ABOUT THE SPEAKER
Geoffrey West - Theorist
Physicist Geoffrey West believes that complex systems from organisms to cities are in many ways governed by simple laws -- laws that can be discovered and analyzed.

Why you should listen

Trained as a theoretical physicist, Geoffrey West has turned his analytical mind toward the inner workings of more concrete things, like ... animals. In a paper for Science in 1997, he and his team uncovered what he sees as a surprisingly universal law of biology — the way in which heart rate, size and energy consumption are related, consistently, across most living animals. (Though not all animals: “There are always going to be people who say, ‘What about the crayfish?’ " he says. “Well, what about it? Every fundamental law has exceptions. But you still need the law or else all you have is observations that don’t make sense.")

A past president of the multidisciplinary Santa Fe Institute (after decades working  in high-energy physics at Los Alamos and Stanford), West now studies the behavior and development of cities. In his newest work, he proposes that one simple number, population, can predict a stunning array of details about any city, from crime rate to economic activity. It's all about the plumbing, he says, the infrastructure that powers growth or dysfunction. His next target for study: corporations.

He says: "Focusing on the differences [between cities] misses the point. Sure, there are differences, but different from what? We’ve found the what."

More profile about the speaker
Geoffrey West | Speaker | TED.com
TEDGlobal 2011

Geoffrey West: The surprising math of cities and corporations

Geoffrey West: Matematika e habitshme e qyteteve dhe korporatave

Filmed:
1,583,030 views

Fizikani Geoffrey West ka zbuluar se ligje matematikore te thjeshta percaktojne tiparet e qyteteve -- se pasuria, niveli i krimeve, shpejtesia e ecjes dhe shume aspekte te tjera te nje qyteti mund te parashikohen nga nje numer i vetem: popullsia e nje qyteti. Ne kete ligjerate te pazakonte nga TEDGlobal ai tregon se si ndodh kjo dhe se si ligje te ngjashme jane ne fuqi si per organizmat dhe per korporatat.
- Theorist
Physicist Geoffrey West believes that complex systems from organisms to cities are in many ways governed by simple laws -- laws that can be discovered and analyzed. Full bio

Double-click the English transcript below to play the video.

00:16
Cities are the crucible of civilization.
0
1000
3000
Qytetet jane djepe te qyteterimit.
00:19
They have been expanding,
1
4000
2000
Ata jane zgjeruar vazhdimisht,
00:21
urbanization has been expanding,
2
6000
2000
urbanizimi eshte ne zgjerim e siper,
00:23
at an exponential rate in the last 200 years
3
8000
2000
me nje ritem eksponencial ne 200 vitet e fundit,
00:25
so that by the second part of this century,
4
10000
3000
ne nje menyre te atille qe ne gjysmen e dyte te ketij shekulli
00:28
the planet will be completely dominated
5
13000
2000
planeti do te dominohet teresisht
00:30
by cities.
6
15000
3000
nga qytetet.
00:33
Cities are the origins of global warming,
7
18000
3000
Qytetet jane origjine e nxehjes globale
00:36
impact on the environment,
8
21000
2000
kane ndikim ne mjedis
00:38
health, pollution, disease,
9
23000
3000
shendet, ndotje, semundje,
00:41
finance,
10
26000
2000
finance
00:43
economies, energy --
11
28000
3000
ekonomi, energjitike --
00:46
they're all problems
12
31000
2000
keto jane te gjithe probleme
00:48
that are confronted by having cities.
13
33000
2000
me te cilat na perball prezenca e qyteteve.
00:50
That's where all these problems come from.
14
35000
2000
Ata jane origjina e te gjithe ketyre problemeve.
00:52
And the tsunami of problems that we feel we're facing
15
37000
3000
Dhe kjo stuhi problemesh me te cilat po perballemi
00:55
in terms of sustainability questions
16
40000
2000
ne lidhje me ceshtjet e qendrueshmerise,
00:57
are actually a reflection
17
42000
2000
jane ne fakt reflektim
00:59
of the exponential increase
18
44000
2000
i rritjes eksponenciale
01:01
in urbanization across the planet.
19
46000
3000
te urbanizimit ne te gjithe planetin.
01:04
Here's some numbers.
20
49000
2000
Ja disa shifra.
01:06
Two hundred years ago, the United States
21
51000
2000
200 vite me pare, Shtetet e Bashkuara
01:08
was less than a few percent urbanized.
22
53000
2000
ishin ne nje nivel perqindjeje shume te ulet urbanizimi.
01:10
It's now more than 82 percent.
23
55000
2000
Tani eshte me shume se 82 perqind.
01:12
The planet has crossed the halfway mark a few years ago.
24
57000
3000
Planeti e ka kaluar nivelin e gjysmes disa vite me pare.
01:15
China's building 300 new cities
25
60000
2000
Kina do te ndertoje 300 qytete te reja
01:17
in the next 20 years.
26
62000
2000
ne 20 vitet e ardhshme.
01:19
Now listen to this:
27
64000
2000
Tani degjoni kete:
01:21
Every week for the foreseeable future,
28
66000
3000
Cdo jave ne te ardhmen e afert,
01:24
until 2050,
29
69000
2000
deri ne vitin 2050,
01:26
every week more than a million people
30
71000
2000
cdo jave me shume se nje milion njerez
01:28
are being added to our cities.
31
73000
2000
po levizin drejt qyteteve tona.
01:30
This is going to affect everything.
32
75000
2000
Kjo do te ndikoje gjithcka.
01:32
Everybody in this room, if you stay alive,
33
77000
2000
Secili prej jush ne kete dhome, nese do te jete gjalle,
01:34
is going to be affected
34
79000
2000
do te ndikohet
01:36
by what's happening in cities
35
81000
2000
nga ajo cka po ndodh ne qytete
01:38
in this extraordinary phenomenon.
36
83000
2000
ne kete fenomen te jashtezakonshem.
01:40
However, cities,
37
85000
3000
Sidoqofte, qytetet,
01:43
despite having this negative aspect to them,
38
88000
3000
pavaresisht se mbartin kete aspekt negativ ne vete,
01:46
are also the solution.
39
91000
2000
jane po ashtu dhe zgjidhja.
01:48
Because cities are the vacuum cleaners and the magnets
40
93000
4000
Pikerisht sepse qytetet jane makina thithese dhe magnete
01:52
that have sucked up creative people,
41
97000
2000
qe kane terhequr fuqishem njerezit krijues,
01:54
creating ideas, innovation,
42
99000
2000
duke krijuar ide, zbulime te reja,
01:56
wealth and so on.
43
101000
2000
pasuri e keshtu me rradhe.
01:58
So we have this kind of dual nature.
44
103000
2000
Pra, ka nje natyre disi te dyfishte.
02:00
And so there's an urgent need
45
105000
3000
Andaj, ka nje nevoje urgjente
02:03
for a scientific theory of cities.
46
108000
4000
per nje teori shkencore te qyteteve.
02:07
Now these are my comrades in arms.
47
112000
3000
Tani keta jane bashkeudhetaret e mi ne kete kerkim.
02:10
This work has been done with an extraordinary group of people,
48
115000
2000
Kjo pune (kerkimore) eshte bere nga nje grup i jashtezakonshem njerezish,
02:12
and they've done all the work,
49
117000
2000
dhe ne fakt ata kane bere te gjithe punen,
02:14
and I'm the great bullshitter
50
119000
2000
dhe une jam vetem ai llafazani i madh
02:16
that tries to bring it all together.
51
121000
2000
qe po mundohet ta bashkoje te gjithe kete pune.
02:18
(Laughter)
52
123000
2000
(Te qeshura)
02:20
So here's the problem: This is what we all want.
53
125000
2000
Ja pra ku eshte problemi: Kjo eshte ajo cka te gjithe ne duam.
02:22
The 10 billion people on the planet in 2050
54
127000
3000
Te 10 miliarde njerezit ne kete planet ne 2050
02:25
want to live in places like this,
55
130000
2000
do te duan te jetojne ne vende te tilla,
02:27
having things like this,
56
132000
2000
te kene gjera te tilla,
02:29
doing things like this,
57
134000
2000
te bejne gjera te tilla,
02:31
with economies that are growing like this,
58
136000
3000
me ekonomi qe po rriten ne te ketille menyre,
02:34
not realizing that entropy
59
139000
2000
pa e kuptuar se entropia (rremuja)
02:36
produces things like this,
60
141000
2000
prodhon gjera si kjo
02:38
this, this
61
143000
4000
kjo, kjo
02:42
and this.
62
147000
2000
dhe kjo.
02:44
And the question is:
63
149000
2000
Dhe ceshtja eshte:
02:46
Is that what Edinburgh and London and New York
64
151000
2000
A eshte kjo menyra se si Edinburgu, Londra dhe New Yorku
02:48
are going to look like in 2050,
65
153000
2000
do te duken ne 2050,
02:50
or is it going to be this?
66
155000
2000
apo eshte kjo tjetra?
02:52
That's the question.
67
157000
2000
Kjo eshte ceshtja.
02:54
I must say, many of the indicators
68
159000
2000
Me duhet ta pranoj, shumica e treguesve
02:56
look like this is what it's going to look like,
69
161000
3000
sugjerojne se kjo eshte sesi do te duket
02:59
but let's talk about it.
70
164000
3000
por le te flasim ne lidhje me kete.
03:02
So my provocative statement
71
167000
3000
Qendrimi im provokativ
03:05
is that we desperately need a serious scientific theory of cities.
72
170000
3000
eshte se ne na nevojitet deshperimisht nje teori shkencore serioze e qyteteteve.
03:08
And scientific theory means quantifiable --
73
173000
3000
Dhe nje teori shkencore do te thote te jete e matshme --
03:11
relying on underlying generic principles
74
176000
3000
qe ngrihet mbi parime baze te pergjithshme
03:14
that can be made into a predictive framework.
75
179000
2000
te cilat mund te bashkohen ne nje skelet mendimi me fuqi parashikuese.
03:16
That's the quest.
76
181000
2000
Kjo eshte pra sfida.
03:18
Is that conceivable?
77
183000
2000
A eshte e mundshme?
03:20
Are there universal laws?
78
185000
2000
A ekzistojne ligje universale?
03:22
So here's two questions
79
187000
2000
Ja ku jane dy pyetje
03:24
that I have in my head when I think about this problem.
80
189000
2000
qe me qendrojne ne koke ndersa mendoj per kete problem.
03:26
The first is:
81
191000
2000
E para eshte:
03:28
Are cities part of biology?
82
193000
2000
A jane qytetet pjese e biologjise?
03:30
Is London a great big whale?
83
195000
2000
A eshte Londra nje balene e madhe?
03:32
Is Edinburgh a horse?
84
197000
2000
A eshte Edinburgu nje kale?
03:34
Is Microsoft a great big anthill?
85
199000
2000
A eshte Microsoft nje koloni e madhe milingonash?
03:36
What do we learn from that?
86
201000
2000
Cfare mesimesh nxjerrim nga keto?
03:38
We use them metaphorically --
87
203000
2000
I perdorim metaforikisht --
03:40
the DNA of a company, the metabolism of a city, and so on --
88
205000
2000
ADN-ja e nje kompanie, metabolizmi i nje qyteti, e keshtu me rradhe --
03:42
is that just bullshit, metaphorical bullshit,
89
207000
3000
a jane keto vetem pallavra, pallavra metaforike,
03:45
or is there serious substance to it?
90
210000
3000
apo ka substance serioze brenda tyre?
03:48
And if that is the case,
91
213000
2000
E nese eshte kjo e dyta,
03:50
how come that it's very hard to kill a city?
92
215000
2000
atehere si ka mundesi qe eshte kaq e veshtire te vrasesh nje qytet?
03:52
You could drop an atom bomb on a city,
93
217000
2000
Mund ta hedhesh nje bombe atomike ne nje qytet,
03:54
and 30 years later it's surviving.
94
219000
2000
dhe pas 30 vitesh, ai ende mbijeton.
03:56
Very few cities fail.
95
221000
3000
Shume pak qytete deshtojne te mbijetojne.
03:59
All companies die, all companies.
96
224000
3000
Te gjitha kompanite vdesin, te gjitha.
04:02
And if you have a serious theory, you should be able to predict
97
227000
2000
Nese ke nje teori serioze, duhet te jesh ne gjendje te parashikosh
04:04
when Google is going to go bust.
98
229000
3000
se kur do te zhduket Google.
04:07
So is that just another version
99
232000
3000
Pra, a eshte kjo vetem nje version tjeter
04:10
of this?
100
235000
2000
i kesaj?
04:12
Well we understand this very well.
101
237000
2000
Ne e kuptojme kete shume mire.
04:14
That is, you ask any generic question about this --
102
239000
2000
Qe domethene, ne mund te pyesim cdo lloj pyetjeje te pergjithshme ne lidhje me kete --
04:16
how many trees of a given size,
103
241000
2000
sa peme te nje madhesie te caktuar,
04:18
how many branches of a given size does a tree have,
104
243000
2000
sa dege te nje madhesie te caktuar ka nje peme,
04:20
how many leaves,
105
245000
2000
sa gjethe,
04:22
what is the energy flowing through each branch,
106
247000
2000
sa energji kalon permes seciles dege,
04:24
what is the size of the canopy,
107
249000
2000
sa e madhe eshte mbulesa gjethore,
04:26
what is its growth, what is its mortality?
108
251000
2000
si rritet, cfare do te thote te vdese?
04:28
We have a mathematical framework
109
253000
2000
Ne kemi nje konceptim matematikor
04:30
based on generic universal principles
110
255000
3000
te bazuar mbi parime universale te vetemjaftueshme
04:33
that can answer those questions.
111
258000
2000
per t'i dhene pergjigje ketyre pyetjeve.
04:35
And the idea is can we do the same for this?
112
260000
4000
Dhe ideja eshte: a mund te bejme te njejten dhe per kete?
04:40
So the route in is recognizing
113
265000
3000
Rruga drejt kesaj eshte te kuptoje
04:43
one of the most extraordinary things about life,
114
268000
2000
nje nga gjerat me te jashtezakonshme mbi jeten,
04:45
is that it is scalable,
115
270000
2000
qe eshte qe ajo (jeta) eshte e shkallezueshme,
04:47
it works over an extraordinary range.
116
272000
2000
shtrihet pergjate nje game te jashtezakonshme.
04:49
This is just a tiny range actually:
117
274000
2000
Kjo eshte ne fakt vetem nje fragment i vogel;
04:51
It's us mammals;
118
276000
2000
jemi ne gjitaret,
04:53
we're one of these.
119
278000
2000
ne jemi nje nga keta.
04:55
The same principles, the same dynamics,
120
280000
2000
Te njejtat parime, e njejta dinamike,
04:57
the same organization is at work
121
282000
2000
i njejti organizim funksionon
04:59
in all of these, including us,
122
284000
2000
per te gjithe keta, perfshire edhe ne,
05:01
and it can scale over a range of 100 million in size.
123
286000
3000
dhe mund te shkallezohet ne permasa te nje rendi me 100 milione.
05:04
And that is one of the main reasons
124
289000
3000
Dhe kjo eshte nje nga arsyet kryesore
05:07
life is so resilient and robust --
125
292000
2000
pse jeta eshte kaq e forte dhe e durueshme --
05:09
scalability.
126
294000
2000
shkallezueshmeria.
05:11
We're going to discuss that in a moment more.
127
296000
3000
Do ta diskutojme kete edhe per pak.
05:14
But you know, at a local level,
128
299000
2000
Por e dini, ne nje nivel lokal,
05:16
you scale; everybody in this room is scaled.
129
301000
2000
ti shkallezohesh, cdokush ne kete dhome shkallezohet.
05:18
That's called growth.
130
303000
2000
Kjo quhet rritje.
05:20
Here's how you grew.
131
305000
2000
Ja sesi ti rritesh.
05:22
Rat, that's a rat -- could have been you.
132
307000
2000
Mi, ky eshte nje mi -- por mund te kishte qene dhe grafiku juaj.
05:24
We're all pretty much the same.
133
309000
3000
Ne jemi te gjithe pak a shume njesoj.
05:27
And you see, you're very familiar with this.
134
312000
2000
Dhe ja e shihni, ju te gjithe e njihni kete.
05:29
You grow very quickly and then you stop.
135
314000
2000
Rriteni shume shpejt dhe me pas ndaloni se rrituri.
05:31
And that line there
136
316000
2000
Dhe ajo vija aty
05:33
is a prediction from the same theory,
137
318000
2000
eshte nje parashikim nga e njejta teori,
05:35
based on the same principles,
138
320000
2000
e bazuar mbi te njejtat principe
05:37
that describes that forest.
139
322000
2000
qe pershkruajne dhe ate pyll.
05:39
And here it is for the growth of a rat,
140
324000
2000
Dhe kjo ketu eshte per rritjen e nje miu.
05:41
and those points on there are data points.
141
326000
2000
Dhe ato pikat aty jane ne fakt te dhena te mbledhura.
05:43
This is just the weight versus the age.
142
328000
2000
Kjo eshte vetem pesha perkundrejt moshes.
05:45
And you see, it stops growing.
143
330000
2000
Dhe e shihni qe ndalon se rrituri.
05:47
Very, very good for biology --
144
332000
2000
Shume, shume e mire per biologjine --
05:49
also one of the reasons for its great resilience.
145
334000
2000
po ashtu dhe nje nga arsyet per qendrueshmerine e saj te madhe.
05:51
Very, very bad
146
336000
2000
Shume, shume e keqe
05:53
for economies and companies and cities
147
338000
2000
per ekonomite dhe kompanite dhe qytetet
05:55
in our present paradigm.
148
340000
2000
ne paradigmen ekzistuese.
05:57
This is what we believe.
149
342000
2000
Kjo eshte ajo cka ne besojme.
05:59
This is what our whole economy
150
344000
2000
Kjo eshte ajo cka e gjithe ekonomia jone
06:01
is thrusting upon us,
151
346000
2000
po na fut ne koke,
06:03
particularly illustrated in that left-hand corner:
152
348000
3000
e ilustruar vecanerisht ne ate cepin e majte:
06:06
hockey sticks.
153
351000
2000
shkopa hokej.
06:08
This is a bunch of software companies --
154
353000
2000
Ky eshte grafiku i nje sere kompanish softueresh --
06:10
and what it is is their revenue versus their age --
155
355000
2000
dhe ajo cka tregon jane te ardhurat perkundrejt moshes se tyre --
06:12
all zooming away,
156
357000
2000
te gjitha duke u rritur me shpejtesi,
06:14
and everybody making millions and billions of dollars.
157
359000
2000
dhe cdokush qe po ben miliona e miliarda dollare.
06:16
Okay, so how do we understand this?
158
361000
3000
Ok, pra si ta kuptojme kete?
06:19
So let's first talk about biology.
159
364000
3000
Le te flasim fillimisht per biologjine.
06:22
This is explicitly showing you
160
367000
2000
Kjo ju tregon qartazi
06:24
how things scale,
161
369000
2000
se si gjerat shkallezohen.
06:26
and this is a truly remarkable graph.
162
371000
2000
Dhe ky eshte nje grafik vertet mbreselenes.
06:28
What is plotted here is metabolic rate --
163
373000
3000
Ketu paraqitet ritmi metabolik --
06:31
how much energy you need per day to stay alive --
164
376000
3000
sa energji ju nevojitet cdo dite per te qendruar gjalle --
06:34
versus your weight, your mass,
165
379000
2000
perkundrejt peshes, mases suaj trupore
06:36
for all of us bunch of organisms.
166
381000
3000
per nje sere organizmash.
06:39
And it's plotted in this funny way by going up by factors of 10,
167
384000
3000
Dhe eshte i skicuar ne nje menyre zbavitese duke u rritur me shumefishe te 10-es,
06:42
otherwise you couldn't get everything on the graph.
168
387000
2000
perndryshe nuk do mundnim te permblidhnim gjithcka ne te njejtin grafik.
06:44
And what you see if you plot it
169
389000
2000
Dhe ajo cka shohim kur e skicojme
06:46
in this slightly curious way
170
391000
2000
ne kete forme disi kureshtare,
06:48
is that everybody lies on the same line.
171
393000
3000
eshte qe gjithcka ndodhet ne te njejten vije.
06:51
Despite the fact that this is the most complex and diverse system
172
396000
3000
Pavaresisht faktit se ky eshte sistemi me kompleks e me i shumellojshem
06:54
in the universe,
173
399000
3000
ne univers,
06:57
there's an extraordinary simplicity
174
402000
2000
ka nje thjeshtesi te jashtezakonshme
06:59
being expressed by this.
175
404000
2000
qe shprehet permes kesaj.
07:01
It's particularly astonishing
176
406000
3000
Eshte vecanerisht e habitshme
07:04
because each one of these organisms,
177
409000
2000
sepse secili prej ketyre organizmave,
07:06
each subsystem, each cell type, each gene,
178
411000
2000
secili nensistem, cdo lloj qelizeje, cdo gjen,
07:08
has evolved in its own unique environmental niche
179
413000
4000
ka evoluar ne mjedisin e tij unik
07:12
with its own unique history.
180
417000
3000
me historine e vet unike.
07:15
And yet, despite all of that Darwinian evolution
181
420000
3000
Dhe prape se prape, pavaresisht krejt atij evolucioni Darvinian
07:18
and natural selection,
182
423000
2000
dhe perzgjedhjeje natyrore,
07:20
they've been constrained to lie on a line.
183
425000
2000
ato jane detyruar te gjenden ne te njejten vije.
07:22
Something else is going on.
184
427000
2000
Dicka tjeter po ndodh ketu.
07:24
Before I talk about that,
185
429000
2000
Perpara se te flas per te,
07:26
I've written down at the bottom there
186
431000
2000
aty ne pjesen e poshtme te ekranit kam shkruar
07:28
the slope of this curve, this straight line.
187
433000
2000
pjerresine (gradientin) e asaj vije te drejte.
07:30
It's three-quarters, roughly,
188
435000
2000
Eshte tre te katertat, pak a shume,
07:32
which is less than one -- and we call that sublinear.
189
437000
3000
qe eshte me pak se nje -- dhe e quajme nenlineare.
07:35
And here's the point of that.
190
440000
2000
Dhe ideja eshte ketu:
07:37
It says that, if it were linear,
191
442000
3000
Ajo tregon se, po te ishte lineare,
07:40
the steepest slope,
192
445000
2000
me pjerresine me te madhe (gradient 1),
07:42
then doubling the size
193
447000
2000
atehere dyfishimi i madhesise
07:44
you would require double the amount of energy.
194
449000
2000
kerkon dyfishimin e sasise se energjise.
07:46
But it's sublinear, and what that translates into
195
451000
3000
Por eshte nenlineare, dhe kjo perkthehet ne kete menyre,
07:49
is that, if you double the size of the organism,
196
454000
2000
qe nese ju dyfishoni madhesine e organizmit,
07:51
you actually only need 75 percent more energy.
197
456000
3000
ne fakt ju duhet vetem 75 perqind me shume energji.
07:54
So a wonderful thing about all of biology
198
459000
2000
Pra nje gje e mrekullueshme ne te gjithe biologjine
07:56
is that it expresses an extraordinary economy of scale.
199
461000
3000
eshte se ne te vihet re nje "ekonomi e shkallezimit" e jashtezakonshme.
07:59
The bigger you are systematically,
200
464000
2000
Sa me i madh qe je sistematikisht,
08:01
according to very well-defined rules,
201
466000
2000
sipas rregullave te mirepercaktuara,
08:03
less energy per capita.
202
468000
3000
aq me pak energji per fryme.
08:06
Now any physiological variable you can think of,
203
471000
3000
Tani, cdo variabel fiziologjik qe mund t'ju vije ne mend,
08:09
any life history event you can think of,
204
474000
2000
cdo ngjarje historike e jetes qe mund t'ju vije ne mend,
08:11
if you plot it this way, looks like this.
205
476000
3000
nese e skiconi ne te ketille menyre, do te duket keshtu.
08:14
There is an extraordinary regularity.
206
479000
2000
Ka nje rregullsi te jashtezakonshme.
08:16
So you tell me the size of a mammal,
207
481000
2000
Pra, nese me tregon madhesine e nje gjitari,
08:18
I can tell you at the 90 percent level everything about it
208
483000
3000
mund te te tregoj rreth 90% te gjithckaje ne lidhje me te
08:21
in terms of its physiology, life history, etc.
209
486000
4000
ne lidhje me fiziologjine e tij, historine jetesore, etj.
08:25
And the reason for this is because of networks.
210
490000
3000
Dhe arsyeja per kete jane rrjetet.
08:28
All of life is controlled by networks --
211
493000
3000
E gjithe jeta eshte e kontrolluar permes rrjetesh --
08:31
from the intracellular through the multicellular
212
496000
2000
nga nderqelizorja tek shumeqelizorja
08:33
through the ecosystem level.
213
498000
2000
e deri tek niveli i ekosistemit.
08:35
And you're very familiar with these networks.
214
500000
3000
Dhe ju ne fakt jeni te njohur me keto rrjete.
08:39
That's a little thing that lives inside an elephant.
215
504000
3000
Kjo eshte nje gje e vogel qe jeton brenda nje elefanti.
08:42
And here's the summary of what I'm saying.
216
507000
3000
Dhe kjo eshte permbledhja e atyre qe po them.
08:45
If you take those networks,
217
510000
2000
Nese i merrni keto rrjete,
08:47
this idea of networks,
218
512000
2000
kete ide te rrjeteve,
08:49
and you apply universal principles,
219
514000
2000
dhe zbatoni parime universale
08:51
mathematizable, universal principles,
220
516000
2000
parime universale, te reduktueshme ne forme matematikore,
08:53
all of these scalings
221
518000
2000
te gjitha keto shkallezime
08:55
and all of these constraints follow,
222
520000
3000
dhe te gjitha keto rregullsi rrjedhin prej tyre,
08:58
including the description of the forest,
223
523000
2000
duke perfshire pershkrimi e pyllit,
09:00
the description of your circulatory system,
224
525000
2000
pershkrimin e sistemit tuaj qelizor,
09:02
the description within cells.
225
527000
2000
pershkrimin brenda qelizave.
09:04
One of the things I did not stress in that introduction
226
529000
3000
Nje nga gjerat te cilen s'e theksova ne ate hyrje
09:07
was that, systematically, the pace of life
227
532000
3000
ishte qe, sistematikisht, ritmi i jetes
09:10
decreases as you get bigger.
228
535000
2000
bie ndersa ju beheni me te medhenj.
09:12
Heart rates are slower; you live longer;
229
537000
3000
Te rrahurat e zemres jane me te ngadalshme; ju jetoni me gjate;
09:15
diffusion of oxygen and resources
230
540000
2000
shperberja e oksigjenit dhe e lendeve
09:17
across membranes is slower, etc.
231
542000
2000
permes membranave eshte me e ngadalshme etj.
09:19
The question is: Is any of this true
232
544000
2000
Pyetja eshte: A eshte ndonje nga keto e vertete
09:21
for cities and companies?
233
546000
3000
per qytetet dhe kompanite?
09:24
So is London a scaled up Birmingham,
234
549000
3000
Pra, a eshte Londra nje zmadhim i Birmingamit,
09:27
which is a scaled up Brighton, etc., etc.?
235
552000
3000
i cili eshte nje zmadhim i Brighton etj, etj. ?
09:30
Is New York a scaled up San Francisco,
236
555000
2000
A eshte New York nje zmadhim i San Francisco-s,
09:32
which is a scaled up Santa Fe?
237
557000
2000
i cili nga ana tjeter eshte nje zmadhim i Santa Fe?
09:34
Don't know. We will discuss that.
238
559000
2000
Nuk e di. Do ta diskutojme.
09:36
But they are networks,
239
561000
2000
Por ato jane rrjete.
09:38
and the most important network of cities
240
563000
2000
Dhe rrjeti me i rendesishem i qyteteve
09:40
is you.
241
565000
2000
jeni ju.
09:42
Cities are just a physical manifestation
242
567000
3000
Qytetet jane vec nje manifestim fizik
09:45
of your interactions,
243
570000
2000
i nderveprimeve tuaja,
09:47
our interactions,
244
572000
2000
i nderveprimeve tona,
09:49
and the clustering and grouping of individuals.
245
574000
2000
dhe i grumbullimit dhe grupimit te individeve.
09:51
Here's just a symbolic picture of that.
246
576000
3000
Kjo eshte vetem nje skicim simbolik i kesaj.
09:54
And here's scaling of cities.
247
579000
2000
Dhe ky eshte shkallezimi i qyteteve.
09:56
This shows that in this very simple example,
248
581000
3000
Kjo tregon se ne kete shembull shume te thjeshte,
09:59
which happens to be a mundane example
249
584000
2000
qe eshte gjitashtu nje shembull i zakonshem
10:01
of number of petrol stations
250
586000
2000
i numrit te pikave te karburantit
10:03
as a function of size --
251
588000
2000
si nje funksion i madhesise --
10:05
plotted in the same way as the biology --
252
590000
2000
te skicuara ne te njejten menyre si biologjia --
10:07
you see exactly the same kind of thing.
253
592000
2000
mund te shikoni pikerisht te njejten lloj gjeje.
10:09
There is a scaling.
254
594000
2000
Ky eshte nje shkallezim.
10:11
That is that the number of petrol stations in the city
255
596000
4000
Qe do te thote se numri i pikave te karburantit ne qytet
10:15
is now given to you
256
600000
2000
mund te llogaritet direkt
10:17
when you tell me its size.
257
602000
2000
kur te me tregoni madhesine e tij (qytetit).
10:19
The slope of that is less than linear.
258
604000
3000
Pjerrtesia e saj eshte me pak se lineare.
10:22
There is an economy of scale.
259
607000
2000
Ka pra nje "ekonomi te shkallezimit".
10:24
Less petrol stations per capita the bigger you are -- not surprising.
260
609000
3000
Sa me pak pika karburanti per fryme aq me i madh je - aspak e habitshme.
10:27
But here's what's surprising.
261
612000
2000
Po ja cfare eshte e habitshme.
10:29
It scales in the same way everywhere.
262
614000
2000
Shkallezimi ndodh ne te njejten forme kudo.
10:31
This is just European countries,
263
616000
2000
Keto jane vetem vendet Europiane,
10:33
but you do it in Japan or China or Colombia,
264
618000
3000
por mund ta besh per Japonine ose Kinen ose Kolumbine,
10:36
always the same
265
621000
2000
gjithmone e njejta
10:38
with the same kind of economy of scale
266
623000
2000
me te njejtin lloj ekonomie te shkallezimit
10:40
to the same degree.
267
625000
2000
me te njejten pjerrtesi.
10:42
And any infrastructure you look at --
268
627000
3000
Dhe cdo lloj infrastrukture qe mund te vezhgosh --
10:45
whether it's the length of roads, length of electrical lines --
269
630000
3000
pavaresisht nese eshte gjatesia e rrugeve, gjatesia e linjave elektrike --
10:48
anything you look at
270
633000
2000
cfaredo qofte
10:50
has the same economy of scale scaling in the same way.
271
635000
3000
ka te njejten ekonomi te shkallezimit qe shkallezohet ne te njejten menyre.
10:53
It's an integrated system
272
638000
2000
Eshte nje sistem i integruar
10:55
that has evolved despite all the planning and so on.
273
640000
3000
qe eshte zhvilluar pavaresisht gjithe planifikimit e keshtu me rradhe.
10:58
But even more surprising
274
643000
2000
Por ajo qe eshte edhe me e habitshme
11:00
is if you look at socio-economic quantities,
275
645000
2000
eshte nese vezhgon variabla shoqerore-ekonomike,
11:02
quantities that have no analog in biology,
276
647000
3000
variabla qe nuk kane analoge ne biologji,
11:05
that have evolved when we started forming communities
277
650000
3000
qe jane zhvilluar qe kur ne filluam te formonim komunitete
11:08
eight to 10,000 years ago.
278
653000
2000
tete deri ne dhjete mije vite me pare.
11:10
The top one is wages as a function of size
279
655000
2000
Ajo me siper paraqet pagat si nje funksion i mases
11:12
plotted in the same way.
280
657000
2000
te skicuara ne te njejten menyre.
11:14
And the bottom one is you lot --
281
659000
2000
Ndersa ne ate me poshte jeni pikerisht ju --
11:16
super-creatives plotted in the same way.
282
661000
3000
super-kreativet te skicuar ne po te njejten forme.
11:19
And what you see
283
664000
2000
Dhe ajo cka shihni
11:21
is a scaling phenomenon.
284
666000
2000
eshte nje fenomen i shkallezimit.
11:23
But most important in this,
285
668000
2000
Por cka eshte me e rendesishme,
11:25
the exponent, the analog to that three-quarters
286
670000
2000
eksponenti, analogia e asaj ¾
11:27
for the metabolic rate,
287
672000
2000
per ritmin metabolik
11:29
is bigger than one -- it's about 1.15 to 1.2.
288
674000
2000
eshte me e madhe se nje - eshte rreth 1.15 ose 1.2.
11:31
Here it is,
289
676000
2000
Ja ku eshte,
11:33
which says that the bigger you are
290
678000
3000
qe tregon se sa me i madh qe je
11:36
the more you have per capita, unlike biology --
291
681000
3000
aq me shume ke per fryme, ndryshe nga biologjia --
11:39
higher wages, more super-creative people per capita as you get bigger,
292
684000
4000
paga me te larta, me shume njerez super-krijues per fryme sa me i madh qe je,
11:43
more patents per capita, more crime per capita.
293
688000
3000
me shume patenta per fryme, me shume krim per fryme.
11:46
And we've looked at everything:
294
691000
2000
Dhe ne fakt kemi pare gjithcka:
11:48
more AIDS cases, flu, etc.
295
693000
3000
raste te SIDA-s, te gripit, etj.
11:51
And here, they're all plotted together.
296
696000
2000
Dhe ja, te gjitha jane te vizatuara ketu.
11:53
Just to show you what we plotted,
297
698000
2000
Sa per te treguar se si i skicuam,
11:55
here is income, GDP --
298
700000
3000
ketu jane te ardhurat, GDP-ja --
11:58
GDP of the city --
299
703000
2000
GDP-ja e qytetit --
12:00
crime and patents all on one graph.
300
705000
2000
krimi dhe patentat te gjitha ne te njejtin grafik.
12:02
And you can see, they all follow the same line.
301
707000
2000
Dhe e shihni, te gjitha ndodhen ne te njejten vije.
12:04
And here's the statement.
302
709000
2000
Mendimi im eshte ky.
12:06
If you double the size of a city from 100,000 to 200,000,
303
711000
3000
Nese e dyfishoni madhesine e nje qyteti nga 100,000 ne 200,000
12:09
from a million to two million, 10 to 20 million,
304
714000
2000
nga nje milion ne dy milione, nga 10 ne 20 milione,
12:11
it doesn't matter,
305
716000
2000
nuk ka rendesi nga cfare ne cfare,
12:13
then systematically
306
718000
2000
atehere sistematikisht
12:15
you get a 15 percent increase
307
720000
2000
do te kete nje rritje prej 15 perqindesh
12:17
in wages, wealth, number of AIDS cases,
308
722000
2000
ne paga, pasuri, numer te rasteve me SIDE
12:19
number of police,
309
724000
2000
numrit te policeve,
12:21
anything you can think of.
310
726000
2000
ne fakt te cdo gjeje qe mund t'ju bjere ne mend.
12:23
It goes up by 15 percent,
311
728000
2000
Cdo gje rritet me 15 perqind.
12:25
and you have a 15 percent savings
312
730000
3000
Dhe po ashtu ke nje 15 perqind rritje ne kursime
12:28
on the infrastructure.
313
733000
3000
ne infrastrukture.
12:31
This, no doubt, is the reason
314
736000
3000
Kjo, pa dyshim, eshte arsyeja
12:34
why a million people a week are gathering in cities.
315
739000
3000
pse nje milion njerez ne jave po i shtohen qyteteve.
12:37
Because they think that all those wonderful things --
316
742000
3000
Sepse ata mendojne se te gjitha keto gjera te mrekullueshme,
12:40
like creative people, wealth, income --
317
745000
2000
si njerezit krijues, pasuria, te ardhurat,
12:42
is what attracts them,
318
747000
2000
jane cfare i terheq ata,
12:44
forgetting about the ugly and the bad.
319
749000
2000
duke harruar per gjerat e keqija.
12:46
What is the reason for this?
320
751000
2000
Cili eshte shkaku i kesaj?
12:48
Well I don't have time to tell you about all the mathematics,
321
753000
3000
Nuk kam kohe t'ju tregoj te gjithe matematiken
12:51
but underlying this is the social networks,
322
756000
3000
por cka fshihet pas kesaj jane rrjetet shoqerore,
12:54
because this is a universal phenomenon.
323
759000
3000
sepse kjo eshte nje dukuri universale.
12:57
This 15 percent rule
324
762000
3000
Ky rregull i 15 perqindeshit
13:00
is true
325
765000
2000
eshte i vertete
13:02
no matter where you are on the planet --
326
767000
2000
pavaresisht se ne cilen pjese te globit ndodhesh
13:04
Japan, Chile,
327
769000
2000
Japoni, Kili,
13:06
Portugal, Scotland, doesn't matter.
328
771000
3000
Portugali, Skoci, nuk ka rendesi.
13:09
Always, all the data shows it's the same,
329
774000
3000
Gjithmone, te gjitha te dhenat tregojne te njejten,
13:12
despite the fact that these cities have evolved independently.
330
777000
3000
pavaresisht se keto qytete jane zhvilluar ne menyre te pavarur.
13:15
Something universal is going on.
331
780000
2000
Dicka universale fshihet ketu.
13:17
The universality, to repeat, is us --
332
782000
3000
Universaliteti, e perseris, jemi ne --
13:20
that we are the city.
333
785000
2000
ne jemi qyteti.
13:22
And it is our interactions and the clustering of those interactions.
334
787000
3000
Dhe jane nderveprimet tona dhe grumbullimet e ketyre nderveprimeve.
13:25
So there it is, I've said it again.
335
790000
2000
Ja pra, ja ku e thashe dhe njehere.
13:27
So if it is those networks and their mathematical structure,
336
792000
3000
Pra nese jane ato rrjete dhe struktura e tyre matematikore,
13:30
unlike biology, which had sublinear scaling,
337
795000
3000
ndryshe nga biologjia, qe kishte nje shkallezim nenlinear,
13:33
economies of scale,
338
798000
2000
me ekonomine e shkallezimit,
13:35
you had the slowing of the pace of life
339
800000
2000
ju pate se ndodh ngadalesimi i ritmit te jetes
13:37
as you get bigger.
340
802000
2000
ndersa ju beheni me te medhenj.
13:39
If it's social networks with super-linear scaling --
341
804000
2000
Por nese jane rrjetet sociale me shkallezim mbi-linear --
13:41
more per capita --
342
806000
2000
me shume per fryme --
13:43
then the theory says
343
808000
2000
atehere teoria thote se
13:45
that you increase the pace of life.
344
810000
2000
ritmi i jetes shpejtohet.
13:47
The bigger you are, life gets faster.
345
812000
2000
Sa me i madh je, aq me e shpejte behet jeta.
13:49
On the left is the heart rate showing biology.
346
814000
2000
Ne te majte shihni ritmin e zemres qe tregon biologjine.
13:51
On the right is the speed of walking
347
816000
2000
Ne te djathte keni shpejtesine e te ecurit
13:53
in a bunch of European cities,
348
818000
2000
ne nje sere qytetesh Europiane,
13:55
showing that increase.
349
820000
2000
qe paraqesin ate rritje.
13:57
Lastly, I want to talk about growth.
350
822000
3000
Se fundmi, dua te flas per rritjen.
14:00
This is what we had in biology, just to repeat.
351
825000
3000
Kjo eshte ajo qe kishim ne biologji, sa per perseritje.
14:03
Economies of scale
352
828000
3000
Ekonomia e shkallezimit
14:06
gave rise to this sigmoidal behavior.
353
831000
3000
ben qe te kemi kete sjellje ne forme sigmoidale.
14:09
You grow fast and then stop --
354
834000
3000
Rritesh shpejt dhe pastaj ndalon --
14:12
part of our resilience.
355
837000
2000
pjese e qendrueshmerise tone.
14:14
That would be bad for economies and cities.
356
839000
3000
Kjo do te ishte keq per ekonomite dhe qytetet.
14:17
And indeed, one of the wonderful things about the theory
357
842000
2000
Dhe ne te vertete, nje nga gjerat e mrekullueshme te kesaj teorie
14:19
is that if you have super-linear scaling
358
844000
3000
eshte se nese ke shkallezim mbi-linear
14:22
from wealth creation and innovation,
359
847000
2000
nga krijimi i pasurise dhe zbulimet e reja,
14:24
then indeed you get, from the same theory,
360
849000
3000
atehere vertet nxjerr nga po e njejta teori
14:27
a beautiful rising exponential curve -- lovely.
361
852000
2000
nje grafik rrites eksponencial -- shume e bukur.
14:29
And in fact, if you compare it to data,
362
854000
2000
Dhe ne fakt, nese e krahason kete grafik me te dhenat
14:31
it fits very well
363
856000
2000
perputhet teresisht
14:33
with the development of cities and economies.
364
858000
2000
me zhvillimin e qyteteve dhe te ekonomise.
14:35
But it has a terrible catch,
365
860000
2000
Por ka nje aspekt te tmerrshem.
14:37
and the catch
366
862000
2000
Dhe ai eshte qe
14:39
is that this system is destined to collapse.
367
864000
3000
ky sistem eshte i destinuar te shembet.
14:42
And it's destined to collapse for many reasons --
368
867000
2000
Dhe eshte i destinuar te shembet per shume arsye --
14:44
kind of Malthusian reasons -- that you run out of resources.
369
869000
3000
arsye pak a shume Maltusiane -- se mbarojne burimet.
14:47
And how do you avoid that? Well we've done it before.
370
872000
3000
Po si ta shmangim kete? Epo, e kemi shmangur dhe me pare.
14:50
What we do is,
371
875000
2000
Ajo qe bejme eshte qe
14:52
as we grow and we approach the collapse,
372
877000
3000
ndersa rritemi dhe i afrohemi pikes se kolapsit,
14:55
a major innovation takes place
373
880000
3000
nje zbulim i madh ndodh
14:58
and we start over again,
374
883000
2000
dhe krejt procesi fillon nga fillimi.
15:00
and we start over again as we approach the next one, and so on.
375
885000
3000
Dhe pastaj fillojme prape nga fillimi ndersa i afrohemi kolapsit tjeter, e keshtu vazhdon.
15:03
So there's this continuous cycle of innovation
376
888000
2000
Pra, eshte ky cikel i vazhdueshem zbulimesh
15:05
that is necessary
377
890000
2000
qe eshte i nevojshem
15:07
in order to sustain growth and avoid collapse.
378
892000
3000
per te mbajtur gjalle rritjen dhe shmangur kolapsin.
15:10
The catch, however, to this
379
895000
2000
Problemi me kete, sidoqofte,
15:12
is that you have to innovate
380
897000
2000
eshte se te duhet te zbulosh
15:14
faster and faster and faster.
381
899000
3000
gjithmone e me shpejt e me shpejt.
15:17
So the image
382
902000
2000
Imazhi i kesaj
15:19
is that we're not only on a treadmill that's going faster,
383
904000
3000
eshte qe jo vetem qe gjendemi ne nje piste vrapimi automatike qe po shkon me shpejt,
15:22
but we have to change the treadmill faster and faster.
384
907000
3000
por qe edhe na duhet ta ndryshojme ate me shpejt e me shpejt.
15:25
We have to accelerate on a continuous basis.
385
910000
3000
Na duhet te nxitojme ne menyre te vazhdueshme.
15:28
And the question is: Can we, as socio-economic beings,
386
913000
3000
Dhe ceshtja eshte: A mundemi ne, si qenie shoqeroro-ekonomike,
15:31
avoid a heart attack?
387
916000
3000
ta shmangim nje sulm ne zemer?
15:34
So lastly, I'm going to finish up in this last minute or two
388
919000
3000
Se fundmi, do ti mbyll keto nje ose dy minuta te mbetura
15:37
asking about companies.
389
922000
2000
duket shtruar pyetjen per kompanite.
15:39
See companies, they scale.
390
924000
2000
Edhe kompanite shkallezohen.
15:41
The top one, in fact, is Walmart on the right.
391
926000
2000
Ajo me siper eshte, ne fakt eshte Walmart ne te djathte.
15:43
It's the same plot.
392
928000
2000
Eshte i njejti grafik.
15:45
This happens to be income and assets
393
930000
2000
Ketu tregohen te ardhurat dhe asetet
15:47
versus the size of the company as denoted by its number of employees.
394
932000
2000
perkundrejt madhesise se kompanise te matur ne baze te numrit te punonjesve.
15:49
We could use sales, anything you like.
395
934000
3000
Mund te kishim perdorur dhe shitjet, cfaredo qe te donim.
15:52
There it is: after some little fluctuations at the beginning,
396
937000
3000
Ja ku eshte: pas disa luhatjeve te vogla ne fillim,
15:55
when companies are innovating,
397
940000
2000
kur kompanite bejne zbulime
15:57
they scale beautifully.
398
942000
2000
ato shkallezohen ne menyre shume te bukur.
15:59
And we've looked at 23,000 companies
399
944000
3000
Dhe kemi vezhguar rreth 23 mije kompani
16:02
in the United States, may I say.
400
947000
2000
ne Shtetet e Bashkuara, me duhet te them.
16:04
And I'm only showing you a little bit of this.
401
949000
3000
Dhe une po ju tregoj vetem nje pjese te vogel te kesaj.
16:07
What is astonishing about companies
402
952000
2000
Ajo cka eshte e habitshme rreth kompanive
16:09
is that they scale sublinearly
403
954000
3000
eshte se ato shkallezohen ne menyre nenlineare
16:12
like biology,
404
957000
2000
ashtu si biologjia,
16:14
indicating that they're dominated,
405
959000
2000
duke treguar se ato dominohen,
16:16
not by super-linear
406
961000
2000
jo nga idete dhe zbulimet
16:18
innovation and ideas;
407
963000
3000
mbi-lineare;
16:21
they become dominated
408
966000
2000
ato dominohen
16:23
by economies of scale.
409
968000
2000
nga ekonomite e shkallezimit.
16:25
In that interpretation,
410
970000
2000
Ne kete interpretim,
16:27
by bureaucracy and administration,
411
972000
2000
nga burokracia dhe administrimi,
16:29
and they do it beautifully, may I say.
412
974000
2000
dhe kjo ndodh ne menyre shume te bukur, me duhet te them.
16:31
So if you tell me the size of some company, some small company,
413
976000
3000
Pra nese me tregoni madhesine e nje kompanie, te nje kompanie te vogel,
16:34
I could have predicted the size of Walmart.
414
979000
3000
une do te mund te kisha parashikuar madhesine e Walmart-it.
16:37
If it has this sublinear scaling,
415
982000
2000
Nese ka kete shkallezim nenlinear,
16:39
the theory says
416
984000
2000
teoria na sugjeron
16:41
we should have sigmoidal growth.
417
986000
3000
se duhet te kemi rritje sigmoidale.
16:44
There's Walmart. Doesn't look very sigmoidal.
418
989000
2000
Ja ku eshte Walmart. Nuk duket dhe aq sigmoidale.
16:46
That's what we like, hockey sticks.
419
991000
3000
Ja cfare na pelqen ne, shkopinjte e hokejit.
16:49
But you notice, I've cheated,
420
994000
2000
Por vini re, une kam bere pak me hile,
16:51
because I've only gone up to '94.
421
996000
2000
sepse kam shkuar deri ne vitin '94.
16:53
Let's go up to 2008.
422
998000
2000
Le te shkojme deri ne vitin 2008.
16:55
That red line is from the theory.
423
1000000
3000
Ajo vija e kuqe eshte nga teoria.
16:58
So if I'd have done this in 1994,
424
1003000
2000
Pra, nese do e grafikoja kete ne 1994,
17:00
I could have predicted what Walmart would be now.
425
1005000
3000
do mund ta parashikoja si do te ishte Walmart-i tani.
17:03
And then this is repeated
426
1008000
2000
Dhe pastaj kjo mund te perseritet
17:05
across the entire spectrum of companies.
427
1010000
2000
per te gjithe spektrin e kompanive.
17:07
There they are. That's 23,000 companies.
428
1012000
3000
Ja ku jane te gjitha. Te 23 mije kompanite.
17:10
They all start looking like hockey sticks,
429
1015000
2000
Ata te gjithe fillojne duke u dukur si shkopinj hokeji,
17:12
they all bend over,
430
1017000
2000
pastaj te gjithe perkulen,
17:14
and they all die like you and me.
431
1019000
2000
dhe te gjithe vdesin si une e ti.
17:16
Thank you.
432
1021000
2000
Faleminderit.
17:18
(Applause)
433
1023000
9000
(Duartrokitje)
Translated by Arjada Bardhi
Reviewed by Helena Bedalli

▲Back to top

ABOUT THE SPEAKER
Geoffrey West - Theorist
Physicist Geoffrey West believes that complex systems from organisms to cities are in many ways governed by simple laws -- laws that can be discovered and analyzed.

Why you should listen

Trained as a theoretical physicist, Geoffrey West has turned his analytical mind toward the inner workings of more concrete things, like ... animals. In a paper for Science in 1997, he and his team uncovered what he sees as a surprisingly universal law of biology — the way in which heart rate, size and energy consumption are related, consistently, across most living animals. (Though not all animals: “There are always going to be people who say, ‘What about the crayfish?’ " he says. “Well, what about it? Every fundamental law has exceptions. But you still need the law or else all you have is observations that don’t make sense.")

A past president of the multidisciplinary Santa Fe Institute (after decades working  in high-energy physics at Los Alamos and Stanford), West now studies the behavior and development of cities. In his newest work, he proposes that one simple number, population, can predict a stunning array of details about any city, from crime rate to economic activity. It's all about the plumbing, he says, the infrastructure that powers growth or dysfunction. His next target for study: corporations.

He says: "Focusing on the differences [between cities] misses the point. Sure, there are differences, but different from what? We’ve found the what."

More profile about the speaker
Geoffrey West | Speaker | TED.com

Data provided by TED.

This site was created in May 2015 and the last update was on January 12, 2020. It will no longer be updated.

We are currently creating a new site called "eng.lish.video" and would be grateful if you could access it.

If you have any questions or suggestions, please feel free to write comments in your language on the contact form.

Privacy Policy

Developer's Blog

Buy Me A Coffee