09:56
and generatesgenerira the outputizlaz patternuzorak.
172
578000
2000
i stvara izlazni uzorak.
09:58
What you see here is that there's these redundantblagoglagoljiv connectionsveze.
173
580000
4000
Ono što vidite ovdje su ove redundantne veze.
10:02
So if this piecekomad of datapodaci or this piecekomad of the datapodaci getsdobiva clobberedNaročito često žrtve,
174
584000
4000
Dakle, ako ovaj ili onaj dio podatka postane izmiješan do neprepoznatljivosti
10:06
it doesn't showpokazati up over here, these two pieceskomada can activateaktiviranje the missingnedostaje partdio
175
588000
5000
onda se ne pojavljuje ovdje, i ova dva dijela mogu aktivirati dio koji nedostaje
10:11
with these redundantblagoglagoljiv connectionsveze.
176
593000
2000
preko ovih redundantnih veza.
10:13
So even when you go to these crappyjebani devicesuređaji
177
595000
2000
Čak i ako kroz ove loše naprave
10:15
where sometimesponekad you want a one and you get a zeronula, and it doesn't showpokazati up,
178
597000
3000
gdje ponekad želite dobiti jedan, a dobijete nulu i to se ne pokaže,
10:18
there's redundancyvišak radne snage in the networkmreža
179
600000
2000
postoji redundancija u mreži
10:20
that can actuallyzapravo recoveroporavak the missingnedostaje informationinformacija.
180
602000
3000
koja može vratiti izgubljene informacije.
10:23
It makesmarke the brainmozak inherentlyinherentno robustrobustan.
181
605000
3000
To čini mozak nevjerojatno postojanim.
10:26
What you have here is a systemsistem where you storedućan datapodaci locallylokalno.
182
608000
3000
Ono što imamo ovdje jest sistem koji pohranjuje podatke lokalno.
10:29
And it's brittlelomljiv, because eachsvaki of these stepskoraci has to be flawlessbez greške,
183
611000
4000
Krhak je, jer svaki korak mora biti savršen
10:33
otherwiseinače you loseizgubiti that datapodaci, whereasdok in the brainmozak, you have a systemsistem
184
615000
3000
inače gubite podatke, dok u mozgu imate sistem
10:36
that storestrgovinama datapodaci in a distributeddistribuiran way, and it's robustrobustan.
185
618000
4000
koji pohranjuje podatke na distribuirani način, i to ga čini postojanim.
10:40
What I want to basicallyu osnovi talk about is my dreamsan,
186
622000
4000
Ono o čemu zapravo želim pričati jest moj san,
10:44
whichkoji is to buildizgraditi a computerračunalo that worksdjela like the brainmozak.
187
626000
3000
a to je da napravim računalo koje radi kao mozak.
10:47
This is something that we'veimamo been workingrad on for the last couplepar of yearsgodina.
188
629000
4000
To je nešto na čemu radimo zadnjih nekoliko godina.
10:51
And I'm going to showpokazati you a systemsistem that we designedkonstruiran
189
633000
3000
I pokazat ću vam sistem koji smo dizajnirali
10:54
to modelmodel the retinaMrežnica,
190
636000
3000
po modelu mrežnice,
10:57
whichkoji is a piecekomad of brainmozak that lineslinije the insideiznutra of your eyeballočne jabučice.
191
639000
5000
a to je dio mozga koji oblaže unutrašnjost vaših očnih jabučica.
11:02
We didn't do this by actuallyzapravo writingpisanje codekodirati, like you do in a computerračunalo.
192
644000
6000
Nismo to napravili pišući kod, kao što to radite na računalu.
11:08
In factčinjenica, the processingobrada that happensdogađa se
193
650000
3000
Zapravo, procesiranje koje se zbiva
11:11
in that little piecekomad of brainmozak is very similarsličan
194
653000
2000
u tom malom dijelu mozga jest vrlo slično
11:13
to the kindljubazan of processingobrada that computersračunala
195
655000
1000
procesiranju koje računala
11:14
do when they streampotok videovideo over the InternetInternet.
196
656000
4000
vrše dok šalju video preko interneta.
11:18
They want to compressoblog the informationinformacija --
197
660000
1000
Žele sažeti informacije --
11:19
they just want to sendposlati the changespromjene, what's newnovi in the imageslika, and so on --
198
661000
4000
žele poslati samo promjene, što je novo na slici, i tako dalje --
11:23
and that is how your eyeballočne jabučice
199
665000
3000
a ovo je kako vaše oko
11:26
is ableu stanju to squeezeiscijediti all that informationinformacija down to your opticoptički nerveživac,
200
668000
3000
uspjeva sažeti sve te informacije kroz vidni živac
11:29
to sendposlati to the restodmor of the brainmozak.
201
671000
2000
i poslati ih ostatku mozga.
11:31
InsteadUmjesto toga of doing this in softwaresoftver, or doing those kindsvrste of algorithmsalgoritmi,
202
673000
3000
Umjesto da ovo napravimo u softveru, ili da radimo algoritme,
11:34
we wentotišao and talkedRazgovarao to neurobiologistsneurobiologists
203
676000
3000
otišli smo i razgovarali s neurobiolozima
11:37
who have actuallyzapravo reversepreokrenuti engineeredprojektirana that piecekomad of brainmozak that's calledzvao the retinaMrežnica.
204
679000
4000
koji su zapravo sastavili to po modelu mrežnice.
11:41
And they figuredshvaćen out all the differentdrugačiji cellsStanice,
205
683000
2000
I oni su uspjeli razumjeti sve te različite stanice,
11:43
and they figuredshvaćen out the networkmreža, and we just tookuzeo that networkmreža
206
685000
3000
i oni su uspjeli razumijeti mrežu, a mi smo ju samo uzeli
11:46
and we used it as the blueprintnacrt for the designdizajn of a siliconsilicij chipčip.
207
688000
4000
kao nacrt za dizajn silikonskog čipa.
11:50
So now the neuronsneuroni are representedzastupljeni by little nodesčvorovi or circuitskrugovi on the chipčip,
208
692000
6000
I sada su neuroni predstavljeni malim čvorićima, ili krugovima na čipu,
11:56
and the connectionsveze amongmeđu the neuronsneuroni are representedzastupljeni, actuallyzapravo modeledpo uzoru by transistorstranzistori.
209
698000
5000
a spojevi između neurona su predstavljeni tranzistorima.
12:01
And these transistorstranzistori are behavingse ponašaju essentiallyu srži
210
703000
2000
I ovi tranzistori se u osnovi ponašaju
12:03
just like ioniona channelskanali behaveponašati in the brainmozak.
211
705000
3000
baš kao što se ponašaju ionski kanali u mozgu.
12:06
It will give you the sameisti kindljubazan of robustrobustan architecturearhitektura that I describedopisan.
212
708000
5000
To će vam dati istu vrstu postojane arhitekture koju sam opisao.
12:11
Here is actuallyzapravo what our artificialUmjetna eyeoko looksizgled like.
213
713000
4000
Ovako zapravo naše umjetno oko izgleda.
12:15
The retinaMrežnica chipčip that we designedkonstruiran sitssjedi behindiza this lensleće here.
214
717000
5000
Mrežnični čip koji smo dizajnirali se nalazi ovdje iza leće.
12:20
And the chipčip -- I'm going to showpokazati you a videovideo
215
722000
2000
I čip -- pokazati ću vam video
12:22
that the siliconsilicij retinaMrežnica put out of its outputizlaz
216
724000
3000
koji silikonska mrežnica šalje kroz izlaznu jedinicu
12:25
when it was looking at KareemJosip ZaghloulZaghloul,
217
727000
3000
kada gleda Kareema Zaghloula,
12:28
who'stko je the studentstudent who designedkonstruiran this chipčip.
218
730000
2000
studenta koji je dizajnirao ovaj čip.
12:30
Let me explainobjasniti what you're going to see, OK,
219
732000
2000
Dopustite mi da objasnim što će te vidjeti, OK,
12:32
because it's puttingstavljanje out differentdrugačiji kindsvrste of informationinformacija,
220
734000
3000
zato što to pokazuje različite vrste informacija,
12:35
it's not as straightforwardiskren as a camerafotoaparat.
221
737000
2000
nije posve neposredno kao kamera.
12:37
The retinaMrežnica chipčip extractsekstrakti fourčetiri differentdrugačiji kindsvrste of informationinformacija.
222
739000
3000
Mrežnični čip izvlači četiri različite vrste informacija.
12:40
It extractsekstrakti regionsregije with darkmrak contrastkontrast,
223
742000
3000
Izvlači regije s tamnim kontrastom
12:43
whichkoji will showpokazati up on the videovideo as redcrvena.
224
745000
3000
koje će se prikazati u ovom videu kao crvene.
12:46
And it extractsekstrakti regionsregije with whitebijela or lightsvjetlo contrastkontrast,
225
748000
4000
I izvlači regije s bijelim ili svijetlim kontrastom
12:50
whichkoji will showpokazati up on the videovideo as greenzelena.
226
752000
2000
koje će se prikazati kao zelene.
12:52
This is Kareem'sJosip je darkmrak eyesoči
227
754000
2000
Ovo je Kareemovo tamno oko,
12:54
and that's the whitebijela backgroundpozadina that you see here.
228
756000
3000
a ovo je bijela pozadina koju vidite ovdje.
12:57
And then it alsotakođer extractsekstrakti movementpokret.
229
759000
2000
I onda također izvlači pokrete.
12:59
When KareemJosip movespotezi his headglava to the right,
230
761000
2000
Kada Kareem pomakne svoju glavu prema desno,
13:01
you will see this blueplava activityaktivnost there;
231
763000
2000
vidite ovu plavu aktivnost ovdje.
13:03
it representspredstavlja regionsregije where the contrastkontrast is increasingpovećavajući in the imageslika,
232
765000
3000
To predstavlja regije gdje se kontrast na slici povećava,
13:06
that's where it's going from darkmrak to lightsvjetlo.
233
768000
3000
gdje prelazi iz tamnog u svijetlo.
13:09
And you alsotakođer see this yellowžuta boja activityaktivnost,
234
771000
2000
I vidite ovu žutu aktivnost,
13:11
whichkoji representspredstavlja regionsregije where contrastkontrast is decreasingsmanjuje;
235
773000
4000
koja predstavlja regije gdje se kontrast smanjuje,
13:15
it's going from lightsvjetlo to darkmrak.
236
777000
2000
ide od svijetlog prema tamnom.
13:17
And these fourčetiri typesvrste of informationinformacija --
237
779000
3000
I ove četiri vrste informacija --
13:20
your opticoptički nerveživac has about a millionmilijuna fibersvlakna in it,
238
782000
4000
vaš optički živac ima oko milijun vlakana,
13:24
and 900,000 of those fibersvlakna
239
786000
3000
a 900.000 od njih
13:27
sendposlati these fourčetiri typesvrste of informationinformacija.
240
789000
2000
šalju ove četiri vrste informacija.
13:29
So we are really duplicatingumnožavanje the kindljubazan of signalssignali that you have on the opticoptički nerveživac.
241
791000
4000
Dakle, zapravo dupliciramo ove vrste signala optičkim živcem.
13:33
What you noticeobavijest here is that these snapshotssnimke
242
795000
3000
Primjetit ćete da su ove snimke
13:36
takenpoduzete from the outputizlaz of the retinaMrežnica chipčip are very sparseoskudni, right?
243
798000
4000
uzete iz izlazne jedinice mrežnice vrlo oskudne, zar ne?
13:40
It doesn't lightsvjetlo up greenzelena everywheresvugdje, posvuda in the backgroundpozadina,
244
802000
2000
Zeleno se ne pojavljuje svuda na pozadini,
13:42
only on the edgesrubovi, and then in the hairdlaka, and so on.
245
804000
3000
samo na rubovima, i u kosi, i tako dalje.
13:45
And this is the sameisti thing you see
246
807000
1000
Istu stvar imate
13:46
when people compressoblog videovideo to sendposlati: they want to make it very sparseoskudni,
247
808000
4000
kada ljudi sažimlju videe kako bi ih mogli slati. Žele da budu što oskudnije
13:50
because that filedatoteka is smallermanji. And this is what the retinaMrežnica is doing,
248
812000
3000
kako bi datoteka bila što manja. To isto radi i mrežnica,
13:53
and it's doing it just with the circuitrystrujni krugovi, and how this networkmreža of neuronsneuroni
249
815000
4000
samo sa sklopovima, i tako radi i ova mreža neurona
13:57
that are interactingu interakciji in there, whichkoji we'veimamo captureduhvaćen on the chipčip.
250
819000
3000
koji vrše interakciju koju smo mi ugradili u čip.
14:00
But the pointtočka that I want to make -- I'll showpokazati you up here.
251
822000
3000
Ali ono što želim reći jest -- pokazat ću vam to ovdje.
14:03
So this imageslika here is going to look like these onesone,
252
825000
3000
Dakle, ova slika ovdje će izgledati kao ove,
14:06
but here I'll showpokazati you that we can reconstructrekonstruirati the imageslika,
253
828000
2000
ali ovdje ću vam pokazati kako možemo rekonstruirati slike
14:08
so, you know, you can almostskoro recognizeprepoznati KareemJosip in that topvrh partdio there.
254
830000
5000
tako da, znate, skoro možete prepoznati Kareema u gornjem djelu.
14:13
And so, here you go.
255
835000
2000
Tako.
14:24
Yes, so that's the ideaideja.
256
846000
3000
Da, dakle to je ideja.
14:27
When you standstajati still, you just see the lightsvjetlo and darkmrak contrastskontrasti.
257
849000
2000
Kada stojite mirno, vidite samo svijetle i tamne kontraste.
14:29
But when it's movingkreće back and forthdalje,
258
851000
2000
Ali kada se miče naprijed i natrag
14:31
the retinaMrežnica picksmotika up these changespromjene.
259
853000
3000
mrežnica primjećuje te promjene.
14:34
And that's why, you know, when you're sittingsjedenje here
260
856000
1000
I to je odgovor na zašto samo pomaknete oči
14:35
and something happensdogađa se in your backgroundpozadina,
261
857000
2000
kada sjedite ovdje i nešto
14:37
you merelysamo movepotez your eyesoči to it.
262
859000
2000
se dogodi u pozadini.
14:39
There are these cellsStanice that detectotkriti changepromijeniti
263
861000
2000
Postoje stanice koje primjećuju te promjene
14:41
and you movepotez your attentionpažnja to it.
264
863000
2000
i skreću vam pozornost na to.
14:43
So those are very importantvažno for catchinglov somebodyneko
265
865000
2000
Dakle, to je jako bitno kako bi uhvatili nekoga
14:45
who'stko je tryingtežak to sneakdoušnik up on you.
266
867000
2000
tko vam se pokušava prikrasti.
14:47
Let me just endkraj by sayingizreka that this is what happensdogađa se
267
869000
3000
Dopustite mi da završim tako da kažem da je ovo ono što se dogodi
14:50
when you put AfricaAfrika in a pianoklavir, OK.
268
872000
3000
kada stavite Afriku u klavir. OK.
14:53
This is a steelželjezo drumbubanj here that has been modifiedpromjene,
269
875000
3000
Ovo je modificirani čelični bubanj,
14:56
and that's what happensdogađa se when you put AfricaAfrika in a pianoklavir.
270
878000
3000
i to se dogodi kada stavite Afriku u klavir.
14:59
And what I would like us to do is put AfricaAfrika in the computerračunalo,
271
881000
4000
A ono što bih sada volio da napravite jest da stavite Afriku u računala
15:03
and come up with a newnovi kindljubazan of computerračunalo
272
885000
2000
i smislite novu vrstu računala
15:05
that will generategenerirati thought, imaginationmašta, be creativekreativan and things like that.
273
887000
3000
koje će generirati misao, maštu, biti kreativno i raditi takve stvari.
15:08
Thank you.
274
890000
2000
Hvala vam.
15:10
(ApplausePljesak)
275
892000
2000
(Pljesak)
15:12
ChrisChris AndersonAnderson: QuestionPitanje for you, KwabenaKwabena.
276
894000
2000
Chris Anderson: Pitanje za tebe, Kwabena.
15:14
Do you put togetherzajedno in your mindum the work you're doing,
277
896000
4000
Spajaš li u svom umu posao koji radiš,
15:18
the futurebudućnost of AfricaAfrika, this conferencekonferencija --
278
900000
3000
budućnost Afrike, ovu konferenciju --
15:21
what connectionsveze can we make, if any, betweenizmeđu them?
279
903000
3000
kakve veze mi imamo, ako ikakve veze ima među njima?
15:24
KwabenaKwabena BoahenBoahen: Yes, like I said at the beginningpočetak,
280
906000
2000
Kwabena Boahen: Da, kao što sam rekao na početku,
15:26
I got my first computerračunalo when I was a teenagertinejdžer, growingrastući up in AccraAccra.
281
908000
4000
dobio sam svoje prvo računalo kao tinejdžer, odrastajući u Akri.
15:30
And I had this gutcrijevo reactionreakcija that this was the wrongpogrešno way to do it.
282
912000
4000
I imao sam predosjećaj da je to krivi način.
15:34
It was very brutenasilje forcesila; it was very inelegantelegantno.
283
916000
3000
Bila je to vrlo gruba sila, nije bilo elegantno.
15:37
I don't think that I would'vebi had that reactionreakcija,
284
919000
2000
Mislim da ne bih imao taj osjećaj
15:39
if I'd grownodrastao up readingčitanje all this scienceznanost fictionfikcija,
285
921000
3000
da sam odrastao čitajući svu tu znanstvenu fantastiku,
15:42
hearingsluh about RDRD2D2, whateveršto god it was calledzvao, and just -- you know,
286
924000
4000
slušajući o R2D2, kako ga već zovu, i samo -- znaš,
15:46
buyingkupovina into this hypehiper about computersračunala.
287
928000
1000
živio u toj pomami za računalima.
15:47
I was comingdolazak at it from a differentdrugačiji perspectiveperspektiva,
288
929000
2000
Ja sam to doživio iz druge perspektive,
15:49
where I was bringingdonošenje that differentdrugačiji perspectiveperspektiva
289
931000
2000
i donosim tu perspektivu
15:51
to bearsnositi on the problemproblem.
290
933000
2000
kako bi se nosio s problemom.
15:53
And I think a lot of people in AfricaAfrika have this differentdrugačiji perspectiveperspektiva,
291
935000
3000
I mislim da puno ljudi u Africi ima tu drugačiju perspektivu,
15:56
and I think that's going to impactudar technologytehnologija.
292
938000
2000
i mislim da će to utjecati na tehnologiju.
15:58
And that's going to impactudar how it's going to evolverazviti.
293
940000
2000
I da će to utjecati na način na koji mi evoluiramo.
16:00
And I think you're going to be ableu stanju to see, use that infusionInfuzija,
294
942000
2000
I mislim da ćete moći vidjeti, koritstiti tu infuziju
16:02
to come up with newnovi things,
295
944000
2000
kako bi došli do novih stvari
16:04
because you're comingdolazak from a differentdrugačiji perspectiveperspektiva.
296
946000
3000
jer one dolaze iz drugog kuta.
16:07
I think we can contributedoprinijeti. We can dreamsan like everybodysvi elsedrugo.
297
949000
4000
Mislim da možemo pridonijeti. I mi možemo sanjati kao svi drugi.
16:11
CACA: ThanksHvala KwabenaKwabena, that was really interestingzanimljiv.
298
953000
2000
CA: Hvala Kwabena, to je bilo zaista zanimljivo.
16:13
Thank you.
299
955000
1000
Hvala.
16:14
(ApplausePljesak)
300
956000
2000
(Pljesak)
Translated by Senzos Osijek
Reviewed by Tilen Pigac - EFZG

▲Back to top

ABOUT THE SPEAKER
Kwabena Boahen - Bioengineer
Kwabena Boahen wants to understand how brains work -- and to build a computer that works like the brain by reverse-engineering the nervous system. His group at Stanford is developing Neurogrid, a hardware platform that will emulate the cortex’s inner workings.

Why you should listen

Kwabena Boahen is the principal investigator at the Brains in Silicon lab at Stanford. He writes of himself:

Being a scientist at heart, I want to understand how cognition arises from neuronal properties. Being an engineer by training, I am using silicon integrated circuits to emulate the way neurons compute, linking the seemingly disparate fields of electronics and computer science with neurobiology and medicine.

My group's contributions to the field of neuromorphic engineering include a silicon retina that could be used to give the blind sight and a self-organizing chip that emulates the way the developing brain wires itself up. Our work is widely recognized, with over sixty publications, including a cover story in the May 2005 issue of Scientific American.

My current research interest is building a simulation platform that will enable the cortex's inner workings to be modeled in detail. While progress has been made linking neuronal properties to brain rhythms, the task of scaling up these models to link neuronal properties to cognition still remains. Making the supercomputer-performance required affordable is the goal of our Neurogrid project. It is at the vanguard of a profound shift in computing, away from the sequential, step-by-step Von Neumann machine towards a parallel, interconnected architecture more like the brain.

More profile about the speaker
Kwabena Boahen | Speaker | TED.com

Data provided by TED.

This site was created in May 2015 and the last update was on January 12, 2020. It will no longer be updated.

We are currently creating a new site called "eng.lish.video" and would be grateful if you could access it.

If you have any questions or suggestions, please feel free to write comments in your language on the contact form.

Privacy Policy

Developer's Blog

Buy Me A Coffee