Margaret Mitchell: How we can build AI to help humans, not hurt us
Margaret Mičel (Margaret Mitchell): Kako da napravimo veštačku inteligenciju tako da pomogne ljudima, a ne da nas povredi
Margaret Mitchell is a senior research scientist in Google's Research & Machine Intelligence group, working on artificial intelligence. Full bio
Double-click the English transcript below to play the video.
communicate about the world around us.
saopštavaju informacije o svetu oko nas.
na pomaganje da računari
and understand.
za prepoznavanje oblika
and there's a dog.
that the dog is incredibly cute.
da je pas neverovatno sladak.
understand and process the world.
razumeju svet i razmišljaju o njemu.
might evoke for humans.
mogu izazvati kod ljudi.
of related situations.
a dog like this one before,
running on a beach like this one,
u trčanju na plaži kao što je ova,
and memories of a past vacation,
i sećanja na odmor iz prošlosti,
with other dogs.
is that by helping computers to understand
je da pomaganjem računarima da shvate
and believe and feel,
u šta verujemo i šta osećamo,
to start evolving computer technology
razvoja računarske tehnologije
with our own experiences.
computers to generate human-like stories
what it thought about a trip to Australia.
šta misli o putovanju u Australiju.
and it saw a koala.
it was an interesting-looking creature.
da to biće izgleda zanimljivo.
about a house burning down.
niz slika kuća u plamenu.
This is spectacular!"
Ovo je spektakularno!“
and life-destroying event
koji menja i uništava živote ljudi
the contrast,
worth remarking on positively.
što treba označiti kao pozitivno.
of the images I had given it
tend to share positive images
skloni da dele pozitivne slike
you saw a selfie at a funeral?
videli selfi sa sahrane?
na unapređenju veštačke inteligencije
as I worked on improving AI
in what it could understand.
različite pristrasnosti.
ograničeno gledište,
human biases found in the data,
ljudske pristrasnosti pronađene u podacima
of the technology
gde sam bila u tom trenutku -
a white woman's skin,
was biased against black faces.
continues even today
different people's faces
prepoznati lica različitih ljudi
in research today,
istraživanjima danas,
to one dataset and one problem.
svoje razmišljanje
more blind spots and biases
još više „mrtvih uglova“ i predrasuda
može još više da pojača.
that we had to think deeply
da moramo da dobro razmislimo
looks in five years, in 10 years.
na kojoj danas radimo
with time to correct for issues
imaju vremena da isprave greške
and their environment.
is evolving at an incredibly fast rate.
se razvija neverovatnom brzinom.
carefully right now --
the technology we're creating
na tehnologiju koju stvaramo
will mean for tomorrow.
tehnologija današnjice za sutrašnjicu.
on what they think
o tome kakva će biti
of the future will be.
could end mankind."
može uništiti čovečanstvo.“
that it's an existential risk
da je to rizik za preživljavanje
that we face as a civilization.
sa kojima se susrećemo kao civilizacija.
why people aren't more concerned."
nisu više zabrinuti.“
of artificial intelligence
veštačke inteligencije
and all work with.
da pristupimo i da radimo sa time.
for machine learning and intelligence
za mašinsko učenje i inteligenciju
we can share our experience.
with technology and how it concerns us
sa tehnologijom, kako nas brine
that could be more beneficial
koji bi bili delotvorniji
the discussion on AI
diskusije o veštačkoj inteligenciji
conversation and awareness
uopštenih razgovora i svesti
that best suits us.
koji bi nam najbolje služio.
in the technology that we use today.
koju danas koristimo.
and digital assistants and Roombas.
digitalne pomoćnike i robotske usisivače.
a light shining on what the future holds.
da je budućnost svetla.
from what we build and create right now.
iz onoga što kreiramo upravo sada.
veštačke inteligencije.
we shape the AI of tomorrow.
veštačku inteligenciju sutrašnjice.
in augmented realities
u izmenjenu stvarnost
to share their experiences
da dele svoja iskustva
the streaming visual worlds
na prenosu sadržaja vizuelnog sveta,
za samovozeće automobile.
and generating language,
na razumevanju slika i generisanju jezika,
who are visually impaired
koja pomaže ljudima sa oštećenim vidom
can lead to problems.
može da dovede do problema.
characteristics we're born with --
sa kojima smo rođeni -
or the look of our face --
we might be criminals or terrorists.
kriminalci ili teroristi.
that crunches through our data,
koja pretražuje naše podatke,
to our gender or our race,
we might get a loan.
da dobijemo kredit.
of artificial intelligence.
veštačke inteligencije.
will affect what happens down the line
uticati na to šta se dešava
da se veštačka inteligencija razvije
in a way that helps humans,
the goals and strategies
ciljeve i strategije
that fits well with humans,
je nešto što će se uklopiti sa ljudima,
those of us with neurological conditions
sa neurološkim problemima
equally challenging for everyone.
izazovan za svakoga.
or the color of your skin.
is the technology for tomorrow
je tehnologija sutrašnjice
može da krene različitim putevima.
without any destination.
and when to slow down.
i kada da usporimo.
of the future will be.
budućnosti zapravo biti.
intelligence can become.
what we need to put in place
of artificial intelligence
veštačke inteligencije
better for all of us.
ABOUT THE SPEAKER
Margaret Mitchell - AI research scientistMargaret Mitchell is a senior research scientist in Google's Research & Machine Intelligence group, working on artificial intelligence.
Why you should listen
Margaret Mitchell's research involves vision-language and grounded language generation, focusing on how to evolve artificial intelligence towards positive goals. Her work combines computer vision, natural language processing, social media as well as many statistical methods and insights from cognitive science. Before Google, Mitchell was a founding member of Microsoft Research's "Cognition" group, focused on advancing artificial intelligence, and a researcher in Microsoft Research's Natural Language Processing group.
Margaret Mitchell | Speaker | TED.com