ABOUT THE SPEAKER
Danny Hillis - Computer theorist
Inventor, scientist, author, engineer -- over his broad career, Danny Hillis has turned his ever-searching brain on an array of subjects, with surprising results.

Why you should listen

Danny Hillis is an inventor, scientist, author and engineer. While completing his doctorate at MIT, he pioneered the concept of parallel computers that is now the basis for graphics processors and cloud computing. He holds more than 300 US patents, covering parallel computers, disk arrays, forgery prevention methods, various electronic and mechanical devices, and the pinch-to-zoom display interface. He has recently been working on problems in medicine as well. He is also the designer of a 10,000-year mechanical clock, and he gave a TED Talk in 1994 that is practically prophetic. Throughout his career, Hillis has worked at places like Disney, and now MIT and Applied Invention, always looking for the next fascinating problem.

More profile about the speaker
Danny Hillis | Speaker | TED.com
TED1994

Danny Hillis: Back to the future (of 1994)

丹尼·希利斯:回到未来(1994)

Filmed:
686,810 views

从那被放在TED很后面的档案库里,丹尼·希利斯借着将生命本身的演化和科技变化的脚步是如何且为什么看似不断的加速这两点展开,然后简单地论述了这个耐人寻味的看法。他所呈现的演说技巧或许看起来过时,但想法却是相当切题且有意义的。
- Computer theorist
Inventor, scientist, author, engineer -- over his broad career, Danny Hillis has turned his ever-searching brain on an array of subjects, with surprising results. Full bio

Double-click the English transcript below to play the video.

00:15
Because I usually平时 take the role角色
0
0
3000
由于我经常
00:18
of trying to explain说明 to people
1
3000
2000
向人们解释
00:20
how wonderful精彩 the new technologies技术
2
5000
3000
即将到来的新科技
00:23
that are coming未来 along沿 are going to be,
3
8000
2000
将会多么的美妙
00:25
and I thought that, since以来 I was among其中 friends朋友 here,
4
10000
3000
我想既然我跟各位朋友们一起在这
00:28
I would tell you what I really think
5
13000
4000
就让我来说说我真正的想法
00:32
and try to look back and try to understand理解
6
17000
2000
并试着回顾和理解
00:34
what is really going on here
7
19000
3000
这到底是如何发生的
00:37
with these amazing惊人 jumps跳跃 in technology技术
8
22000
5000
有了这些科技上的惊人进步。
00:42
that seem似乎 so fast快速 that we can barely仅仅 keep on top最佳 of it.
9
27000
3000
科技的进步似乎快到我们根本无法赶上它的脚步。
00:45
So I'm going to start开始 out
10
30000
2000
让我先从这开始
00:47
by showing展示 just one very boring无聊 technology技术 slide滑动.
11
32000
3000
一页很无趣的科技幻灯片。
00:50
And then, so if you can just turn on the slide滑动 that's on.
12
35000
3000
然后可以开始放幻灯片了。(对工作人员说)
00:56
This is just a random随机 slide滑动
13
41000
2000
这只是我从我的文件中
00:58
that I picked采摘的 out of my file文件.
14
43000
2000
随机挑选出的一张。
01:00
What I want to show显示 you is not so much the details细节 of the slide滑动,
15
45000
3000
我想要你们看的并不是它的细节,
01:03
but the general一般 form形成 of it.
16
48000
2000
而是它的总体形式。
01:05
This happens发生 to be a slide滑动 of some analysis分析 that we were doing
17
50000
3000
这个是我们做的
01:08
about the power功率 of RISCRISC microprocessors微处理器
18
53000
3000
关于RISC精简指令集微处理器功率
01:11
versus the power功率 of local本地 area networks网络.
19
56000
3000
与本地网路功率分析的幻灯片。
01:14
And the interesting有趣 thing about it
20
59000
2000
有趣的是
01:16
is that this slide滑动,
21
61000
2000
这页幻灯片
01:18
like so many许多 technology技术 slides幻灯片 that we're used to,
22
63000
3000
就像很多我们所熟悉的幻灯片一样,
01:21
is a sort分类 of a straight直行 line线
23
66000
2000
是半对数曲线图
01:23
on a semi-log半对数 curve曲线.
24
68000
2000
上的一条直线。
01:25
In other words, every一切 step here
25
70000
2000
也就是这里的每一层,
01:27
represents代表 an order订购 of magnitude大小
26
72000
2000
代表了性能程度
01:29
in performance性能 scale规模.
27
74000
2000
大小的一级。
01:31
And this is a new thing
28
76000
2000
在半对数曲线图上
01:33
that we talk about technology技术
29
78000
2000
讨论科技,
01:35
on semi-log半对数 curves曲线.
30
80000
2000
这很新鲜。
01:37
Something really weird奇怪的 is going on here.
31
82000
2000
这其中有点奇特。
01:39
And that's basically基本上 what I'm going to be talking about.
32
84000
3000
这基本上是我接下来要说的。
01:42
So, if you could bring带来 up the lights灯火.
33
87000
3000
(对工作人员)麻烦开一下灯。
01:47
If you could bring带来 up the lights灯火 higher更高,
34
92000
2000
请把灯开亮点,
01:49
because I'm just going to use a piece of paper here.
35
94000
3000
因为我要用张纸。
01:52
Now why do we draw technology技术 curves曲线
36
97000
2000
为什么我们要用对数曲线
01:54
in semi-log半对数 curves曲线?
37
99000
2000
描绘科技曲线呢?
01:56
Well the answer回答 is, if I drew德鲁 it on a normal正常 curve曲线
38
101000
3000
嗯,答案是,如果我用普通曲线画,
01:59
where, let's say, this is years年份,
39
104000
2000
我们说,这是年份,
02:01
this is time of some sort分类,
40
106000
2000
这是某个时间,
02:03
and this is whatever随你 measure测量 of the technology技术
41
108000
3000
这是我准备画的
02:06
that I'm trying to graph图形,
42
111000
3000
科技的某种测量值,
02:09
the graphs look sort分类 of silly愚蠢.
43
114000
3000
这图看起来有点傻。
02:12
They sort分类 of go like this.
44
117000
3000
就有点像是这样。
02:15
And they don't tell us much.
45
120000
3000
而且并没有提供什么资讯。
02:18
Now if I graph图形, for instance,
46
123000
3000
现在,如果我画,比如说,
02:21
some other technology技术, say transportation运输 technology技术,
47
126000
2000
另一种技术,像是交通运输,
02:23
on a semi-log半对数 curve曲线,
48
128000
2000
在半对数曲线上,
02:25
it would look very stupid, it would look like a flat平面 line线.
49
130000
3000
它看起来很蠢,会像条很平的线。
02:28
But when something like this happens发生,
50
133000
2000
但是如果出现像这种
02:30
things are qualitatively定性 changing改变.
51
135000
2000
质变的情况。
02:32
So if transportation运输 technology技术
52
137000
2000
如果交通运输技术
02:34
was moving移动 along沿 as fast快速 as microprocessor微处理器 technology技术,
53
139000
3000
进步地像微处理器技术一样快的话,
02:37
then the day after tomorrow明天,
54
142000
2000
那,后天
02:39
I would be able能够 to get in a taxi出租车 cab出租车
55
144000
2000
我就能搭一辆出租车
02:41
and be in Tokyo东京 in 30 seconds.
56
146000
2000
然后在30秒内到东京。
02:43
It's not moving移动 like that.
57
148000
2000
但它并没有进步得那么快。
02:45
And there's nothing precedented有先例
58
150000
2000
在科技发展历史中
02:47
in the history历史 of technology技术 development发展
59
152000
2000
也没有任何
02:49
of this kind of self-feeding自进 growth发展
60
154000
2000
这种自给自足,
02:51
where you go by orders命令 of magnitude大小 every一切 few少数 years年份.
61
156000
3000
每几年程度翻倍增长的先例。
02:54
Now the question that I'd like to ask is,
62
159000
3000
现在我想要问的是,
02:57
if you look at these exponential指数 curves曲线,
63
162000
3000
如果你观察这些指数曲线,
03:00
they don't go on forever永远.
64
165000
3000
它们并非永远的持续下去。
03:03
Things just can't possibly或者 keep changing改变
65
168000
3000
事物不可能一直
03:06
as fast快速 as they are.
66
171000
2000
改变得那么快。
03:08
One of two things is going to happen发生.
67
173000
3000
两件事会发生,
03:11
Either it's going to turn into a sort分类 of classical古典 S-curveS曲线 like this,
68
176000
4000
要么它会变成像这样典型的S曲线
03:15
until直到 something totally完全 different不同 comes along沿,
69
180000
4000
直到完全不同的情况出现。
03:19
or maybe it's going to do this.
70
184000
2000
或是会变成这样。
03:21
That's about all it can do.
71
186000
2000
这就是所有可能。
03:23
Now I'm an optimist乐天派,
72
188000
2000
现在我是个乐观主义者,
03:25
so I sort分类 of think it's probably大概 going to do something like that.
73
190000
3000
所以我觉得它很有可能就会变成这样。
03:28
If so, that means手段 that what we're in the middle中间 of right now
74
193000
3000
如果是这样,意味着我们目前所在的
03:31
is a transition过渡.
75
196000
2000
是过渡阶段。
03:33
We're sort分类 of on this line线
76
198000
2000
我们似乎在这条线上,
03:35
in a transition过渡 from the way the world世界 used to be
77
200000
2000
在世界从过去
03:37
to some new way that the world世界 is.
78
202000
3000
到将来的转变中。
03:40
And so what I'm trying to ask, what I've been asking myself,
79
205000
3000
所有我要问的,我一直在问自己的,
03:43
is what's this new way that the world世界 is?
80
208000
3000
就是这世界未来道路在哪?
03:46
What's that new state that the world世界 is heading标题 toward?
81
211000
3000
它趋向的新时代是什么样的?
03:49
Because the transition过渡 seems似乎 very, very confusing扑朔迷离
82
214000
3000
由于这个变化似乎非常,非常迷惑人,
03:52
when we're right in the middle中间 of it.
83
217000
2000
当我们正处于其中时。
03:54
Now when I was a kid孩子 growing生长 up,
84
219000
3000
我小时候,在长大过程中
03:57
the future未来 was kind of the year 2000,
85
222000
3000
未来就像是2000年,
04:00
and people used to talk about what would happen发生 in the year 2000.
86
225000
4000
人们都在讨论2000年将会发生什么。
04:04
Now here's这里的 a conference会议
87
229000
2000
现在这个会议上,
04:06
in which哪一个 people talk about the future未来,
88
231000
2000
大家在讨论未来,
04:08
and you notice注意 that the future未来 is still at about the year 2000.
89
233000
3000
而且你能发现这未来指的还是那个“2000年”。
04:11
It's about as far as we go out.
90
236000
2000
这就是我们能达到的程度。
04:13
So in other words, the future未来 has kind of been shrinking萎缩
91
238000
3000
换句话说,在我一生中
04:16
one year per year
92
241000
3000
未来正在
04:19
for my whole整个 lifetime一生.
93
244000
3000
逐年缩短。
04:22
Now I think that the reason原因
94
247000
2000
我想原因是
04:24
is because we all feel
95
249000
2000
我们都感觉到
04:26
that something's什么是 happening事件 there.
96
251000
2000
正在发生些什么。
04:28
That transition过渡 is happening事件. We can all sense it.
97
253000
2000
变化正在发生。我们都能察觉到。
04:30
And we know that it just doesn't make too much sense
98
255000
2000
我们知道去考虑那未来的三、五十年
04:32
to think out 30, 50 years年份
99
257000
2000
已经没什么意义了,
04:34
because everything's一切的 going to be so different不同
100
259000
3000
因为每件事都将如此不同
04:37
that a simple简单 extrapolation外推 of what we're doing
101
262000
2000
以至于推测将来
04:39
just doesn't make any sense at all.
102
264000
3000
不再有意义。
04:42
So what I would like to talk about
103
267000
2000
所以我要聊聊
04:44
is what that could be,
104
269000
2000
那会是怎样,
04:46
what that transition过渡 could be that we're going through通过.
105
271000
3000
我们正在经历的转变会是怎样。
04:49
Now in order订购 to do that
106
274000
3000
为达到这个目的,
04:52
I'm going to have to talk about a bunch of stuff东东
107
277000
2000
我得介绍一堆东西
04:54
that really has nothing to do
108
279000
2000
它们与
04:56
with technology技术 and computers电脑.
109
281000
2000
科技和电脑完全无关。
04:58
Because I think the only way to understand理解 this
110
283000
2000
因为我决定理解这个的唯一方法
05:00
is to really step back
111
285000
2000
就是回顾过去
05:02
and take a long time scale规模 look at things.
112
287000
2000
拉长时间轴去看。
05:04
So the time scale规模 that I would like to look at this on
113
289000
3000
而我所要看的时间轴
05:07
is the time scale规模 of life on Earth地球.
114
292000
3000
是以地球上生命的时间跨度来看。
05:13
So I think this picture图片 makes品牌 sense
115
298000
2000
我想这幅图合理了
05:15
if you look at it a few少数 billion十亿 years年份 at a time.
116
300000
4000
如果你每次从几十亿年跨度来看。
05:19
So if you go back
117
304000
2000
所以如果你回溯个
05:21
about two and a half billion十亿 years年份,
118
306000
2000
大概25亿年,
05:23
the Earth地球 was this big, sterile无菌 hunk猛男 of rock
119
308000
3000
地球这么大,贫瘠的大块石头
05:26
with a lot of chemicals化学制品 floating漂浮的 around on it.
120
311000
3000
上面浮着些化学物质。
05:29
And if you look at the way
121
314000
2000
要是观察
05:31
that the chemicals化学制品 got organized有组织的,
122
316000
2000
这些化学物质怎样组合的,
05:33
we begin开始 to get a pretty漂亮 good idea理念 of how they do it.
123
318000
3000
我们开始弄明白它们怎么形成的。
05:36
And I think that there's theories理论 that are beginning开始 to understand理解
124
321000
3000
我想有些理论是从理解
05:39
about how it started开始 with RNARNA,
125
324000
2000
生命怎样从核糖核酸演变开始,
05:41
but I'm going to tell a sort分类 of simple简单 story故事 of it,
126
326000
3000
但是我想讲一个生命的简单故事,
05:44
which哪一个 is that, at that time,
127
329000
2000
就是,在那个时候,
05:46
there were little drops滴剂 of oil floating漂浮的 around
128
331000
3000
有一滴滴的油四处浮动,
05:49
with all kinds of different不同 recipes食谱 of chemicals化学制品 in them.
129
334000
3000
里面有各种不同化学成分组合。
05:52
And some of those drops滴剂 of oil
130
337000
2000
有些油滴
05:54
had a particular特定 combination组合 of chemicals化学制品 in them
131
339000
2000
里面含有特殊的化学构成
05:56
which哪一个 caused造成 them to incorporate合并 chemicals化学制品 from the outside
132
341000
3000
这导致它们可以从外界聚集化学物质
05:59
and grow增长 the drops滴剂 of oil.
133
344000
3000
并慢慢变大。
06:02
And those that were like that
134
347000
2000
像这样的油滴
06:04
started开始 to split分裂 and divide划分.
135
349000
2000
又开始分化,分离。
06:06
And those were the most primitive原始 forms形式 of cells细胞 in a sense,
136
351000
3000
最原始的那些在某种程度上形成了细胞,
06:09
those little drops滴剂 of oil.
137
354000
2000
这些小小的油滴。
06:11
But now those drops滴剂 of oil weren't really alive, as we say it now,
138
356000
3000
但目前为止这些油滴不是真正活着的,在我们现在看来,
06:14
because every一切 one of them
139
359000
2000
因为每一个
06:16
was a little random随机 recipe食谱 of chemicals化学制品.
140
361000
2000
都是化学物质的随机合成。
06:18
And every一切 time it divided分为,
141
363000
2000
每分裂一次,
06:20
they got sort分类 of unequal不等 division
142
365000
3000
都不是平均分布
06:23
of the chemicals化学制品 within them.
143
368000
2000
内部的化学物。
06:25
And so every一切 drop下降 was a little bit different不同.
144
370000
3000
所以每个油滴都有点不同。
06:28
In fact事实, the drops滴剂 that were different不同 in a way
145
373000
2000
实际上,油滴不同的方式
06:30
that caused造成 them to be better
146
375000
2000
是让它们能更好地
06:32
at incorporating结合 chemicals化学制品 around them,
147
377000
2000
集成周围的化合物,
06:34
grew成长 more and incorporated合并 more chemicals化学制品 and divided分为 more.
148
379000
3000
长得更大,吸收更多,分裂更多。
06:37
So those tended往往 to live生活 longer,
149
382000
2000
所以它们会活得更长,
06:39
get expressed表达 more.
150
384000
3000
表现得更多。
06:42
Now that's sort分类 of just a very simple简单
151
387000
3000
这就有点像个很简单的
06:45
chemical化学 form形成 of life,
152
390000
2000
生命的化学形式,
06:47
but when things got interesting有趣
153
392000
3000
但过程变得有趣
06:50
was when these drops滴剂
154
395000
2000
是当这些油滴
06:52
learned学到了 a trick about abstraction抽象化.
155
397000
3000
学会了一个提供资讯的技巧时。
06:55
Somehow不知何故 by ways方法 that we don't quite相当 understand理解,
156
400000
3000
不知怎么用我们不能完全理解的方式,
06:58
these little drops滴剂 learned学到了 to write down information信息.
157
403000
3000
这些小油滴学会了记录资讯。
07:01
They learned学到了 to record记录 the information信息
158
406000
2000
它们学会把
07:03
that was the recipe食谱 of the cell细胞
159
408000
2000
细胞形成的秘诀
07:05
onto a particular特定 kind of chemical化学
160
410000
2000
记录到一种特殊物质上,
07:07
called DNA脱氧核糖核酸.
161
412000
2000
叫做去氧核糖核酸。
07:09
So in other words, they worked工作 out,
162
414000
2000
也就是说,它们想出了,
07:11
in this mindless没头脑 sort分类 of evolutionary发展的 way,
163
416000
3000
以这种随性的进化方式,
07:14
a form形成 of writing写作 that let them write down what they were,
164
419000
3000
可以写下它们基因信息的记录方式,
07:17
so that that way of writing写作 it down could get copied复制.
165
422000
3000
以便这种记录方式能被复制。
07:20
The amazing惊人 thing is that that way of writing写作
166
425000
3000
惊奇的是这种记录方式
07:23
seems似乎 to have stayed steady稳定
167
428000
2000
似乎可以保持稳定
07:25
since以来 it evolved进化 two and a half billion十亿 years年份 ago.
168
430000
2000
由于它25亿年前演化出来的。
07:27
In fact事实 the recipe食谱 for us, our genes基因,
169
432000
3000
实际上我们,我们基因的组成
07:30
is exactly究竟 that same相同 code and that same相同 way of writing写作.
170
435000
3000
就是完全一样的代码,一样的记录方式。
07:33
In fact事实, every一切 living活的 creature生物 is written书面
171
438000
3000
实际上,任何生物都是
07:36
in exactly究竟 the same相同 set of letters and the same相同 code.
172
441000
2000
用完全一样的字母和代码记录下来的。
07:38
In fact事实, one of the things that I did
173
443000
2000
实际上,我所做的
07:40
just for amusement娱乐 purposes目的
174
445000
2000
仅是为了娱乐效果的一件事
07:42
is we can now write things in this code.
175
447000
2000
就是我们能用这个代码记录事件。
07:44
And I've got here a little 100 micrograms微克 of white白色 powder粉末,
176
449000
6000
我这有100微克的白粉,
07:50
which哪一个 I try not to let the security安全 people see at airports机场.
177
455000
4000
我尽力不让机场安检人员发现它们。
07:54
(Laughter笑声)
178
459000
2000
(笑声)
07:56
But this has in it --
179
461000
2000
不过这里面有代码
07:58
what I did is I took this code --
180
463000
2000
我所做的是我拿着这代码
08:00
the code has standard标准 letters that we use for symbolizing象征 it --
181
465000
3000
它里面有我们用来标记它的标准字母,
08:03
and I wrote my business商业 card onto a piece of DNA脱氧核糖核酸
182
468000
3000
然后我把我的名片写到一条去氧核糖核酸上
08:06
and amplified放大 it 10 to the 22 times.
183
471000
3000
再放大10到22倍。
08:09
So if anyone任何人 would like a hundred million百万 copies副本 of my business商业 card,
184
474000
3000
所以如果有人需要数百万份我的名片,
08:12
I have plenty丰富 for everyone大家 in the room房间,
185
477000
2000
我有足够多份给在座每个人,
08:14
and, in fact事实, everyone大家 in the world世界,
186
479000
2000
甚至是全世界每个人,
08:16
and it's right here.
187
481000
3000
就在这。
08:19
(Laughter笑声)
188
484000
5000
(笑声)
08:26
If I had really been a egotist自我中心主义,
189
491000
2000
要是我是个自大的人,
08:28
I would have put it into a virus病毒 and released发布 it in the room房间.
190
493000
3000
我就会把它放到病毒里散布到屋子中。
08:31
(Laughter笑声)
191
496000
5000
(笑声)
08:39
So what was the next下一个 step?
192
504000
2000
所以下一步是什么?
08:41
Writing写作 down the DNA脱氧核糖核酸 was an interesting有趣 step.
193
506000
2000
记录去氧核糖核酸是有趣的一步。
08:43
And that caused造成 these cells细胞 --
194
508000
2000
它导致了细胞的形成——
08:45
that kept不停 them happy快乐 for another另一个 billion十亿 years年份.
195
510000
2000
让它们又高兴了几十亿年。
08:47
But then there was another另一个 really interesting有趣 step
196
512000
2000
不过还有个很有趣的环节
08:49
where things became成为 completely全然 different不同,
197
514000
3000
事情开始变得完全不同,
08:52
which哪一个 is these cells细胞 started开始 exchanging交换 and communicating通信 information信息,
198
517000
3000
那就是这些细胞开始交换和交流资讯,
08:55
so that they began开始 to get communities社区 of cells细胞.
199
520000
2000
从而形成细胞团体。
08:57
I don't know if you know this,
200
522000
2000
我不知道你们是否知道这个,
08:59
but bacteria can actually其实 exchange交换 DNA脱氧核糖核酸.
201
524000
2000
细菌实际上就可以交换去氧核糖核酸。
09:01
Now that's why, for instance,
202
526000
2000
这就是为什么,比如,
09:03
antibiotic抗生素 resistance抵抗性 has evolved进化.
203
528000
2000
演变出抗菌免疫。
09:05
Some bacteria figured想通 out how to stay away from penicillin青霉素,
204
530000
3000
有些细菌知道怎么远离青霉素,
09:08
and it went around sort分类 of creating创建 its little DNA脱氧核糖核酸 information信息
205
533000
3000
然后它创造它这点去氧核糖核酸资讯,
09:11
with other bacteria,
206
536000
2000
并在别的细菌中到处游走,
09:13
and now we have a lot of bacteria that are resistant to penicillin青霉素,
207
538000
3000
现在我们有很多对青霉素免疫的细菌了,
09:16
because bacteria communicate通信.
208
541000
2000
因为细菌会交流资讯。
09:18
Now what this communication通讯 allowed允许
209
543000
2000
这样,这些交流致使
09:20
was communities社区 to form形成
210
545000
2000
群落的形成,
09:22
that, in some sense, were in the same相同 boat together一起;
211
547000
2000
在某种意义上,它们在同一条船上了;
09:24
they were synergistic协同.
212
549000
2000
它们是协作的。
09:26
So they survived幸存
213
551000
2000
因此它们一起幸存下来
09:28
or they failed失败 together一起,
214
553000
2000
或者一起死去,
09:30
which哪一个 means手段 that if a community社区 was very successful成功,
215
555000
2000
也就是说如果一个群落成功了,
09:32
all the individuals个人 in that community社区
216
557000
2000
所有群落里的个体
09:34
were repeated重复 more
217
559000
2000
都能复制更多,
09:36
and they were favored青睐 by evolution演化.
218
561000
3000
进化得更有利。
09:39
Now the transition过渡 point happened发生
219
564000
2000
于是,转换点到了,
09:41
when these communities社区 got so close
220
566000
2000
当这些族群很亲近时,
09:43
that, in fact事实, they got together一起
221
568000
2000
事实上,它们聚集到一起
09:45
and decided决定 to write down the whole整个 recipe食谱 for the community社区
222
570000
3000
并决定在一条去氧核糖核酸上
09:48
together一起 on one string of DNA脱氧核糖核酸.
223
573000
3000
写下整个族群的成分谱。
09:51
And so the next下一个 stage阶段 that's interesting有趣 in life
224
576000
2000
生命中下一个有趣的阶段
09:53
took about another另一个 billion十亿 years年份.
225
578000
2000
又要几十亿年。
09:55
And at that stage阶段,
226
580000
2000
在这个时期,
09:57
we have multi-cellular多细胞 communities社区,
227
582000
2000
有多细胞族群,
09:59
communities社区 of lots of different不同 types类型 of cells细胞,
228
584000
2000
就是有很多种不同细胞的群落,
10:01
working加工 together一起 as a single organism生物.
229
586000
2000
作为有机体一起合作。
10:03
And in fact事实, we're such这样 a multi-cellular多细胞 community社区.
230
588000
3000
实际上,我们就是这样的多细胞族群。
10:06
We have lots of cells细胞
231
591000
2000
我们有很多细胞,
10:08
that are not out for themselves他们自己 anymore.
232
593000
2000
它们不再是只为自己存活。
10:10
Your skin皮肤 cell细胞 is really useless无用
233
595000
3000
皮肤细胞根本没用,
10:13
without a heart cell细胞, muscle肌肉 cell细胞,
234
598000
2000
要是没有心脏细胞,肌肉细胞,
10:15
a brain cell细胞 and so on.
235
600000
2000
脑细胞等等。
10:17
So these communities社区 began开始 to evolve发展
236
602000
2000
所以这些族群开始进化
10:19
so that the interesting有趣 level水平 on which哪一个 evolution演化 was taking服用 place地点
237
604000
3000
这样发生有趣的进化的
10:22
was no longer a cell细胞,
238
607000
2000
不再仅仅是单一细胞。
10:24
but a community社区 which哪一个 we call an organism生物.
239
609000
3000
而是我们称为有机体的族群。
10:28
Now the next下一个 step that happened发生
240
613000
2000
接下来发生
10:30
is within these communities社区.
241
615000
2000
就是在这些族群中。
10:32
These communities社区 of cells细胞,
242
617000
2000
这些细胞群落,
10:34
again, began开始 to abstract抽象 information信息.
243
619000
2000
再次,开始提取资讯。
10:36
And they began开始 building建造 very special特别 structures结构
244
621000
3000
它们开始构建非常特别的
10:39
that did nothing but process处理 information信息 within the community社区.
245
624000
3000
专门处理群落内资讯的结构。
10:42
And those are the neural神经 structures结构.
246
627000
2000
这些就是神经结构。
10:44
So neurons神经元 are the information信息 processing处理 apparatus仪器
247
629000
3000
所以神经元是
10:47
that those communities社区 of cells细胞 built内置 up.
248
632000
3000
这些细胞群建立的资讯处理仪器。
10:50
And in fact事实, they began开始 to get specialists专家 in the community社区
249
635000
2000
实际上,群落里开始出现专家
10:52
and special特别 structures结构
250
637000
2000
以及特殊结构
10:54
that were responsible主管 for recording记录,
251
639000
2000
负责记录,
10:56
understanding理解, learning学习 information信息.
252
641000
3000
理解,学习资讯。
10:59
And that was the brains大脑 and the nervous紧张 system系统
253
644000
2000
这就是这些细胞群的
11:01
of those communities社区.
254
646000
2000
大脑和神经系统。
11:03
And that gave them an evolutionary发展的 advantage优点.
255
648000
2000
这给了它们进化的有利条件。
11:05
Because at that point,
256
650000
3000
因为这样的话,
11:08
an individual个人 --
257
653000
3000
对每个个体——
11:11
learning学习 could happen发生
258
656000
2000
学习可以发生
11:13
within the time span跨度 of a single organism生物,
259
658000
2000
在单个有机体的时间跨度内,
11:15
instead代替 of over this evolutionary发展的 time span跨度.
260
660000
3000
而不是整个进化时间跨度。
11:18
So an organism生物 could, for instance,
261
663000
2000
所以一个有机体能够,比如说,
11:20
learn学习 not to eat a certain某些 kind of fruit水果
262
665000
2000
学会不吃某种水果
11:22
because it tasted bad and it got sick生病 last time it ate it.
263
667000
4000
因为它不好吃而且上次吃的觉得恶心。
11:26
That could happen发生 within the lifetime一生 of a single organism生物,
264
671000
3000
这可以发生在一个单个有机体的一生中,
11:29
whereas before they'd他们会 built内置 these special特别 information信息 processing处理 structures结构,
265
674000
4000
然后在这种特殊信息处理结构建成前,
11:33
that would have had to be learned学到了 evolutionarily进化
266
678000
2000
这得要进化学习
11:35
over hundreds数以百计 of thousands数千 of years年份
267
680000
3000
千万年,
11:38
by the individuals个人 dying垂死 off that ate that kind of fruit水果.
268
683000
3000
通过吃了这种水果前仆后继死去的个体。
11:41
So that nervous紧张 system系统,
269
686000
2000
所以神经系统,
11:43
the fact事实 that they built内置 these special特别 information信息 structures结构,
270
688000
3000
生物组建这种特殊结构的事实,
11:46
tremendously异常 sped加快 up the whole整个 process处理 of evolution演化.
271
691000
3000
极大地加速了进化的进程。
11:49
Because evolution演化 could now happen发生 within an individual个人.
272
694000
3000
因为至此进化可以在个体中发生了。
11:52
It could happen发生 in learning学习 time scales.
273
697000
3000
它能发生在学习的时间跨度内。
11:55
But then what happened发生
274
700000
2000
但是接下来发生的
11:57
was the individuals个人 worked工作 out,
275
702000
2000
是每个个体发现了,
11:59
of course课程, tricks技巧 of communicating通信.
276
704000
2000
当然,交流的秘诀。
12:01
And for example,
277
706000
2000
比如说,
12:03
the most sophisticated复杂的 version that we're aware知道的 of is human人的 language语言.
278
708000
3000
我们所知道的最精密的版本就是人类语言。
12:06
It's really a pretty漂亮 amazing惊人 invention发明 if you think about it.
279
711000
3000
想想看,这真是个奇妙的发明。
12:09
Here I have a very complicated复杂, messy,
280
714000
2000
我脑子里有个很复杂,混乱,
12:11
confused困惑 idea理念 in my head.
281
716000
3000
疑惑的想法。
12:14
I'm sitting坐在 here making制造 grunting呼噜 sounds声音 basically基本上,
282
719000
3000
我坐在这,基本上就是吐字发声,
12:17
and hopefully希望 constructing建设 a similar类似 messy, confused困惑 idea理念 in your head
283
722000
3000
希望在你们头脑里建立一个类似的混乱
12:20
that bears some analogy比喻 to it.
284
725000
2000
跟它有点类似的想法。
12:22
But we're taking服用 something very complicated复杂,
285
727000
2000
但是我们正在把很复杂的东西
12:24
turning车削 it into sound声音, sequences序列 of sounds声音,
286
729000
3000
转化成声音,一连串的声音,
12:27
and producing生产 something very complicated复杂 in your brain.
287
732000
4000
并在你们大脑产生很复杂的东西。
12:31
So this allows允许 us now
288
736000
2000
所以现在这推动我们
12:33
to begin开始 to start开始 functioning功能
289
738000
2000
开始运作
12:35
as a single organism生物.
290
740000
3000
作为单个有机体。
12:38
And so, in fact事实, what we've我们已经 doneDONE
291
743000
3000
所以,实际上,我们已经完成的
12:41
is we, humanity人性,
292
746000
2000
就是我们,人类,
12:43
have started开始 abstracting抽象 out.
293
748000
2000
开始抽离出来。
12:45
We're going through通过 the same相同 levels水平
294
750000
2000
我们正在经历多细胞有机体经历的
12:47
that multi-cellular多细胞 organisms生物 have gone走了 through通过 --
295
752000
2000
相同的阶段——
12:49
abstracting抽象 out our methods方法 of recording记录,
296
754000
3000
提取我们记录,
12:52
presenting呈现, processing处理 information信息.
297
757000
2000
展示,处理资讯的方式。
12:54
So for example, the invention发明 of language语言
298
759000
2000
比如说,语言的发明
12:56
was a tiny step in that direction方向.
299
761000
3000
就是这个方向上很小一步。
12:59
Telephony电话, computers电脑,
300
764000
2000
电话,电脑,
13:01
videotapes录像带, CD-ROMs光盘 and so on
301
766000
3000
影碟,光碟等等
13:04
are all our specialized专门 mechanisms机制
302
769000
2000
都是我们的特殊机制,
13:06
that we've我们已经 now built内置 within our society社会
303
771000
2000
我们正在社会里构建
13:08
for handling处理 that information信息.
304
773000
2000
用来处理资讯的机制。
13:10
And it all connects所连接 us together一起
305
775000
3000
这些都是把我们联系在一起,
13:13
into something
306
778000
2000
变的
13:15
that is much bigger
307
780000
2000
比我们之前
13:17
and much faster更快
308
782000
2000
更大,
13:19
and able能够 to evolve发展
309
784000
2000
更快,
13:21
than what we were before.
310
786000
2000
更有能力进化。
13:23
So now, evolution演化 can take place地点
311
788000
2000
所以,现在进化可以发生在
13:25
on a scale规模 of microseconds微秒.
312
790000
2000
微妙的时间跨度级上。
13:27
And you saw Ty's泰公司 little evolutionary发展的 example
313
792000
2000
你们看过泰伊的那个进化的小例子
13:29
where he sort分类 of did a little bit of evolution演化
314
794000
2000
它好像就在你们眼前的卷积程式上
13:31
on the Convolution卷积 program程序 right before your eyes眼睛.
315
796000
3000
展现了一点进化了。
13:34
So now we've我们已经 speeded加快 up the time scales once一旦 again.
316
799000
3000
所以现在我们再次加快时间跨度。
13:37
So the first steps脚步 of the story故事 that I told you about
317
802000
2000
我讲的故事的第一步
13:39
took a billion十亿 years年份 a piece.
318
804000
2000
每一步花费了几十亿年。
13:41
And the next下一个 steps脚步,
319
806000
2000
下一步,
13:43
like nervous紧张 systems系统 and brains大脑,
320
808000
2000
像神经系统和大脑,
13:45
took a few少数 hundred million百万 years年份.
321
810000
2000
消耗几百万年。
13:47
Then the next下一个 steps脚步, like language语言 and so on,
322
812000
3000
再接下来,像语言等等,
13:50
took less than a million百万 years年份.
323
815000
2000
需要不到一百万年。
13:52
And these next下一个 steps脚步, like electronics电子产品,
324
817000
2000
再下一步,像电子器件,
13:54
seem似乎 to be taking服用 only a few少数 decades几十年.
325
819000
2000
仿佛只要几十年。
13:56
The process处理 is feeding馈送 on itself本身
326
821000
2000
这个过程是自给自足,
13:58
and becoming变得, I guess猜测, autocatalytic自催化 is the word for it --
327
823000
3000
并且变成,我猜,应该自我催化描述更合适——
14:01
when something reinforces加强 its rate of change更改.
328
826000
3000
当事物加快改变的速度。
14:04
The more it changes变化, the faster更快 it changes变化.
329
829000
3000
变化越多,变化就越快。
14:07
And I think that that's what we're seeing眼看 here in this explosion爆炸 of curve曲线.
330
832000
3000
我想这就是我们在这看到的激增曲线。
14:10
We're seeing眼看 this process处理 feeding馈送 back on itself本身.
331
835000
3000
我们看到这个过程回馈到自己。
14:13
Now I design设计 computers电脑 for a living活的,
332
838000
3000
我现在工作就是自己设计电脑,
14:16
and I know that the mechanisms机制
333
841000
2000
我知道用来设计电脑的
14:18
that I use to design设计 computers电脑
334
843000
3000
这些机制
14:21
would be impossible不可能
335
846000
2000
不可能存在,
14:23
without recent最近 advances进步 in computers电脑.
336
848000
2000
要是没有近期电脑的进步。
14:25
So right now, what I do
337
850000
2000
现在,我做的
14:27
is I design设计 objects对象 at such这样 complexity复杂
338
852000
3000
是设计复杂到
14:30
that it's really impossible不可能 for me to design设计 them in the traditional传统 sense.
339
855000
3000
不可能从传统意义上设计的物体。
14:33
I don't know what every一切 transistor晶体管 in the connection连接 machine does.
340
858000
4000
我不知道连接机器上每个电晶体的作用。
14:37
There are billions数十亿 of them.
341
862000
2000
有几十亿电晶体。
14:39
Instead代替, what I do
342
864000
2000
实际上,我所做的
14:41
and what the designers设计师 at Thinking思维 Machines do
343
866000
3000
思考机器的设计师们做的,
14:44
is we think at some level水平 of abstraction抽象化
344
869000
2000
我们认为是为某种程度的资讯抽取,
14:46
and then we hand it to the machine
345
871000
2000
然后把它传给机器
14:48
and the machine takes it beyond what we could ever do,
346
873000
3000
而机器把它运用到超出我们所能做的范围,
14:51
much farther更远 and faster更快 than we could ever do.
347
876000
3000
而且比我们从前所做的更深远更快。
14:54
And in fact事实, sometimes有时 it takes it by methods方法
348
879000
2000
实际上,有时候它采用的方法
14:56
that we don't quite相当 even understand理解.
349
881000
3000
我们并不很懂。
14:59
One method方法 that's particularly尤其 interesting有趣
350
884000
2000
有个尤其有趣
15:01
that I've been using运用 a lot lately最近
351
886000
3000
我最近一直在用的
15:04
is evolution演化 itself本身.
352
889000
2000
就是进化本身。
15:06
So what we do
353
891000
2000
我们做的就是
15:08
is we put inside the machine
354
893000
2000
在机器里
15:10
a process处理 of evolution演化
355
895000
2000
放入一个进化进程,
15:12
that takes place地点 on the microsecond微秒 time scale规模.
356
897000
2000
这个进程在微妙时间跨度上就能发生。
15:14
So for example,
357
899000
2000
比如,
15:16
in the most extreme极端 cases,
358
901000
2000
大部分极端情况下,
15:18
we can actually其实 evolve发展 a program程序
359
903000
2000
我们实际上能
15:20
by starting开始 out with random随机 sequences序列 of instructions说明.
360
905000
4000
通过从随机的指令序列开始进化一个程式。
15:24
Say, "Computer电脑, would you please make
361
909000
2000
(就像)说“电脑,请你产生
15:26
a hundred million百万 random随机 sequences序列 of instructions说明.
362
911000
3000
一亿随机指令序列。
15:29
Now would you please run all of those random随机 sequences序列 of instructions说明,
363
914000
3000
现在请你运行所有这些随机指令列,
15:32
run all of those programs程式,
364
917000
2000
运行所有程式,
15:34
and pick out the ones那些 that came来了 closest最近的 to doing what I wanted."
365
919000
3000
并选出最接近我想要的。”
15:37
So in other words, I define确定 what I wanted.
366
922000
2000
也就是说,我定义我要什么。
15:39
Let's say I want to sort分类 numbers数字,
367
924000
2000
假设我需要分类资料,
15:41
as a simple简单 example I've doneDONE it with.
368
926000
2000
这是个我用它试验过的简单例子。
15:43
So find the programs程式 that come closest最近的 to sorting排序 numbers数字.
369
928000
3000
找到最接近资料分类的程式。
15:46
So of course课程, random随机 sequences序列 of instructions说明
370
931000
3000
当然,随机的指令序列
15:49
are very unlikely不会 to sort分类 numbers数字,
371
934000
2000
非常不可能分类资料,
15:51
so none没有 of them will really do it.
372
936000
2000
所以它们中没有一个能完成。
15:53
But one of them, by luck运气,
373
938000
2000
但是中间有一个,运气很好,
15:55
may可能 put two numbers数字 in the right order订购.
374
940000
2000
可能会把两个数按顺序排列。
15:57
And I say, "Computer电脑,
375
942000
2000
我说,“电脑,
15:59
would you please now take the 10 percent百分
376
944000
3000
请你现在选出序列中百分之十
16:02
of those random随机 sequences序列 that did the best最好 job工作.
377
947000
2000
完成得最好的。
16:04
Save保存 those. Kill off the rest休息.
378
949000
2000
保存这些。删掉其他的。
16:06
And now let's reproduce复制
379
951000
2000
现在来复制
16:08
the ones那些 that sorted分类 numbers数字 the best最好.
380
953000
2000
资料分类得最好的这些。
16:10
And let's reproduce复制 them by a process处理 of recombination重组
381
955000
3000
以类似交配的重组过程
16:13
analogous类似 to sex性别."
382
958000
2000
来复制它们。
16:15
Take two programs程式 and they produce生产 children孩子
383
960000
3000
取两个程式
16:18
by exchanging交换 their subroutines子程序,
384
963000
2000
交换它们的副程式让它们产生子女,
16:20
and the children孩子 inherit继承 the traits性状 of the subroutines子程序 of the two programs程式.
385
965000
3000
这些子女继承了两个程式副程式的特征。
16:23
So I've got now a new generation of programs程式
386
968000
3000
所以我得到新一代的
16:26
that are produced生成 by combinations组合
387
971000
2000
由组合做的比较好的程式
16:28
of the programs程式 that did a little bit better job工作.
388
973000
2000
而产生的程式。
16:30
Say, "Please repeat重复 that process处理."
389
975000
2000
(指令)说,“请重复这个过程。”
16:32
Score得分了 them again.
390
977000
2000
再做一次。
16:34
Introduce介绍 some mutations突变 perhaps也许.
391
979000
2000
可能引入一些突变。
16:36
And try that again and do that for another另一个 generation.
392
981000
3000
再试一次并用在新的一代上。
16:39
Well every一切 one of those generations just takes a few少数 milliseconds毫秒.
393
984000
3000
这一代上每个程式只需要几毫秒。
16:42
So I can do the equivalent当量
394
987000
2000
所以我在电脑上用几分钟
16:44
of millions百万 of years年份 of evolution演化 on that
395
989000
2000
能做等同于
16:46
within the computer电脑 in a few少数 minutes分钟,
396
991000
3000
几百万年的进化过程,
16:49
or in the complicated复杂 cases, in a few少数 hours小时.
397
994000
2000
或者,情况复杂时,在几小时内完成。
16:51
At the end结束 of that, I end结束 up with programs程式
398
996000
3000
结束时,我得到
16:54
that are absolutely绝对 perfect完善 at sorting排序 numbers数字.
399
999000
2000
绝对完美的分类资料的程式。
16:56
In fact事实, they are programs程式 that are much more efficient高效
400
1001000
3000
实际上,这些程式比我手写的
16:59
than programs程式 I could have ever written书面 by hand.
401
1004000
2000
任何程式都要有效率。
17:01
Now if I look at those programs程式,
402
1006000
2000
现在,如果我读这些程式,
17:03
I can't tell you how they work.
403
1008000
2000
我说不出它们怎么工作的。
17:05
I've tried试着 looking at them and telling告诉 you how they work.
404
1010000
2000
我尝试过阅读并且解释它们如何工作的。
17:07
They're obscure朦胧, weird奇怪的 programs程式.
405
1012000
2000
它们很抽象,奇怪。
17:09
But they do the job工作.
406
1014000
2000
但是它们能完成任务。
17:11
And in fact事实, I know, I'm very confident信心 that they do the job工作
407
1016000
3000
实际上,我知道,我很有信心,它们能完成任务
17:14
because they come from a line线
408
1019000
2000
因为它们来自于一行
17:16
of hundreds数以百计 of thousands数千 of programs程式 that did the job工作.
409
1021000
2000
上千万能完成认为的程式。
17:18
In fact事实, their life depended依赖 on doing the job工作.
410
1023000
3000
事实上,它们的生命就是靠着这工作。
17:21
(Laughter笑声)
411
1026000
4000
(笑声)
17:26
I was riding骑术 in a 747
412
1031000
2000
我曾经有一次
17:28
with Marvin马文 Minsky明斯基 once一旦,
413
1033000
2000
和马文·明斯基一起坐747,
17:30
and he pulls out this card and says, "Oh look. Look at this.
414
1035000
3000
他拿出一张卡,说,“看,看这。
17:33
It says, 'This'这个 plane平面 has hundreds数以百计 of thousands数千 of tiny parts部分
415
1038000
4000
这上面说,‘本飞机有很多精密部件
17:37
working加工 together一起 to make you a safe安全 flight飞行.'
416
1042000
4000
协作,保障你飞行安全。’
17:41
Doesn't that make you feel confident信心?"
417
1046000
2000
这是不是让你很有信心?”
17:43
(Laughter笑声)
418
1048000
2000
(笑声)
17:45
In fact事实, we know that the engineering工程 process处理 doesn't work very well
419
1050000
3000
事实上,我们知道工程过程复杂化
17:48
when it gets得到 complicated复杂.
420
1053000
2000
并不能很好工作。
17:50
So we're beginning开始 to depend依靠 on computers电脑
421
1055000
2000
所以我们开始依赖电脑
17:52
to do a process处理 that's very different不同 than engineering工程.
422
1057000
4000
来做与工程有很大不同的一个过程。
17:56
And it lets让我们 us produce生产 things of much more complexity复杂
423
1061000
3000
它能让我们生产出
17:59
than normal正常 engineering工程 lets让我们 us produce生产.
424
1064000
2000
比普通工程能生产的更复杂的东西。
18:01
And yet然而, we don't quite相当 understand理解 the options选项 of it.
425
1066000
3000
然而,我们还不明白它的选择。
18:04
So in a sense, it's getting得到 ahead of us.
426
1069000
2000
从某种意义上说,电脑比我们超前。
18:06
We're now using运用 those programs程式
427
1071000
2000
我们现在正用这些程式
18:08
to make much faster更快 computers电脑
428
1073000
2000
创造更快的电脑
18:10
so that we'll be able能够 to run this process处理 much faster更快.
429
1075000
3000
以便能更快地运行这个进程。
18:13
So it's feeding馈送 back on itself本身.
430
1078000
3000
所以它是自我回馈的。
18:16
The thing is becoming变得 faster更快
431
1081000
2000
这正变得更快,
18:18
and that's why I think it seems似乎 so confusing扑朔迷离.
432
1083000
2000
这也是为什么我觉得电脑似乎很让人摸不清。
18:20
Because all of these technologies技术 are feeding馈送 back on themselves他们自己.
433
1085000
3000
由于所有这些技术都回馈给自己。
18:23
We're taking服用 off.
434
1088000
2000
我们正在起飞。
18:25
And what we are is we're at a point in time
435
1090000
3000
我们正是在时间的某一点,
18:28
which哪一个 is analogous类似 to when single-celled单细胞 organisms生物
436
1093000
2000
这一点类似于单细胞有机体
18:30
were turning车削 into multi-celled多细胞 organisms生物.
437
1095000
3000
正转变成多细胞机体的时刻。
18:33
So we're the amoebas变形虫
438
1098000
2000
我们就像变形虫。
18:35
and we can't quite相当 figure数字 out what the hell地狱 this thing is we're creating创建.
439
1100000
3000
搞不清自己正在创造的是什么东西。
18:38
We're right at that point of transition过渡.
440
1103000
2000
我们正在转折点上。
18:40
But I think that there really is something coming未来 along沿 after us.
441
1105000
3000
不过我认为一定有跟随着我们的东西。
18:43
I think it's very haughty傲慢 of us
442
1108000
2000
我想它是很崇拜我们的,
18:45
to think that we're the end结束 product产品 of evolution演化.
443
1110000
3000
认为我们是进化的终极产物。
18:48
And I think all of us here
444
1113000
2000
我认为我们这所有人
18:50
are a part部分 of producing生产
445
1115000
2000
都是繁衍的一部分,
18:52
whatever随你 that next下一个 thing is.
446
1117000
2000
无论下一步是什么。
18:54
So lunch午餐 is coming未来 along沿,
447
1119000
2000
午饭时间快到了,
18:56
and I think I will stop at that point,
448
1121000
2000
趁我还没被选走,
18:58
before I get selected out.
449
1123000
2000
我想我就在这里结束。
19:00
(Applause掌声)
450
1125000
3000
(掌声)
Translated by YANGYANG HU
Reviewed by Angelia King

▲Back to top

ABOUT THE SPEAKER
Danny Hillis - Computer theorist
Inventor, scientist, author, engineer -- over his broad career, Danny Hillis has turned his ever-searching brain on an array of subjects, with surprising results.

Why you should listen

Danny Hillis is an inventor, scientist, author and engineer. While completing his doctorate at MIT, he pioneered the concept of parallel computers that is now the basis for graphics processors and cloud computing. He holds more than 300 US patents, covering parallel computers, disk arrays, forgery prevention methods, various electronic and mechanical devices, and the pinch-to-zoom display interface. He has recently been working on problems in medicine as well. He is also the designer of a 10,000-year mechanical clock, and he gave a TED Talk in 1994 that is practically prophetic. Throughout his career, Hillis has worked at places like Disney, and now MIT and Applied Invention, always looking for the next fascinating problem.

More profile about the speaker
Danny Hillis | Speaker | TED.com

Data provided by TED.

This site was created in May 2015 and the last update was on January 12, 2020. It will no longer be updated.

We are currently creating a new site called "eng.lish.video" and would be grateful if you could access it.

If you have any questions or suggestions, please feel free to write comments in your language on the contact form.

Privacy Policy

Developer's Blog

Buy Me A Coffee