Priyanka Jain: How to make applying for jobs less painful
프리얀카 제인: 덜 고통스럽게 입사지원하기
Priyanka Jain heads up product for pymetrics, an NYC-based startup that uses neuroscience and AI to make hiring more diverse and effective. Full bio
Double-click the English transcript below to play the video.
digital experiences of our time.
디지털 활동 중 하나입니다.
really isn't much better.
별반 낫지 않죠.
많은 문제가 있습니다.
is broken on many fronts.
using various methods in the past year
입사지원을 했지만
듣지 못했다고 합니다.
from the employer.
it's not much better.
해고되거나 그만두고 마는데
of starting their jobs.
than we have unemployed people,
문제가 있다는 소리로 들리네요.
that we have a problem.
is a single piece of paper: the résumé.
이력서라는 서류가 있죠.
some useful pieces in it:
유용한 정보들도 있습니다.
computer skills,
컴퓨터는 잘 다루는지,
what they have the potential to do
잠재력에 대해 알 순 없습니다.
the opportunity to do in the past.
보여줄 수 없었던 것들 말이죠.
누구에게도 없는 재능을 요하는
where jobs are coming online
has done in the past,
뭘 했는지 밖에 모른다면
to match people to the jobs of the future.
인재를 찾긴 힘들겠죠.
큰 도움이 될거라 생각합니다.
can be really helpful.
사람과 사물을 연결하는 알고리즘에
that algorithms have gotten pretty good
that same technology
that we're really well-suited for?
활용할 수 있다면 어떨까요?
정해진다는 게 좀 섬뜩하긴 한데
sounds a little bit scary,
제대로 예측하는
of someone's future success in a job,
a multimeasure test.
really aren't anything new,
보고서까지 써내야 했었죠.
and writing reports.
손쉽게 활용할 수 있어서
about really what the traits are
개인의 특성에 관한 자료를
them a good fit for a job?
to clap when the circle is red
손뼉을 치신 분들도 있고
after a red circle appears.
좀 더 늦게 치신 분들도 있겠죠.
to be 100 percent sure.
치신 분들도 있을 거예요.
even though you're not supposed to.
누구를 고용하면 좋은 지 보여주는
this isn't like a standardized test
and some people aren't.
완전히 다르다는 것입니다.
어떤 직업에서
the fit between your characteristics
알아볼 수 있는 것이죠.
good a certain job.
초록색일 땐 치지 않았다면
and you never clap on the green,
and high in restraint.
인내심이 많은 사람일 거예요.
great students, great test-takers,
훌륭한 학생이자 시험도 잘 보고
회계업무에 뛰어납니다.
and sometimes clap on green,
가끔 초록색일 때도 손뼉을 친다면
you're more impulsive and creative,
salespeople often embody these traits.
이런 특징을 가지고 있었습니다.
고용할 때 적용해 보려고
go through neuroscience exercises
신경과학 훈련을 시켜 봤어요.
those top performers unique.
특별하게 만드는지 알아 봤죠.
who might be best suited for that job.
추려낼 수 있습니다.
there's a danger in this.
생각하는 분들도 있을 거예요.
is not the most diverse
오늘날의 노동환경에
based on current top performers,
알고리즘을 만든다면
지속시키는 꼴이 아니란 걸
the biases that already exist?
기준으로 알고리즘을 만들어
an algorithm based on top performing CEOs
'트레이닝 세트'로 사용한다면
a white man named John than any woman.
고용할 확률이 높게 됩니다.
of who's in those roles right now.
그 위치에 있는지 보여주는 셈이죠.
a really interesting opportunity.
아주 흥미로운 기회를 제시합니다.
that are more equitable
훨씬 합리적이고 공정한
have ever been.
into production has been pretested
사전 테스트를 거쳐
any gender or ethnicity.
선호하지 않도록 했어요.
that's being overfavored,
until that's no longer true.
알고리즘의 수정도 가능하죠.
characteristics
a good fit for a job,
classism, sexism, ageism --
shouldn't just be used
or new favorite Justin Bieber song.
새 애창곡을 찾는 데에만 쓰면 안되겠죠.
the power of technology
이 기술의 힘을 잘 이용한다면
on what we should be doing
어떤 일을 해야 좋을 지 알려줄
ABOUT THE SPEAKER
Priyanka Jain - TechnologistPriyanka Jain heads up product for pymetrics, an NYC-based startup that uses neuroscience and AI to make hiring more diverse and effective.
Why you should listen
Passionate about using technology to create a fairer workplace and global economy, Priyanka Jain is a spokesperson for the United Nations Foundation's Girl Up Campaign, Chair of the Acumen Fund's Junior Council and on the Innovation Board for the XPrize Foundation. She received her B.S. from Stanford University, where she was President of Stanford Women in Business and one of 12 Mayfield Entrepreneurship Fellows. Her previous experience includes internships at IBM Watson, Shift Technologies, Canvas Ventures and the Institute for Learning and Brain Sciences. Outside of work, she loves playing tennis and eating anything covered in dark chocolate.
Priyanka Jain | Speaker | TED.com