ABOUT THE SPEAKER
Kwabena Boahen - Bioengineer
Kwabena Boahen wants to understand how brains work -- and to build a computer that works like the brain by reverse-engineering the nervous system. His group at Stanford is developing Neurogrid, a hardware platform that will emulate the cortex’s inner workings.

Why you should listen

Kwabena Boahen is the principal investigator at the Brains in Silicon lab at Stanford. He writes of himself:

Being a scientist at heart, I want to understand how cognition arises from neuronal properties. Being an engineer by training, I am using silicon integrated circuits to emulate the way neurons compute, linking the seemingly disparate fields of electronics and computer science with neurobiology and medicine.

My group's contributions to the field of neuromorphic engineering include a silicon retina that could be used to give the blind sight and a self-organizing chip that emulates the way the developing brain wires itself up. Our work is widely recognized, with over sixty publications, including a cover story in the May 2005 issue of Scientific American.

My current research interest is building a simulation platform that will enable the cortex's inner workings to be modeled in detail. While progress has been made linking neuronal properties to brain rhythms, the task of scaling up these models to link neuronal properties to cognition still remains. Making the supercomputer-performance required affordable is the goal of our Neurogrid project. It is at the vanguard of a profound shift in computing, away from the sequential, step-by-step Von Neumann machine towards a parallel, interconnected architecture more like the brain.

More profile about the speaker
Kwabena Boahen | Speaker | TED.com
TEDGlobal 2007

Kwabena Boahen: A computer that works like the brain

Kwabena Boahen : 像人脑那样工作的电脑

Filmed:
718,375 views

Kwabena Boahen 正在研究如何用硅片来模拟人脑超强的运算能力,因为人脑的这种复杂而重复的运作过程可以在一台小巧轻便而且运行超快的电脑上实现。
- Bioengineer
Kwabena Boahen wants to understand how brains work -- and to build a computer that works like the brain by reverse-engineering the nervous system. His group at Stanford is developing Neurogrid, a hardware platform that will emulate the cortex’s inner workings. Full bio

Double-click the English transcript below to play the video.

00:18
I got my first computer电脑 when I was a teenager青少年 growing生长 up in Accra阿克拉,
0
0
5000
我成长在阿克拉(加纳首都),在我还是个少年的时候,我有了第一台电脑。
00:23
and it was a really cool device设备.
1
5000
3000
它真的是个很酷的玩意。
00:26
You could play games游戏 with it. You could program程序 it in BASICBASIC.
2
8000
5000
你可以用它来玩游戏,你可以用BASIC语言在上面编程。
00:31
And I was fascinated入迷.
3
13000
2000
我被它迷住了。
00:33
So I went into the library图书馆 to figure数字 out how did this thing work.
4
15000
6000
于是我跑去图书馆想要弄明白这东西究竟是怎么工作的。
00:39
I read about how the CPU中央处理器 is constantly经常 shuffling洗牌 data数据 back and forth向前
5
21000
5000
我了解到CPU(中央处理器)是如何不断地让数据来回穿梭于
00:44
between之间 the memory记忆, the RAM内存 and the ALUALU,
6
26000
4000
存储器--RAM (随机存取存储器)和 ALU --
00:48
the arithmetic算术 and logic逻辑 unit单元.
7
30000
2000
算术逻辑运算器。
00:50
And I thought to myself, this CPU中央处理器 really has to work like crazy
8
32000
4000
我心想,CPU只有这样玩命地工作
00:54
just to keep all this data数据 moving移动 through通过 the system系统.
9
36000
4000
才能让所有的数据在电脑系统中不停地运转呀。
00:58
But nobody没有人 was really worried担心 about this.
10
40000
3000
但并没有人真正担心过这些。
01:01
When computers电脑 were first introduced介绍,
11
43000
2000
当电脑首次问世时,
01:03
they were said to be a million百万 times faster更快 than neurons神经元.
12
45000
3000
曾号称比人脑神经细胞快上一百万倍,
01:06
People were really excited兴奋. They thought they would soon不久 outstrip超过
13
48000
5000
人们相当激动,他们以为电脑将很快就能超越
01:11
the capacity容量 of the brain.
14
53000
3000
人脑。
01:14
This is a quote引用, actually其实, from Alan艾伦 Turing图灵:
15
56000
3000
Alan Turing 是这样说的:
01:17
"In 30 years年份, it will be as easy简单 to ask a computer电脑 a question
16
59000
4000
“不出30年,向电脑提问就会变得和向人提问一样的
01:21
as to ask a person."
17
63000
2000
简单。”
01:23
This was in 1946. And now, in 2007, it's still not true真正.
18
65000
7000
这句话是在1946年说的。现在都2007年了,还是没能兑现。
01:30
And so, the question is, why aren't we really seeing眼看
19
72000
4000
问题就在于,为什么我们不能真正地
01:34
this kind of power功率 in computers电脑 that we see in the brain?
20
76000
4000
让电脑具备人脑的功能呢?
01:38
What people didn't realize实现, and I'm just beginning开始 to realize实现 right now,
21
80000
4000
过去大家都没意识到,而我也刚刚开始意识到的是
01:42
is that we pay工资 a huge巨大 price价钱 for the speed速度
22
84000
2000
我们为了提升电脑的速度而付出了巨大的代价
01:44
that we claim要求 is a big advantage优点 of these computers电脑.
23
86000
4000
这是因为速度被认为是电脑的一大优势。
01:48
Let's take a look at some numbers数字.
24
90000
2000
让我们看一些数字。
01:50
This is Blue蓝色 Gene基因, the fastest最快的 computer电脑 in the world世界.
25
92000
4000
这是Blue Gene,世上最快的电脑。
01:54
It's got 120,000 processors处理器; they can basically基本上 process处理
26
96000
5000
它拥有120,000个处理器;基本上它们每秒可以处理
01:59
10 quadrillion万亿 bits of information信息 per second第二.
27
101000
3000
一万兆位元的信息。
02:02
That's 10 to the sixteenth第十六. And they consume消耗 one and a half megawatts兆瓦 of power功率.
28
104000
7000
相当于10的16次方。并且它们还要消耗掉1.5兆瓦特的电力。
02:09
So that would be really great, if you could add that
29
111000
3000
如果你能把这些能量用到
02:12
to the production生产 capacity容量 in Tanzania坦桑尼亚.
30
114000
2000
坦桑尼亚的生产力上的话,那就简直棒极了。
02:14
It would really boost促进 the economy经济.
31
116000
2000
它肯定能振兴经济。
02:16
Just to go back to the States状态,
32
118000
4000
再回来看看美国,
02:20
if you translate翻译 the amount of power功率 or electricity电力
33
122000
2000
如果你把这个电脑消耗的电能换算成
02:22
this computer电脑 uses使用 to the amount of households in the States状态,
34
124000
3000
美国家庭的用电量,
02:25
you get 1,200 households in the U.S.
35
127000
4000
那你会发现这相当于1200户美国家庭的用电量。
02:29
That's how much power功率 this computer电脑 uses使用.
36
131000
2000
如此多的能量都被这个电脑消耗了。
02:31
Now, let's compare比较 this with the brain.
37
133000
3000
现在,我们把这个电脑跟人脑做个比较,
02:34
This is a picture图片 of, actually其实 Rory罗里 Sayres'Sayres' girlfriend's女友 brain.
38
136000
5000
这是Rory Sayres 女友的大脑图片,
02:39
Rory罗里 is a graduate毕业 student学生 at Stanford斯坦福.
39
141000
2000
Rory 是斯坦佛大学的研究生,
02:41
He studies学习 the brain using运用 MRIMRI, and he claims索赔 that
40
143000
4000
他用MRI(核磁共振成像)研究大脑,他宣称
02:45
this is the most beautiful美丽 brain that he has ever scanned扫描.
41
147000
3000
这是他扫描过的最美丽的人脑。
02:48
(Laughter笑声)
42
150000
2000
(笑声)
02:50
So that's true真正 love, right there.
43
152000
3000
这就是真爱吧。
02:53
Now, how much computation计算 does the brain do?
44
155000
3000
那么人脑究竟能计算多少呢?
02:56
I estimate估计 10 to the 16 bits per second第二,
45
158000
2000
我估计是每秒10到16位元
02:58
which哪一个 is actually其实 about very similar类似 to what Blue蓝色 Gene基因 does.
46
160000
4000
这其实很接近Blue Gene (世界上最快的电脑)的运算能力了。
03:02
So that's the question. The question is, how much --
47
164000
2000
那么问题就在这儿。那就是——
03:04
they are doing a similar类似 amount of processing处理, similar类似 amount of data数据 --
48
166000
3000
他们的计算量相似,处理的数据量相似——
03:07
the question is how much energy能源 or electricity电力 does the brain use?
49
169000
5000
可是人脑耗用了多少电能呢?
03:12
And it's actually其实 as much as your laptop笔记本电脑 computer电脑:
50
174000
3000
实际上就相当于你的笔记本电脑的用电量:
03:15
it's just 10 watts.
51
177000
2000
只有10瓦。
03:17
So what we are doing right now with computers电脑
52
179000
3000
我们目前使用电脑做的事情
03:20
with the energy能源 consumed消费 by 1,200 houses房屋,
53
182000
3000
消耗着相当于1200户家庭的总用电量,
03:23
the brain is doing with the energy能源 consumed消费 by your laptop笔记本电脑.
54
185000
5000
而人脑做下来却只需要相当于笔记本电脑的用电量。
03:28
So the question is, how is the brain able能够 to achieve实现 this kind of efficiency效率?
55
190000
3000
那么问题是,大脑是怎么达到如此高效的?
03:31
And let me just summarize总结. So the bottom底部 line线:
56
193000
2000
让我总结一下,这个结论是:
03:33
the brain processes流程 information信息 using运用 100,000 times less energy能源
57
195000
4000
人脑用十万倍分之一的能量就处理了
03:37
than we do right now with this computer电脑 technology技术 that we have.
58
199000
4000
我们目前的用电脑所处理的信息量。
03:41
How is the brain able能够 to do this?
59
203000
2000
人脑是怎么做到这点的呢?
03:43
Let's just take a look about how the brain works作品,
60
205000
3000
我们先看看人脑是如何工作的,
03:46
and then I'll compare比较 that with how computers电脑 work.
61
208000
4000
然后我同电脑是怎么工作的相比较。
03:50
So, this clip is from the PBSPBS series系列, "The Secret秘密 Life of the Brain."
62
212000
4000
这个视频片段,剪辑自PBS(公共电视网)的系列片:“神秘的大脑”。
03:54
It shows节目 you these cells细胞 that process处理 information信息.
63
216000
3000
它向你展示了这些处理信息的细胞。
03:57
They are called neurons神经元.
64
219000
1000
这些细胞叫做神经元。
03:58
They send发送 little pulses脉冲 of electricity电力 down their processes流程 to each other,
65
220000
6000
神经元之间在传送信息的过程中会发出微小的电脉冲,
04:04
and where they contact联系 each other, those little pulses脉冲
66
226000
2000
神经元互相接触时,这些微小的电脉冲
04:06
of electricity电力 can jump from one neuron神经元 to the other.
67
228000
2000
能够从一个神经元跳到另一个神经元。
04:08
That process处理 is called a synapse突触.
68
230000
3000
这个过程被称为神经突触。
04:11
You've got this huge巨大 network网络 of cells细胞 interacting互动 with each other --
69
233000
2000
人脑所拥有的由神经元相互交织而成的网络相当庞大,
04:13
about 100 million百万 of them,
70
235000
2000
其中有大概一亿个神经元,
04:15
sending发出 about 10 quadrillion万亿 of these pulses脉冲 around every一切 second第二.
71
237000
4000
每秒发送约十万亿个这样的脉冲。
04:19
And that's basically基本上 what's going on in your brain right now as you're watching观看 this.
72
241000
6000
你正观看这个片子的时候,你的大脑基本上就这样运转着。
04:25
How does that compare比较 with the way computers电脑 work?
73
247000
2000
怎么拿这个跟电脑的工作方式比较呢?
04:27
In the computer电脑, you have all the data数据
74
249000
2000
电脑把所有数据
04:29
going through通过 the central中央 processing处理 unit单元,
75
251000
2000
都通过中央处理器来处理,
04:31
and any piece of data数据 basically基本上 has to go through通过 that bottleneck瓶颈,
76
253000
3000
任何数据都必须通过那个瓶颈。
04:34
whereas in the brain, what you have is these neurons神经元,
77
256000
4000
然而在大脑中,你所拥有的是这些神经元,
04:38
and the data数据 just really flows流动 through通过 a network网络 of connections连接
78
260000
4000
数据是顺着连接神经元的网络流动
04:42
among其中 the neurons神经元. There's no bottleneck瓶颈 here.
79
264000
2000
这里不存在瓶颈,
04:44
It's really a network网络 in the literal文字 sense of the word.
80
266000
4000
这是一个名副其实的网络,
04:48
The net is doing the work in the brain.
81
270000
4000
就是这个网络担负着大脑的运转。
04:52
If you just look at these two pictures图片,
82
274000
2000
看看这两张图片,
04:54
these kind of words pop流行的 into your mind心神.
83
276000
2000
你的脑海中会跳出这样的词,
04:56
This is serial串行 and it's rigid死板 -- it's like cars汽车 on a freeway高速公路,
84
278000
4000
这一幅连续又呆板:就像在高速路上的汽车——
05:00
everything has to happen发生 in lockstep锁步 --
85
282000
3000
一切必须按部就班;
05:03
whereas this is parallel平行 and it's fluid流体.
86
285000
2000
而这幅图平行而且有流动感,
05:05
Information信息 processing处理 is very dynamic动态 and adaptive自适应.
87
287000
3000
其信息处理既非常活跃又很具适应性。
05:08
So I'm not the first to figure数字 this out. This is a quote引用 from Brian布赖恩 Eno伊诺:
88
290000
4000
我并不是第一个有这样想法的人。Brian Eno如是说:
05:12
"the problem问题 with computers电脑 is that there is not enough足够 Africa非洲 in them."
89
294000
4000
“电脑的问题就在于它还不能大到足以装下整个非洲。”
05:16
(Laughter笑声)
90
298000
6000
(笑声)
05:22
Brian布赖恩 actually其实 said this in 1995.
91
304000
3000
Brian 说这话时是1995年
05:25
And nobody没有人 was listening then,
92
307000
3000
当时没有任何人听进去,
05:28
but now people are beginning开始 to listen
93
310000
2000
但现在人们开始当真了
05:30
because there's a pressing紧迫, technological技术性 problem问题 that we face面对.
94
312000
5000
因为我们正面临着一个急迫的技术问题
05:35
And I'll just take you through通过 that a little bit in the next下一个 few少数 slides幻灯片.
95
317000
5000
在下面几张幻灯片中我会带你们简略地了解一下这个问题:
05:40
This is -- it's actually其实 really this remarkable卓越 convergence收敛
96
322000
4000
这个——实际上它是个真正非凡的聚合体
05:44
between之间 the devices设备 that we use to compute计算 in computers电脑,
97
326000
5000
算是介于用电脑来计算的装置
05:49
and the devices设备 that our brains大脑 use to compute计算.
98
331000
4000
和用人脑来计算的装置之间。
05:53
The devices设备 that computers电脑 use are what's called a transistor晶体管.
99
335000
4000
电脑用的装置我们称之为晶体管。
05:57
This electrode电极 here, called the gate, controls控制 the flow of current当前
100
339000
4000
这儿是电极,称为闸极,控制着从源极流向汲极的电流
06:01
from the source资源 to the drain排水 -- these two electrodes电极.
101
343000
3000
就是这两个电极。
06:04
And that current当前, electrical电动 current当前,
102
346000
2000
而那电流,电流是由电子传送的,
06:06
is carried携带的 by electrons电子, just like in your house and so on.
103
348000
6000
就如同你房子里的电流一样,诸如此类。
06:12
And what you have here is, when you actually其实 turn on the gate,
104
354000
5000
这里你要明白的是,当你打开闸极时,
06:17
you get an increase增加 in the amount of current当前, and you get a steady稳定 flow of current当前.
105
359000
4000
电流量会增加,并且是股稳定电流。
06:21
And when you turn off the gate, there's no current当前 flowing流动 through通过 the device设备.
106
363000
4000
当你关掉闸极时,就没有任何电流流过这个装置了。
06:25
Your computer电脑 uses使用 this presence存在 of current当前 to represent代表 a one,
107
367000
5000
我们用“一”来代表你的电脑有电流,
06:30
and the absence缺席 of current当前 to represent代表 a zero.
108
372000
4000
而用“零”来代表电脑无电流。
06:34
Now, what's happening事件 is that as transistors晶体管 are getting得到 smaller and smaller and smaller,
109
376000
6000
现在的情况是当晶体管变得越来越小越来越小的话,
06:40
they no longer behave表现 like this.
110
382000
2000
它们就不会再像这样运转了,
06:42
In fact事实, they are starting开始 to behave表现 like the device设备 that neurons神经元 use to compute计算,
111
384000
5000
事实上,它们会开始像神经元用来计算的装置那样来运作,
06:47
which哪一个 is called an ion离子 channel渠道.
112
389000
2000
这种装置被称作离子通道
06:49
And this is a little protein蛋白 molecule分子.
113
391000
2000
这是个小小的蛋白质分子。
06:51
I mean, neurons神经元 have thousands数千 of these.
114
393000
4000
我的意思是,神经元有成千上万个这样的分子。
06:55
And it sits坐镇 in the membrane of the cell细胞 and it's got a pore in it.
115
397000
4000
而它就分布在细胞膜中并且自身还带了个小孔,
06:59
And these are individual个人 potassium ions离子
116
401000
3000
而这些是单独的钾离子,
07:02
that are flowing流动 through通过 that pore.
117
404000
2000
在小孔中穿来过去。
07:04
Now, this pore can open打开 and close.
118
406000
2000
现在,这个孔是能开能闭的,
07:06
But, when it's open打开, because these ions离子 have to line线 up
119
408000
5000
但是,当它打开时,由于这些离子必须排成一行
07:11
and flow through通过, one at a time, you get a kind of sporadic零星的, not steady稳定 --
120
413000
5000
一个一个地穿过小孔,因此产生零星的,而非稳定的——
07:16
it's a sporadic零星的 flow of current当前.
121
418000
3000
一股断断续续的电流。
07:19
And even when you close the pore -- which哪一个 neurons神经元 can do,
122
421000
3000
甚至当小孔闭合的时候——神经元做得到这点的,
07:22
they can open打开 and close these pores毛孔 to generate生成 electrical电动 activity活动 --
123
424000
5000
它们可以通过开关这些小孔来产生电活动——
07:27
even when it's closed关闭, because these ions离子 are so small,
124
429000
3000
甚至当孔闭合时,由于这些离子如此之小,
07:30
they can actually其实 sneak潜行 through通过, a few少数 can sneak潜行 through通过 at a time.
125
432000
3000
它们实际上可以偷偷地穿过,其中一些还可以同时偷偷地穿过。
07:33
So, what you have is that when the pore is open打开,
126
435000
3000
所以你得出的结论就是当小孔张开时,
07:36
you get some current当前 sometimes有时.
127
438000
2000
有时候会产生一些电流
07:38
These are your ones那些, but you've got a few少数 zeros thrown抛出 in.
128
440000
3000
这些就是“一”,但你也会额外得到些“零”;
07:41
And when it's closed关闭, you have a zero,
129
443000
4000
而当小孔闭合时,你则得到个“零”,
07:45
but you have a few少数 ones那些 thrown抛出 in.
130
447000
3000
但你也能得到些额外的“一”,是的。
07:48
Now, this is starting开始 to happen发生 in transistors晶体管.
131
450000
3000
现在,这一原理正开始运用于晶体管,
07:51
And the reason原因 why that's happening事件 is that, right now, in 2007 --
132
453000
5000
而发生的原因就在于,在2007年,
07:56
the technology技术 that we are using运用 -- a transistor晶体管 is big enough足够
133
458000
4000
我们目前使用的技术,晶体管的大小足以使
08:00
that several一些 electrons电子 can flow through通过 the channel渠道 simultaneously同时, side by side.
134
462000
5000
好几个电子能同时穿过通道,而且是并排地。
08:05
In fact事实, there's about 12 electrons电子 can all be flowing流动 this way.
135
467000
4000
事实上,大概有12个电子都可以这样穿过去。
08:09
And that means手段 that a transistor晶体管 corresponds对应
136
471000
2000
这意味着一个晶体管就相当于
08:11
to about 12 ion离子 channels渠道 in parallel平行.
137
473000
3000
12个并列的离子通道。
08:14
Now, in a few少数 years年份 time, by 2015, we will shrink收缩 transistors晶体管 so much.
138
476000
5000
在几年时间内,到2015,我们会把晶体管体积缩得非常小,
08:19
This is what Intel英特尔 does to keep adding加入 more cores核心 onto the chip芯片.
139
481000
5000
这正是英特尔所致力于的事业:不断地往芯片上
08:24
Or your memory记忆 sticks that you have now can carry携带 one gigabyte技嘉
140
486000
3000
或是你的记忆棒上添加更多的核,这样就使它们能有1G的内存
08:27
of stuff东东 on them -- before, it was 256.
141
489000
2000
——而以前才256MB。
08:29
Transistors晶体管 are getting得到 smaller to allow允许 this to happen发生,
142
491000
3000
晶体管变得越来越小才使这一切得以实现
08:32
and technology技术 has really benefitted受益 from that.
143
494000
3000
而技术更是得益于此
08:35
But what's happening事件 now is that in 2015, the transistor晶体管 is going to become成为 so small,
144
497000
5000
但现在的情况是到2015年,晶体管将变得如此之小,
08:40
that it corresponds对应 to only one electron电子 at a time
145
502000
3000
以至于它一次只能让一个电子
08:43
can flow through通过 that channel渠道,
146
505000
2000
通过通道,
08:45
and that corresponds对应 to a single ion离子 channel渠道.
147
507000
2000
相当于一个单离子通道,
08:47
And you start开始 having the same相同 kind of traffic交通 jams果酱 that you have in the ion离子 channel渠道.
148
509000
4000
因此就会开始出现像在单离子通道里发生的那种交通堵塞,
08:51
The current当前 will turn on and off at random随机,
149
513000
3000
电流会随机地时断时续,
08:54
even when it's supposed应该 to be on.
150
516000
2000
甚至在它理应通电的时候
08:56
And that means手段 your computer电脑 is going to get
151
518000
2000
而那也就意味着你的电脑将会把
08:58
its ones那些 and zeros mixed up, and that's going to crash紧急 your machine.
152
520000
4000
它的“一”和“零”们搞混淆,那么你这台机器就完蛋了。
09:02
So, we are at the stage阶段 where we
153
524000
4000
所以,我们现在还处于
09:06
don't really know how to compute计算 with these kinds of devices设备.
154
528000
3000
尚不真正清楚如何使用这类装置来运算的阶段
09:09
And the only kind of thing -- the only thing we know right now
155
531000
3000
而我们目前知道的唯一一件事,唯一
09:12
that can compute计算 with these kinds of devices设备 are the brain.
156
534000
3000
能用这类装置来进行运算的是我们人类的大脑
09:15
OK, so a computer电脑 picks精选 a specific具体 item项目 of data数据 from memory记忆,
157
537000
4000
好吧,所以说电脑是从内存中中挑取特定的一项数据
09:19
it sends发送 it into the processor处理器 or the ALUALU,
158
541000
3000
把它传送给处理器或是ALU,
09:22
and then it puts看跌期权 the result结果 back into memory记忆.
159
544000
2000
然后再将运算结果送还给内存。
09:24
That's the red path路径 that's highlighted突出.
160
546000
2000
就是这着重标出的红色路线。
09:26
The way brains大脑 work, I told you all, you have got all these neurons神经元.
161
548000
4000
人脑工作的方式,用上了你能有的所有神经元。
09:30
And the way they represent代表 information信息 is
162
552000
2000
它们呈现信息的方式是
09:32
they break打破 up that data数据 into little pieces
163
554000
2000
把数据粉碎成很小的碎片
09:34
that are represented代表 by pulses脉冲 and different不同 neurons神经元.
164
556000
3000
并用脉冲和不同的神经元来表达。
09:37
So you have all these pieces of data数据
165
559000
2000
而所有的数据碎片
09:39
distributed分散式 throughout始终 the network网络.
166
561000
2000
都分散在这网络中。
09:41
And then the way that you process处理 that data数据 to get a result结果
167
563000
3000
而你处理数据得到结果的方式则是
09:44
is that you translate翻译 this pattern模式 of activity活动 into a new pattern模式 of activity活动,
168
566000
4000
将这一种活动模式转化成一种新的活动模式,
09:48
just by it flowing流动 through通过 the network网络.
169
570000
3000
仅仅就是让它在网络中流过而已。
09:51
So you set up these connections连接
170
573000
2000
这样你就建立起这些连接,
09:53
such这样 that the input输入 pattern模式 just flows流动
171
575000
3000
仅仅让输入模式流动
09:56
and generates生成 the output产量 pattern模式.
172
578000
2000
就能产生输出模式
09:58
What you see here is that there's these redundant connections连接.
173
580000
4000
现在你看到的是一堆多余的连接
10:02
So if this piece of data数据 or this piece of the data数据 gets得到 clobbered重挫,
174
584000
4000
所以如果这块信息碎片,或这块信息碎片被损毁的话
10:06
it doesn't show显示 up over here, these two pieces can activate启用 the missing失踪 part部分
175
588000
5000
它就不会在这儿显示出来了,这两份信息可以
10:11
with these redundant connections连接.
176
593000
2000
通过这些多余的连接来激活缺失的部分信息
10:13
So even when you go to these crappy蹩脚的 devices设备
177
595000
2000
所以即使你用的是这么些蹩脚的装置
10:15
where sometimes有时 you want a one and you get a zero, and it doesn't show显示 up,
178
597000
3000
有时会在你想要个一的时候给你个零
10:18
there's redundancy冗余 in the network网络
179
600000
2000
网络中的重复性
10:20
that can actually其实 recover恢复 the missing失踪 information信息.
180
602000
3000
实际上却能恢复那些缺失的信息。
10:23
It makes品牌 the brain inherently本质 robust强大的.
181
605000
3000
它令大脑自然而然地强大。
10:26
What you have here is a system系统 where you store商店 data数据 locally本地.
182
608000
3000
你这里所拥有的是一个只能存储本地数据的系统
10:29
And it's brittle, because each of these steps脚步 has to be flawless完美无瑕,
183
611000
4000
而且很脆弱,因为它的每一个步骤都必须是准确无误的
10:33
otherwise除此以外 you lose失去 that data数据, whereas in the brain, you have a system系统
184
615000
3000
否则你就会丢失数据。然而大脑系统
10:36
that stores商店 data数据 in a distributed分散式 way, and it's robust强大的.
185
618000
4000
以分散的方式存储数据,且强大无比。
10:40
What I want to basically基本上 talk about is my dream梦想,
186
622000
4000
我想讨论的基本问题是我的梦想,
10:44
which哪一个 is to build建立 a computer电脑 that works作品 like the brain.
187
626000
3000
那就是建造一个像大脑那样工作的电脑。
10:47
This is something that we've我们已经 been working加工 on for the last couple一对 of years年份.
188
629000
4000
过去数年来我们一直在为此而努力。
10:51
And I'm going to show显示 you a system系统 that we designed设计
189
633000
3000
而现在我将向你们展示一个我们设计的
10:54
to model模型 the retina视网膜,
190
636000
3000
模拟视网膜的系统
10:57
which哪一个 is a piece of brain that lines线 the inside of your eyeball眼球.
191
639000
5000
这一模拟系统就是覆盖在你眼球内部的一层大脑
11:02
We didn't do this by actually其实 writing写作 code, like you do in a computer电脑.
192
644000
6000
实际上我们做的这一模拟系统并不像做电脑系统那样编程,
11:08
In fact事实, the processing处理 that happens发生
193
650000
3000
事实上,这一小片大脑的
11:11
in that little piece of brain is very similar类似
194
653000
2000
运作过程非常类似于
11:13
to the kind of processing处理 that computers电脑
195
655000
1000
电脑从因特网上获取视频流的
11:14
do when they stream video视频 over the Internet互联网.
196
656000
4000
过程。
11:18
They want to compress压缩 the information信息 --
197
660000
1000
人们想要压缩信息——
11:19
they just want to send发送 the changes变化, what's new in the image图片, and so on --
198
661000
4000
人们只想发送新发生改变的图像,诸如此类——
11:23
and that is how your eyeball眼球
199
665000
3000
而那就是你的眼球如何
11:26
is able能够 to squeeze all that information信息 down to your optic视神经 nerve神经,
200
668000
3000
能把所有捕捉到的信息传送到你的视神经
11:29
to send发送 to the rest休息 of the brain.
201
671000
2000
再传送给大脑的其余部分
11:31
Instead代替 of doing this in software软件, or doing those kinds of algorithms算法,
202
673000
3000
取代了用软件或者做各种各样的算法来做这一系统
11:34
we went and talked to neurobiologists神经生物学家
203
676000
3000
我们去问了神经生物学家
11:37
who have actually其实 reverse相反 engineered工程 that piece of brain that's called the retina视网膜.
204
679000
4000
他们用反工程法解析了被称作视网膜的那片大脑。
11:41
And they figured想通 out all the different不同 cells细胞,
205
683000
2000
而且他们分析出所有不同的细胞
11:43
and they figured想通 out the network网络, and we just took that network网络
206
685000
3000
还分析出其网络,我们只是拿着那个网络
11:46
and we used it as the blueprint蓝图 for the design设计 of a silicon chip芯片.
207
688000
4000
用它作为设计硅片的蓝图。
11:50
So now the neurons神经元 are represented代表 by little nodes节点 or circuits电路 on the chip芯片,
208
692000
6000
现在硅片上的小结点或电路代表神经元,
11:56
and the connections连接 among其中 the neurons神经元 are represented代表, actually其实 modeled仿照 by transistors晶体管.
209
698000
5000
神经元之间的连接实际上由晶体管模拟
12:01
And these transistors晶体管 are behaving行为 essentially实质上
210
703000
2000
这些晶体管的运作模式基本上
12:03
just like ion离子 channels渠道 behave表现 in the brain.
211
705000
3000
就如同大脑中的离子通道的运作模式。
12:06
It will give you the same相同 kind of robust强大的 architecture建筑 that I described描述.
212
708000
5000
这是同我描述过的一样的强大结构。
12:11
Here is actually其实 what our artificial人造 eye looks容貌 like.
213
713000
4000
这就是我们的人造眼睛的样子。
12:15
The retina视网膜 chip芯片 that we designed设计 sits坐镇 behind背后 this lens镜片 here.
214
717000
5000
我们设计的视网膜硅片安置在这里的镜片后。
12:20
And the chip芯片 -- I'm going to show显示 you a video视频
215
722000
2000
而这硅片——我将给你们看一段视频
12:22
that the silicon retina视网膜 put out of its output产量
216
724000
3000
是这个硅片视网膜的输出
12:25
when it was looking at Kareem卡里姆 Zaghloul扎格卢勒,
217
727000
3000
当它看着Kareem Zaghloul 的时候,
12:28
who's谁是 the student学生 who designed设计 this chip芯片.
218
730000
2000
Kareem是设计这块硅片的学生。
12:30
Let me explain说明 what you're going to see, OK,
219
732000
2000
让我解释一下你将看见什么,好吗?
12:32
because it's putting out different不同 kinds of information信息,
220
734000
3000
由于输出各种不同信息
12:35
it's not as straightforward直截了当 as a camera相机.
221
737000
2000
它不像相机那么简单。
12:37
The retina视网膜 chip芯片 extracts提取物 four different不同 kinds of information信息.
222
739000
3000
视网膜硅片摄取四种不同的信息。
12:40
It extracts提取物 regions地区 with dark黑暗 contrast对比,
223
742000
3000
它摄取黑色对比区域,
12:43
which哪一个 will show显示 up on the video视频 as red.
224
745000
3000
在视频上表现为红色。
12:46
And it extracts提取物 regions地区 with white白色 or light contrast对比,
225
748000
4000
它也摄取白色或亮色对比区域,
12:50
which哪一个 will show显示 up on the video视频 as green绿色.
226
752000
2000
在视频上显示为绿色。
12:52
This is Kareem's贾巴尔的 dark黑暗 eyes眼睛
227
754000
2000
这是Kareem的黑眼睛
12:54
and that's the white白色 background背景 that you see here.
228
756000
3000
而这儿是你所看见的白色背景。
12:57
And then it also extracts提取物 movement运动.
229
759000
2000
然后硅片也摄取物体的运动。
12:59
When Kareem卡里姆 moves移动 his head to the right,
230
761000
2000
当Kareem把头转向右边,
13:01
you will see this blue蓝色 activity活动 there;
231
763000
2000
你能看见那儿的蓝色活动区域,
13:03
it represents代表 regions地区 where the contrast对比 is increasing增加 in the image图片,
232
765000
3000
它代表图像中对比加强的区域,
13:06
that's where it's going from dark黑暗 to light.
233
768000
3000
这一区域由暗变明。
13:09
And you also see this yellow黄色 activity活动,
234
771000
2000
而且你也看见这块黄色活动区域,
13:11
which哪一个 represents代表 regions地区 where contrast对比 is decreasing减少;
235
773000
4000
它代表对比逐渐减弱区域,
13:15
it's going from light to dark黑暗.
236
777000
2000
这一区域由亮变暗。
13:17
And these four types类型 of information信息 --
237
779000
3000
而这四种信息类型——
13:20
your optic视神经 nerve神经 has about a million百万 fibers纤维 in it,
238
782000
4000
你的视神经约有一百万根神经纤维,
13:24
and 900,000 of those fibers纤维
239
786000
3000
这些神经纤维中的90万根
13:27
send发送 these four types类型 of information信息.
240
789000
2000
传送这四种信息。
13:29
So we are really duplicating复制 the kind of signals信号 that you have on the optic视神经 nerve神经.
241
791000
4000
所以我们真正地复制了视神经上的那类信号。
13:33
What you notice注意 here is that these snapshots快照
242
795000
3000
你这里所注意到的是这些
13:36
taken采取 from the output产量 of the retina视网膜 chip芯片 are very sparse, right?
243
798000
4000
从视网膜硅片的输出信息所摄取的快照是非常分散的。
13:40
It doesn't light up green绿色 everywhere到处 in the background背景,
244
802000
2000
在背景中并非到处都是亮色调的绿色,
13:42
only on the edges边缘, and then in the hair头发, and so on.
245
804000
3000
仅仅在边缘如此,等等。
13:45
And this is the same相同 thing you see
246
807000
1000
而这同你所看见的一样
13:46
when people compress压缩 video视频 to send发送: they want to make it very sparse,
247
808000
4000
当人们压缩视频后发送:他们想把它做得很分散,
13:50
because that file文件 is smaller. And this is what the retina视网膜 is doing,
248
812000
3000
因为文件更小了。而这就是视网膜所做的一切
13:53
and it's doing it just with the circuitry电路, and how this network网络 of neurons神经元
249
815000
4000
仅仅用电路就做到了,而且这个神经网络是如何
13:57
that are interacting互动 in there, which哪一个 we've我们已经 captured捕获 on the chip芯片.
250
819000
3000
在那儿相互作用的,我们都在硅片上捕捉到了。
14:00
But the point that I want to make -- I'll show显示 you up here.
251
822000
3000
但是我要说的是,看这里。
14:03
So this image图片 here is going to look like these ones那些,
252
825000
3000
这样的图像将看上去像那些图像,
14:06
but here I'll show显示 you that we can reconstruct重建 the image图片,
253
828000
2000
但在这儿我将向你们演示我们能重组图像,
14:08
so, you know, you can almost几乎 recognize认识 Kareem卡里姆 in that top最佳 part部分 there.
254
830000
5000
所以,你知道,你们几乎可以在那幅顶部图像分辨出Kareem.
14:13
And so, here you go.
255
835000
2000
瞧,就是这个。
14:24
Yes, so that's the idea理念.
256
846000
3000
是的,这就是我的想法。
14:27
When you stand still, you just see the light and dark黑暗 contrasts对比.
257
849000
2000
当你站着不动时,你只看见明暗对比。
14:29
But when it's moving移动 back and forth向前,
258
851000
2000
但是当你前后移动时,
14:31
the retina视网膜 picks精选 up these changes变化.
259
853000
3000
视网膜就摄取到这些变化。
14:34
And that's why, you know, when you're sitting坐在 here
260
856000
1000
那就是为什么,当你坐在这儿,
14:35
and something happens发生 in your background背景,
261
857000
2000
在你的背后发生变化时,你也能知道,
14:37
you merely仅仅 move移动 your eyes眼睛 to it.
262
859000
2000
你只要需要看一眼。
14:39
There are these cells细胞 that detect检测 change更改
263
861000
2000
这些细胞探测到变化
14:41
and you move移动 your attention注意 to it.
264
863000
2000
你就把注意力转向它。
14:43
So those are very important重要 for catching somebody
265
865000
2000
这对你发现
14:45
who's谁是 trying to sneak潜行 up on you.
266
867000
2000
想对你偷偷摸摸的家伙非常重要。
14:47
Let me just end结束 by saying that this is what happens发生
267
869000
3000
让我这么说吧,作为这次演讲的结束,这就是
14:50
when you put Africa非洲 in a piano钢琴, OK.
268
872000
3000
当你把非洲放入一架钢琴会发生的一切,好吧。
14:53
This is a steel drum here that has been modified改性,
269
875000
3000
这是一架已被改装的钢鼓,
14:56
and that's what happens发生 when you put Africa非洲 in a piano钢琴.
270
878000
3000
而那是你把非洲放入钢琴所发生的事情。
14:59
And what I would like us to do is put Africa非洲 in the computer电脑,
271
881000
4000
而我想让大家所做的是把非洲放入一台电脑,
15:03
and come up with a new kind of computer电脑
272
885000
2000
变出一种新电脑
15:05
that will generate生成 thought, imagination想像力, be creative创作的 and things like that.
273
887000
3000
这种电脑将产生思想,具有想象力,充满创造力,以及诸如此类的能力。
15:08
Thank you.
274
890000
2000
谢谢诸位。
15:10
(Applause掌声)
275
892000
2000
(掌声)
15:12
Chris克里斯 Anderson安德森: Question for you, Kwabena夸贝纳.
276
894000
2000
Chris Anderson:Kwabena, 有一个问题问你,
15:14
Do you put together一起 in your mind心神 the work you're doing,
277
896000
4000
你是否想过,在你正从事的工作
15:18
the future未来 of Africa非洲, this conference会议 --
278
900000
3000
非洲的未来,和这次大会——
15:21
what connections连接 can we make, if any, between之间 them?
279
903000
3000
在它们之间我们可以获得什么联系,如果有的话?
15:24
Kwabena夸贝纳 BoahenBoahen: Yes, like I said at the beginning开始,
280
906000
2000
Kwabena Boahen:是的,正如我一开始所说的,
15:26
I got my first computer电脑 when I was a teenager青少年, growing生长 up in Accra阿克拉.
281
908000
4000
我在阿克拉长大,在青少年时期有了第一台电脑。
15:30
And I had this gut肠道 reaction反应 that this was the wrong错误 way to do it.
282
912000
4000
我的本能反应是这种做法是错误的。
15:34
It was very brute畜生 force; it was very inelegant不雅.
283
916000
3000
这是一种非常不理性的力量,非常不雅。
15:37
I don't think that I would've会一直 had that reaction反应,
284
919000
2000
我不认为我会有如此的反应,
15:39
if I'd grown长大的 up reading all this science科学 fiction小说,
285
921000
3000
如果我从小读着所有这些科幻小说,
15:42
hearing听力 about RDRD2D2, whatever随你 it was called, and just -- you know,
286
924000
4000
听着有关星球大战中的机器人RD2D2,不管你怎么称呼它,只是--你知道的,
15:46
buying购买 into this hype炒作 about computers电脑.
287
928000
1000
认同对电脑的这种炒作。
15:47
I was coming未来 at it from a different不同 perspective透视,
288
929000
2000
我是从一个不同的视角接触电脑的,
15:49
where I was bringing使 that different不同 perspective透视
289
931000
2000
我正是带这这个不同的视角
15:51
to bear on the problem问题.
290
933000
2000
来承受这个问题。
15:53
And I think a lot of people in Africa非洲 have this different不同 perspective透视,
291
935000
3000
而且我认为非洲许许多多人有这种不同的观点,
15:56
and I think that's going to impact碰撞 technology技术.
292
938000
2000
而且我认为这将影响到技术。
15:58
And that's going to impact碰撞 how it's going to evolve发展.
293
940000
2000
影响到技术的发展的方向。
16:00
And I think you're going to be able能够 to see, use that infusion注入,
294
942000
2000
而且我认为你们将能目睹,利用那种新灌输的思想,
16:02
to come up with new things,
295
944000
2000
来创造新事物,
16:04
because you're coming未来 from a different不同 perspective透视.
296
946000
3000
因为你们来自于一个不同的背景。
16:07
I think we can contribute有助于. We can dream梦想 like everybody每个人 else其他.
297
949000
4000
我觉得我们可以像其他任何人一样贡献自己的力量,构筑自己的梦想。
16:11
CACA: Thanks谢谢 Kwabena夸贝纳, that was really interesting有趣.
298
953000
2000
Chris Anderson:谢谢,Kwabena,这真的很有意思。
16:13
Thank you.
299
955000
1000
谢谢。
16:14
(Applause掌声)
300
956000
2000
(掌声)
Translated by Mingzi Qu
Reviewed by Xu (Jessica) Jiang

▲Back to top

ABOUT THE SPEAKER
Kwabena Boahen - Bioengineer
Kwabena Boahen wants to understand how brains work -- and to build a computer that works like the brain by reverse-engineering the nervous system. His group at Stanford is developing Neurogrid, a hardware platform that will emulate the cortex’s inner workings.

Why you should listen

Kwabena Boahen is the principal investigator at the Brains in Silicon lab at Stanford. He writes of himself:

Being a scientist at heart, I want to understand how cognition arises from neuronal properties. Being an engineer by training, I am using silicon integrated circuits to emulate the way neurons compute, linking the seemingly disparate fields of electronics and computer science with neurobiology and medicine.

My group's contributions to the field of neuromorphic engineering include a silicon retina that could be used to give the blind sight and a self-organizing chip that emulates the way the developing brain wires itself up. Our work is widely recognized, with over sixty publications, including a cover story in the May 2005 issue of Scientific American.

My current research interest is building a simulation platform that will enable the cortex's inner workings to be modeled in detail. While progress has been made linking neuronal properties to brain rhythms, the task of scaling up these models to link neuronal properties to cognition still remains. Making the supercomputer-performance required affordable is the goal of our Neurogrid project. It is at the vanguard of a profound shift in computing, away from the sequential, step-by-step Von Neumann machine towards a parallel, interconnected architecture more like the brain.

More profile about the speaker
Kwabena Boahen | Speaker | TED.com

Data provided by TED.

This site was created in May 2015 and the last update was on January 12, 2020. It will no longer be updated.

We are currently creating a new site called "eng.lish.video" and would be grateful if you could access it.

If you have any questions or suggestions, please feel free to write comments in your language on the contact form.

Privacy Policy

Developer's Blog

Buy Me A Coffee