ABOUT THE SPEAKER
Henry Markram - Neuroscientist
Henry Markram is director of Blue Brain, a supercomputing project that can model components of the mammalian brain to precise cellular detail -- and simulate their activity in 3D. Soon he'll simulate a whole rat brain in real time.

Why you should listen

In the microscopic, yet-uncharted circuitry of the cortex, Henry Markram is perhaps the most ambitious -- and our most promising -- frontiersman. Backed by the extraordinary power of the IBM Blue Gene supercomputing architecture, which can perform hundreds of trillions of calculations per second, he's using complex models to precisely simulate the neocortical column (and its tens of millions of neural connections) in 3D.

Though the aim of Blue Brain research is mainly biomedical, it has been edging up on some deep, contentious philosophical questions about the mind -- "Can a robot think?" and "Can consciousness be reduced to mechanical components?" -- the consequence of which Markram is well aware: Asked by Seed Magazine what a simulation of a full brain might do, he answered, "Everything. I mean everything" -- with a grin.

Now, with a successful proof-of-concept for simulation in hand (the project's first phase was completed in 2007), Markram is looking toward a future where brains might be modeled even down to the molecular and genetic level. Computing power marching rightward and up along the graph of Moore's Law, Markram is sure to be at the forefront as answers to the mysteries of cognition emerge.

More profile about the speaker
Henry Markram | Speaker | TED.com
TEDGlobal 2009

Henry Markram: A brain in a supercomputer

亨利马克拉姆:用超级计算机构造大脑

Filmed:
1,469,354 views

亨利马克拉姆说很快大脑的奥秘就可以被破解。精神疾病病、记忆、知觉: 这些是由神经元和电信号构成的,他计划用超级计算机模拟大脑全部的100万亿个突触,来研究它们。
- Neuroscientist
Henry Markram is director of Blue Brain, a supercomputing project that can model components of the mammalian brain to precise cellular detail -- and simulate their activity in 3D. Soon he'll simulate a whole rat brain in real time. Full bio

Double-click the English transcript below to play the video.

00:18
Our mission任务 is to build建立
0
0
3000
我们的任务是建立
00:21
a detailed详细, realistic实际
1
3000
2000
一个复杂的,可行的
00:23
computer电脑 model模型 of the human人的 brain.
2
5000
2000
人脑计算机模型。
00:25
And we've我们已经 doneDONE, in the past过去 four years年份,
3
7000
3000
过去四年,我们已经
00:28
a proof证明 of concept概念
4
10000
2000
在一小块鼠脑上
00:30
on a small part部分 of the rodent啮齿动物 brain,
5
12000
3000
进行概念验证,
00:33
and with this proof证明 of concept概念 we are now scaling缩放 the project项目 up
6
15000
3000
根据这样的概念验证,我们正扩大该项目规模到
00:36
to reach达到 the human人的 brain.
7
18000
3000
人脑大小。
00:39
Why are we doing this?
8
21000
2000
我们为什么要这样做呢?
00:41
There are three important重要 reasons原因.
9
23000
2000
有三个重要原因。
00:43
The first is, it's essential必要 for us to understand理解 the human人的 brain
10
25000
4000
首先,了解人类的大脑对我们来说非常重要
00:47
if we do want to get along沿 in society社会,
11
29000
2000
如果我们要继续在社会中生存
00:49
and I think that it is a key step in evolution演化.
12
31000
4000
同时我认为也是进化上的关键一步。
00:53
The second第二 reason原因 is,
13
35000
2000
第二个原因是,
00:55
we cannot不能 keep doing animal动物 experimentation实验 forever永远,
14
37000
6000
我们不能总是进行动物试验,
01:01
and we have to embody体现 all our data数据 and all our knowledge知识
15
43000
4000
我们要把我们所有的数据和知识包含进
01:05
into a working加工 model模型.
16
47000
3000
一个可用模型中。
01:08
It's like a Noah's诺亚 Ark方舟. It's like an archive档案.
17
50000
4000
好比诺亚方舟,好比一个档案馆。
01:12
And the third第三 reason原因 is that there are two billion十亿 people on the planet行星
18
54000
3000
第三个原因是:地球上有20亿人
01:15
that are affected受影响 by mental心理 disorder紊乱,
19
57000
4000
患有精神疾病,
01:19
and the drugs毒品 that are used today今天
20
61000
2000
他们的用药
01:21
are largely大部分 empirical经验.
21
63000
2000
主要依靠经验。
01:23
I think that we can come up with very concrete具体 solutions解决方案 on
22
65000
3000
我认为,我们能就如何对待疾病的
01:26
how to treat对待 disorders障碍.
23
68000
3000
有非常具体的解决办法。
01:29
Now, even at this stage阶段,
24
71000
3000
现在,即使在这个阶段,
01:32
we can use the brain model模型
25
74000
2000
我们可以利用大脑模型
01:34
to explore探索 some fundamental基本的 questions问题
26
76000
3000
探讨一些基本的问题
01:37
about how the brain works作品.
27
79000
2000
关于大脑是如何工作的。
01:39
And here, at TEDTED, for the first time,
28
81000
2000
这里,首次通过TED
01:41
I'd like to share分享 with you how we're addressing解决
29
83000
2000
我想和大家分享我们如何解决
01:43
one theory理论 -- there are many许多 theories理论 --
30
85000
3000
一个理论 -- 有许多理论 --
01:46
one theory理论 of how the brain works作品.
31
88000
4000
一个关于大脑如何工作的理论。
01:50
So, this theory理论 is that the brain
32
92000
4000
这种理论认为大脑
01:54
creates创建, builds建立, a version of the universe宇宙,
33
96000
6000
创建,构建了一个版本的宇宙。
02:00
and projects项目 this version of the universe宇宙,
34
102000
3000
把这个宇宙作映射,
02:03
like a bubble泡沫, all around us.
35
105000
4000
向气泡一样,映射到我们周围。
02:07
Now, this is of course课程 a topic话题 of philosophical哲学上 debate辩论 for centuries百年.
36
109000
4000
当然,这是数百年哲学辩论的题目。
02:11
But, for the first time, we can actually其实 address地址 this,
37
113000
3000
但是,有史以来,我们实际上可以解决这个问题,
02:14
with brain simulation模拟,
38
116000
2000
依靠大脑仿真,
02:16
and ask very systematic系统的 and rigorous严格 questions问题,
39
118000
4000
同时提出非常系统和严谨的问题,
02:20
whether是否 this theory理论 could possibly或者 be true真正.
40
122000
4000
这个理论是否有可能是正确的。
02:24
The reason原因 why the moon月亮 is huge巨大 on the horizon地平线
41
126000
3000
之所以月亮在地平线上是巨大的
02:27
is simply只是 because our perceptual知觉的 bubble泡沫
42
129000
3000
纯粹是因为我们的知觉气泡
02:30
does not stretch伸展 out 380,000 kilometers公里.
43
132000
4000
没有延伸到三十八万公里外。
02:34
It runs运行 out of space空间.
44
136000
2000
用光了空间。
02:36
And so what we do is we compare比较 the buildings房屋
45
138000
4000
所以我们比较建筑物
02:40
within our perceptual知觉的 bubble泡沫,
46
142000
2000
在我们的知觉气泡范围内,
02:42
and we make a decision决定.
47
144000
2000
我们做出一个判断。
02:44
We make a decision决定 it's that big,
48
146000
2000
我们做出判断,那个建筑很大,
02:46
even though虽然 it's not that big.
49
148000
2000
即使它并没有那么大,
02:48
And what that illustrates说明
50
150000
2000
这表明
02:50
is that decisions决定 are the key things
51
152000
2000
判断是支持
02:52
that support支持 our perceptual知觉的 bubble泡沫. It keeps保持 it alive.
52
154000
5000
知觉气泡的关键。判断维系了知觉气泡。
02:57
Without没有 decisions决定 you cannot不能 see, you cannot不能 think,
53
159000
2000
没有判断你不能看,不能思考,
02:59
you cannot不能 feel.
54
161000
2000
不能感知。
03:01
And you may可能 think that anesthetics麻醉剂 work
55
163000
2000
没准你会认为麻醉药的工作原理是
03:03
by sending发出 you into some deep sleep睡觉,
56
165000
3000
让你熟睡,
03:06
or by blocking闭塞 your receptors受体 so that you don't feel pain疼痛,
57
168000
3000
或者阻断感知器官,使你感不到疼痛,
03:09
but in fact事实 most anesthetics麻醉剂 don't work that way.
58
171000
3000
不过,实际上多数麻醉药不是这么工作的。
03:12
What they do is they introduce介绍 a noise噪声
59
174000
3000
麻醉药引入干扰
03:15
into the brain so that the neurons神经元 cannot不能 understand理解 each other.
60
177000
3000
到大脑中,这样神经元互相之间不能理解。
03:18
They are confused困惑,
61
180000
2000
神经元糊涂了,
03:20
and you cannot不能 make a decision决定.
62
182000
3000
你也就不能做出一个判断。
03:23
So, while you're trying to make up your mind心神
63
185000
3000
所以,当你正试图弥补你的思绪的,
03:26
what the doctor医生, the surgeon外科医生, is doing
64
188000
2000
以为手术医生
03:28
while he's hacking黑客 away at your body身体, he's long gone走了.
65
190000
2000
正在做手术,实际上医生早走了。
03:30
He's at home having tea.
66
192000
2000
正在家里喝茶呢。
03:32
(Laughter笑声)
67
194000
2000
(笑)
03:34
So, when you walk步行 up to a door and you open打开 it,
68
196000
3000
当你拾阶而上打开一扇门的时候,
03:37
what you compulsively强制 have to do to perceive感知
69
199000
3000
你不由自主的
03:40
is to make decisions决定,
70
202000
2000
做出判断,
03:42
thousands数千 of decisions决定 about the size尺寸 of the room房间,
71
204000
3000
成千上万的判断,诸如房间的大小,
03:45
the walls墙壁, the height高度, the objects对象 in this room房间.
72
207000
3000
墙壁,高度,房内物体。
03:48
99 percent百分 of what you see
73
210000
3000
99%的你所见,
03:51
is not what comes in through通过 the eyes眼睛.
74
213000
4000
并非来自你的眼睛。
03:55
It is what you infer推断 about that room房间.
75
217000
4000
是你对这个房间推断。
03:59
So I can say, with some certainty肯定,
76
221000
4000
所以我可以确定的说,
04:03
"I think, therefore因此 I am."
77
225000
3000
“我思故我在。“
04:06
But I cannot不能 say, "You think, therefore因此 you are,"
78
228000
4000
但我不能说,“你思故你在。”
04:10
because "you" are within my perceptual知觉的 bubble泡沫.
79
232000
5000
因为你包含在我的知觉气泡中。
04:15
Now, we can speculate推测 and philosophize哲学思考 this,
80
237000
3000
我们可以就此进行哲学思考,
04:18
but we don't actually其实 have to for the next下一个 hundred years年份.
81
240000
3000
但我们没必要再思考上百年。
04:21
We can ask a very concrete具体 question.
82
243000
2000
我们可以提出非常具体的问题。
04:23
"Can the brain build建立 such这样 a perception知觉?"
83
245000
4000
“大脑能建立这样一个知觉吗?”
04:27
Is it capable of doing it?
84
249000
2000
有能力做吗?
04:29
Does it have the substance物质 to do it?
85
251000
2000
大脑有物质创造这些吗?
04:31
And that's what I'm going to describe描述 to you today今天.
86
253000
3000
这就是我今天要讲的东西。
04:34
So, it took the universe宇宙 11 billion十亿 years年份 to build建立 the brain.
87
256000
4000
宇宙用了110亿年时间创造的大脑。
04:38
It had to improve提高 it a little bit.
88
260000
2000
宇宙一点点的完善大脑。
04:40
It had to add to the frontal前面的 part部分, so that you would have instincts本能,
89
262000
3000
增加了额叶,所以有了本能,
04:43
because they had to cope应付 on land土地.
90
265000
3000
因为要适应陆地生活。
04:46
But the real真实 big step was the neocortex新皮层.
91
268000
4000
不过真正的进步是大脑皮层。
04:50
It's a new brain. You needed需要 it.
92
272000
2000
一个新大脑。你需要它。
04:52
The mammals哺乳动物 needed需要 it
93
274000
2000
哺乳动物需要它
04:54
because they had to cope应付 with parenthood父母,
94
276000
4000
因为哺乳动物需要适应父母的角色,
04:58
social社会 interactions互动,
95
280000
2000
社会互动,
05:00
complex复杂 cognitive认知 functions功能.
96
282000
3000
复杂的认知功能。
05:03
So, you can think of the neocortex新皮层
97
285000
2000
你可以认为大脑皮层
05:05
actually其实 as the ultimate最终 solution today今天,
98
287000
5000
是现在最终解决方案,
05:10
of the universe宇宙 as we know it.
99
292000
3000
就我们所知的宇宙。
05:13
It's the pinnacle巅峰, it's the final最后 product产品
100
295000
2000
大脑皮层是顶峰,是宇宙的
05:15
that the universe宇宙 has produced生成.
101
297000
4000
最终产品。
05:19
It was so successful成功 in evolution演化
102
301000
2000
在进化上很成功
05:21
that from mouse老鼠 to man it expanded扩大
103
303000
2000
从老鼠到人类
05:23
about a thousandfold千倍的 in terms条款 of the numbers数字 of neurons神经元,
104
305000
3000
扩展千倍的神经元细胞,
05:26
to produce生产 this almost几乎 frightening可怕的
105
308000
3000
来制造这吓人的
05:29
organ器官, structure结构体.
106
311000
3000
器官,组织。
05:32
And it has not stopped停止 its evolutionary发展的 path路径.
107
314000
3000
它的进化没有停止。
05:35
In fact事实, the neocortex新皮层 in the human人的 brain
108
317000
2000
实际上,人脑中的大脑皮层
05:37
is evolving进化 at an enormous巨大 speed速度.
109
319000
3000
还在飞快的进化中。
05:40
If you zoom放大 into the surface表面 of the neocortex新皮层,
110
322000
2000
如果你放大到大脑皮层表面,
05:42
you discover发现 that it's made制作 up of little modules模块,
111
324000
3000
你会发现它有许多小模块组成,
05:45
G5 processors处理器, like in a computer电脑.
112
327000
2000
就像计算机里的G5处理器。
05:47
But there are about a million百万 of them.
113
329000
3000
只不过,大脑皮层有上百万块。
05:50
They were so successful成功 in evolution演化
114
332000
2000
这些模块在进化上非常成功
05:52
that what we did was to duplicate重复 them
115
334000
2000
我们所作的
05:54
over and over and add more and more of them to the brain
116
336000
2000
就是在大脑中不断的复制这些模块
05:56
until直到 we ran out of space空间 in the skull头骨.
117
338000
3000
直到我们用光了头骨中的空间。
05:59
And the brain started开始 to fold in on itself本身,
118
341000
2000
大脑开始折叠自身,
06:01
and that's why the neocortex新皮层 is so highly高度 convoluted令人费解.
119
343000
3000
这就是为什么大脑皮层如此褶皱。
06:04
We're just packing填料 in columns,
120
346000
2000
我们只有成列的包装,
06:06
so that we'd星期三 have more neocortical新皮层 columns
121
348000
3000
这样才能有更多的皮层
06:09
to perform演出 more complex复杂 functions功能.
122
351000
3000
实现更复杂的功能。
06:12
So you can think of the neocortex新皮层 actually其实 as
123
354000
2000
你可以把大脑皮层想想为
06:14
a massive大规模的 grand盛大 piano钢琴,
124
356000
2000
一台巨大的钢琴,
06:16
a million-key百万关键 grand盛大 piano钢琴.
125
358000
3000
由上百万个琴键的钢琴。
06:19
Each of these neocortical新皮层 columns
126
361000
2000
每一个皮层
06:21
would produce生产 a note注意.
127
363000
2000
发出一个音符。
06:23
You stimulate刺激 it; it produces产生 a symphony交响乐.
128
365000
3000
你刺激它;大脑就奏出交响乐。
06:26
But it's not just a symphony交响乐 of perception知觉.
129
368000
3000
不只是知觉的交响乐。
06:29
It's a symphony交响乐 of your universe宇宙, your reality现实.
130
371000
3000
是你的宇宙,你的现实的交响乐。
06:32
Now, of course课程 it takes years年份 to learn学习 how
131
374000
3000
现在,当然需要很多年
06:35
to master a grand盛大 piano钢琴 with a million百万 keys按键.
132
377000
3000
才能掌握有上百万个琴键的钢琴。
06:38
That's why you have to send发送 your kids孩子 to good schools学校,
133
380000
2000
这就是为什么你送你的孩子上好学校,
06:40
hopefully希望 eventually终于 to Oxford牛津.
134
382000
2000
希望最终上牛津。
06:42
But it's not only education教育.
135
384000
3000
但不只是教育。
06:45
It's also genetics遗传学.
136
387000
2000
这也是遗传。
06:47
You may可能 be born天生 lucky幸运,
137
389000
2000
可能你生来幸运,
06:49
where you know how to master your neocortical新皮层 column,
138
391000
4000
或者你知道如何掌握皮层。
06:53
and you can play a fantastic奇妙 symphony交响乐.
139
395000
2000
你可以奏出美妙的交响乐。
06:55
In fact事实, there is a new theory理论 of autism自闭症
140
397000
3000
实际上,有一个新的自闭症理论
06:58
called the "intense激烈 world世界" theory理论,
141
400000
2000
叫做“紧张世界”理论,
07:00
which哪一个 suggests提示 that the neocortical新皮层 columns are super-columns超柱.
142
402000
4000
提出皮层列是超级列。
07:04
They are highly高度 reactive反应, and they are super-plastic超塑,
143
406000
4000
它们超有活性,可塑性,
07:08
and so the autistsautists are probably大概 capable of
144
410000
3000
这样自闭症者可能有能力
07:11
building建造 and learning学习 a symphony交响乐
145
413000
2000
建立并学习一首交响乐
07:13
which哪一个 is unthinkable不可思议的 for us.
146
415000
2000
而对普通人来说不可想象。
07:15
But you can also understand理解
147
417000
2000
你也可以理解
07:17
that if you have a disease疾病
148
419000
2000
如果你有一种疾病
07:19
within one of these columns,
149
421000
2000
在这些皮层列中,
07:21
the note注意 is going to be off.
150
423000
2000
音符关闭了。
07:23
The perception知觉, the symphony交响乐 that you create创建
151
425000
2000
知觉,也就是你创造的交响乐
07:25
is going to be corrupted损坏,
152
427000
2000
也随之跑调,
07:27
and you will have symptoms症状 of disease疾病.
153
429000
3000
你会有疾病的症状。
07:30
So, the Holy Grail圣杯 for neuroscience神经科学
154
432000
4000
所以,神经科学的圣杯
07:34
is really to understand理解 the design设计 of the neocoriticalneocoritical column --
155
436000
4000
就是理解皮层的设计 --
07:38
and it's not just for neuroscience神经科学;
156
440000
2000
不只对神经科学;
07:40
it's perhaps也许 to understand理解 perception知觉, to understand理解 reality现实,
157
442000
3000
可能对理解知觉,理解现实有帮助,
07:43
and perhaps也许 to even also understand理解 physical物理 reality现实.
158
445000
4000
还可能对理解物理现实又帮助。
07:47
So, what we did was, for the past过去 15 years年份,
159
449000
3000
所以过去15年里,
07:50
was to dissect解剖 out the neocortex新皮层, systematically系统.
160
452000
4000
我们所作的就是系统的解刨大脑皮层。
07:54
It's a bit like going and cataloging编目 a piece of the rainforest雨林.
161
456000
4000
就像是去分类一片雨林。
07:58
How many许多 trees树木 does it have?
162
460000
2000
有多少树?
08:00
What shapes形状 are the trees树木?
163
462000
2000
树的形状?
08:02
How many许多 of each type类型 of tree do you have? Where are they positioned定位的?
164
464000
3000
每种树有多少棵?在哪里?
08:05
But it's a bit more than cataloging编目 because you actually其实 have to
165
467000
2000
不过可能比分类还要复杂,因为需要你
08:07
describe描述 and discover发现 all the rules规则 of communication通讯,
166
469000
4000
描述并发现所有的通讯规律,
08:11
the rules规则 of connectivity连接,
167
473000
2000
连接的规律,
08:13
because the neurons神经元 don't just like to connect with any neuron神经元.
168
475000
3000
因为神经元不是随便和别的神经元连接的。
08:16
They choose选择 very carefully小心 who they connect with.
169
478000
3000
神经元挑选连接对象非常谨慎。
08:19
It's also more than cataloging编目
170
481000
3000
比分类还复杂的是
08:22
because you actually其实 have to build建立 three-dimensional三维
171
484000
2000
因为需要你建立三维
08:24
digital数字 models楷模 of them.
172
486000
2000
数字模型。
08:26
And we did that for tens of thousands数千 of neurons神经元,
173
488000
2000
我们为数万个神经元
08:28
built内置 digital数字 models楷模 of all the different不同 types类型
174
490000
3000
建立了数字模型,我所见到的
08:31
of neurons神经元 we came来了 across横过.
175
493000
2000
不同种类的神经元。
08:33
And once一旦 you have that, you can actually其实
176
495000
2000
一旦你有了这些,你就可以
08:35
begin开始 to build建立 the neocortical新皮层 column.
177
497000
4000
建立皮层列。
08:39
And here we're coiling卷取 them up.
178
501000
3000
这里,我们把它们缠绕在一起。
08:42
But as you do this, what you see
179
504000
3000
这样做的时候,你所见的
08:45
is that the branches分支机构 intersect相交
180
507000
2000
就是分叉的相交
08:47
actually其实 in millions百万 of locations地点,
181
509000
3000
实践上再数百万的点上。
08:50
and at each of these intersections十字路口
182
512000
3000
每个交叉
08:53
they can form形成 a synapse突触.
183
515000
2000
都形成一个突触
08:55
And a synapse突触 is a chemical化学 location位置
184
517000
2000
每个突触就是一个化学位置
08:57
where they communicate通信 with each other.
185
519000
3000
这里可以进行相互通讯。
09:00
And these synapses突触 together一起
186
522000
2000
这些突触一起
09:02
form形成 the network网络
187
524000
2000
构成了网络
09:04
or the circuit电路 of the brain.
188
526000
3000
或者说是大脑的电路
09:07
Now, the circuit电路, you could also think of as
189
529000
4000
电路,也可以想象为
09:11
the fabric of the brain.
190
533000
2000
大脑的编制结构。
09:13
And when you think of the fabric of the brain,
191
535000
3000
当你想到大脑的编制结构时,
09:16
the structure结构体, how is it built内置? What is the pattern模式 of the carpet地毯?
192
538000
4000
结构,如何构建?这个编织物的图案是什么?
09:20
You realize实现 that this poses姿势
193
542000
2000
你意识到这个构成
09:22
a fundamental基本的 challenge挑战 to any theory理论 of the brain,
194
544000
4000
是对任何大脑理论的挑战,
09:26
and especially特别 to a theory理论 that says
195
548000
2000
特别对一种理论,说
09:28
that there is some reality现实 that emerges出现
196
550000
2000
现实浮现
09:30
out of this carpet地毯, out of this particular特定 carpet地毯
197
552000
3000
出这个编织物,
09:33
with a particular特定 pattern模式.
198
555000
2000
以一种特有的图案。
09:35
The reason原因 is because the most important重要 design设计 secret秘密 of the brain
199
557000
3000
原因是大脑重要的设计秘密是
09:38
is diversity多样.
200
560000
2000
多样性。
09:40
Every一切 neuron神经元 is different不同.
201
562000
2000
每个神经元都不同。
09:42
It's the same相同 in the forest森林. Every一切 pine松树 tree is different不同.
202
564000
2000
如同在森林中。每棵松树都不同。
09:44
You may可能 have many许多 different不同 types类型 of trees树木,
203
566000
2000
可以有许多同类的书,
09:46
but every一切 pine松树 tree is different不同. And in the brain it's the same相同.
204
568000
3000
但是每棵松树都不一样。大脑也一样。
09:49
So there is no neuron神经元 in my brain that is the same相同 as another另一个,
205
571000
3000
我大脑中的每个神经元都不相同,
09:52
and there is no neuron神经元 in my brain that is the same相同 as in yours你的.
206
574000
3000
我大脑中的神经元也不会和你的一样。
09:55
And your neurons神经元 are not going to be oriented面向 and positioned定位的
207
577000
3000
你的大脑中的神经元
09:58
in exactly究竟 the same相同 way.
208
580000
2000
以一样与众不同。
10:00
And you may可能 have more or less neurons神经元.
209
582000
2000
你可能有或多或少的神经元。
10:02
So it's very unlikely不会
210
584000
2000
所以不可能
10:04
that you got the same相同 fabric, the same相同 circuitry电路.
211
586000
4000
有同样的编制结构,同样的电路。
10:08
So, how could we possibly或者 create创建 a reality现实
212
590000
2000
这里,我们如何建立现实
10:10
that we can even understand理解 each other?
213
592000
3000
而又彼此可以理解的呢?
10:13
Well, we don't have to speculate推测.
214
595000
2000
我们没有必要推测。
10:15
We can look at all 10 million百万 synapses突触 now.
215
597000
3000
现在我们可以看看这一千万突触。
10:18
We can look at the fabric. And we can change更改 neurons神经元.
216
600000
3000
我们可以看看编制结构。我们可以变更神经元。
10:21
We can use different不同 neurons神经元 with different不同 variations变化.
217
603000
2000
我可以用不同的神经元。
10:23
We can position位置 them in different不同 places地方,
218
605000
2000
我们可以把怕们摆放到不同的位置上,
10:25
orient东方 them in different不同 places地方.
219
607000
2000
朝向不同的方位。
10:27
We can use less or more of them.
220
609000
2000
我们可以用或多或少的神经元。
10:29
And when we do that
221
611000
2000
我们这么做了之后,
10:31
what we discovered发现 is that the circuitry电路 does change更改.
222
613000
3000
我们发现,电路却是变化了。
10:34
But the pattern模式 of how the circuitry电路 is designed设计 does not.
223
616000
7000
但是电路设计的模式没有变化。
10:41
So, the fabric of the brain,
224
623000
2000
所以,大脑的编制结构,
10:43
even though虽然 your brain may可能 be smaller, bigger,
225
625000
2000
不管你的大脑或大或小,
10:45
it may可能 have different不同 types类型 of neurons神经元,
226
627000
3000
神经元的种类不同,
10:48
different不同 morphologies形态 of neurons神经元,
227
630000
2000
神经元的形态不同,
10:50
we actually其实 do share分享
228
632000
3000
我们实际上共享了
10:53
the same相同 fabric.
229
635000
2000
同样的编制结构。
10:55
And we think this is species-specific种属特异性,
230
637000
2000
我们认为这是物种特异性的,
10:57
which哪一个 means手段 that that could explain说明
231
639000
2000
这意味着可以解释
10:59
why we can't communicate通信 across横过 species种类.
232
641000
2000
为什么我们不能和别的物种交流。
11:01
So, let's switch开关 it on. But to do it, what you have to do
233
643000
3000
好,打开它。你必须作的是
11:04
is you have to make this come alive.
234
646000
2000
使它活起来。
11:06
We make it come alive
235
648000
2000
我们让它们活过来
11:08
with equations方程, a lot of mathematics数学.
236
650000
2000
用数学公式,很多的数学运算。
11:10
And, in fact事实, the equations方程 that make neurons神经元 into electrical电动 generators发电机
237
652000
4000
实际上,这些让神经元变成发电机的数学公式
11:14
were discovered发现 by two Cambridge剑桥 Nobel诺贝尔 Laureates获奖者.
238
656000
3000
是被两个剑桥的诺贝尔奖得主发现的。
11:17
So, we have the mathematics数学 to make neurons神经元 come alive.
239
659000
3000
我们又让神经元活过来的数学。
11:20
We also have the mathematics数学 to describe描述
240
662000
2000
我们也有
11:22
how neurons神经元 collect搜集 information信息,
241
664000
3000
神经元采集信息的数学描述,
11:25
and how they create创建 a little lightning闪电 bolt螺栓
242
667000
3000
以及它们如何制造闪电
11:28
to communicate通信 with each other.
243
670000
2000
来和彼此通讯的。
11:30
And when they get to the synapse突触,
244
672000
2000
当到达突触后,
11:32
what they do is they effectively有效,
245
674000
2000
它们有效的,
11:34
literally按照字面, shock休克 the synapse突触.
246
676000
3000
正确的,震动突触。
11:37
It's like electrical电动 shock休克
247
679000
2000
像是电击
11:39
that releases发布 the chemicals化学制品 from these synapses突触.
248
681000
3000
从这些突触中释放化学物质。
11:42
And we've我们已经 got the mathematics数学 to describe描述 this process处理.
249
684000
3000
我们有数学工具描述这一过程。
11:45
So we can describe描述 the communication通讯 between之间 the neurons神经元.
250
687000
4000
我们可以描述神经元之间的彼此通讯。
11:49
There literally按照字面 are only a handful少数
251
691000
3000
真正的少数
11:52
of equations方程 that you need to simulate模拟
252
694000
2000
数学公式用来仿真
11:54
the activity活动 of the neocortex新皮层.
253
696000
2000
大脑皮层的活动。
11:56
But what you do need is a very big computer电脑.
254
698000
3000
不过你得要一个非常大的计算机。
11:59
And in fact事实 you need one laptop笔记本电脑
255
701000
2000
实际上一台笔记本电脑
12:01
to do all the calculations计算 just for one neuron神经元.
256
703000
3000
只够计算一个神经元用的。
12:04
So you need 10,000 laptops笔记本电脑.
257
706000
2000
所以得要一万台笔记本电脑。
12:06
So where do you go? You go to IBMIBM,
258
708000
2000
所以需要IBM帮助,
12:08
and you get a supercomputer超级计算机, because they know how to take
259
710000
2000
那里有超级计算机,
12:10
10,000 laptops笔记本电脑 and put it into the size尺寸 of a refrigerator冰箱.
260
712000
4000
可以把一万台笔记本电脑压缩到一个冰箱大笑。
12:14
So now we have this Blue蓝色 Gene基因 supercomputer超级计算机.
261
716000
3000
所以我们有蓝色基因超级计算机。
12:17
We can load加载 up all the neurons神经元,
262
719000
2000
我们可以加载所有的神经元,
12:19
each one on to its processor处理器,
263
721000
2000
每个在一个处理器上,
12:21
and fire it up, and see what happens发生.
264
723000
4000
然后运行,看看发生了什么。
12:25
Take the magic魔法 carpet地毯 for a ride.
265
727000
3000
骑上魔毯。
12:28
Here we activate启用 it. And this gives the first glimpse一瞥
266
730000
3000
我们激活它。看一看
12:31
of what is happening事件 in your brain
267
733000
2000
当有刺激的时候
12:33
when there is a stimulation促进.
268
735000
2000
我们的大脑在做什么。
12:35
It's the first view视图.
269
737000
2000
这是第一次看到。
12:37
Now, when you look at that the first time, you think,
270
739000
2000
当你第一次看到的时候,你会想,
12:39
"My god. How is reality现实 coming未来 out of that?"
271
741000
5000
“老天。现实就从这里面产生的?“
12:44
But, in fact事实, you can start开始,
272
746000
3000
实际上,你可以开始
12:47
even though虽然 we haven't没有 trained熟练 this neocortical新皮层 column
273
749000
4000
即使我们没有训练这个皮层列
12:51
to create创建 a specific具体 reality现实.
274
753000
2000
来创建一个特定现实。
12:53
But we can ask, "Where is the rose玫瑰?"
275
755000
4000
不过我们可以问,“玫瑰在哪里?”
12:57
We can ask, "Where is it inside,
276
759000
2000
我们可以问,"在那里,
12:59
if we stimulate刺激 it with a picture图片?"
277
761000
3000
如果我们用一幅图来刺激它?“
13:02
Where is it inside the neocortex新皮层?
278
764000
2000
在大脑皮层哪里?
13:04
Ultimately最终, it's got to be there if we stimulated刺激 it with it.
279
766000
4000
如果我们刺激它,最终它会在那里。
13:08
So, the way that we can look at that
280
770000
2000
我们看待的方法
13:10
is to ignore忽视 the neurons神经元, ignore忽视 the synapses突触,
281
772000
3000
就是忽略神经元,忽略突触,
13:13
and look just at the raw生的 electrical电动 activity活动.
282
775000
2000
只看原始的电活动。
13:15
Because that is what it's creating创建.
283
777000
2000
因为这就是它创建的。
13:17
It's creating创建 electrical电动 patterns模式.
284
779000
2000
创建电模式。
13:19
So when we did this,
285
781000
2000
当我们这么做时,
13:21
we indeed确实, for the first time,
286
783000
2000
我们实际上第一次看到,
13:23
saw these ghost-like幽灵般的 structures结构:
287
785000
3000
看到这些幽灵一样的结构:
13:26
electrical电动 objects对象 appearing出现
288
788000
3000
电物体出现
13:29
within the neocortical新皮层 column.
289
791000
3000
在皮层列中。
13:32
And it's these electrical电动 objects对象
290
794000
3000
这些电物体
13:35
that are holding保持 all the information信息 about
291
797000
3000
控制了所有刺激它的
13:38
whatever随你 stimulated刺激 it.
292
800000
3000
信息。
13:41
And then when we zoomed放大 into this,
293
803000
2000
当我们放大的时候,
13:43
it's like a veritable名副其实 universe宇宙.
294
805000
4000
确实像个宇宙。
13:47
So the next下一个 step
295
809000
2000
下面一步是
13:49
is just to take these brain coordinates坐标
296
811000
4000
提出这些大脑中的坐标
13:53
and to project项目 them into perceptual知觉的 space空间.
297
815000
4000
投射的知觉空间中。
13:57
And if you do that,
298
819000
2000
如果你这样做,
13:59
you will be able能够 to step inside
299
821000
2000
你就可以走进
14:01
the reality现实 that is created创建
300
823000
2000
所创造的现实中
14:03
by this machine,
301
825000
2000
由这个机器创造的,
14:05
by this piece of the brain.
302
827000
3000
通过这一块大脑。
14:08
So, in summary概要,
303
830000
2000
总的来说,
14:10
I think that the universe宇宙 may可能 have --
304
832000
2000
我认为宇宙可以
14:12
it's possible可能 --
305
834000
2000
可能
14:14
evolved进化 a brain to see itself本身,
306
836000
3000
演化出能看到自己的大脑,
14:17
which哪一个 may可能 be a first step in becoming变得 aware知道的 of itself本身.
307
839000
5000
这是意识到自身的第一步。
14:22
There is a lot more to do to test测试 these theories理论,
308
844000
2000
还有很多需要做的来测试这个理论,
14:24
and to test测试 any other theories理论.
309
846000
3000
以及其他理论。
14:27
But I hope希望 that you are at least最小 partly部分地 convinced相信
310
849000
3000
不过我希望你可以至少部分的相信
14:30
that it is not impossible不可能 to build建立 a brain.
311
852000
3000
建造大脑不是不可能的。
14:33
We can do it within 10 years年份,
312
855000
2000
我们可以在10年内完成,
14:35
and if we do succeed成功,
313
857000
2000
如果我们成功了,
14:37
we will send发送 to TEDTED, in 10 years年份,
314
859000
2000
10年内我们会发到TED,
14:39
a hologram全息照相 to talk to you. Thank you.
315
861000
3000
一个全息图。谢谢。
14:42
(Applause掌声)
316
864000
6000
(掌声)
Translated by dahong zhang
Reviewed by Yuanxuan Wang

▲Back to top

ABOUT THE SPEAKER
Henry Markram - Neuroscientist
Henry Markram is director of Blue Brain, a supercomputing project that can model components of the mammalian brain to precise cellular detail -- and simulate their activity in 3D. Soon he'll simulate a whole rat brain in real time.

Why you should listen

In the microscopic, yet-uncharted circuitry of the cortex, Henry Markram is perhaps the most ambitious -- and our most promising -- frontiersman. Backed by the extraordinary power of the IBM Blue Gene supercomputing architecture, which can perform hundreds of trillions of calculations per second, he's using complex models to precisely simulate the neocortical column (and its tens of millions of neural connections) in 3D.

Though the aim of Blue Brain research is mainly biomedical, it has been edging up on some deep, contentious philosophical questions about the mind -- "Can a robot think?" and "Can consciousness be reduced to mechanical components?" -- the consequence of which Markram is well aware: Asked by Seed Magazine what a simulation of a full brain might do, he answered, "Everything. I mean everything" -- with a grin.

Now, with a successful proof-of-concept for simulation in hand (the project's first phase was completed in 2007), Markram is looking toward a future where brains might be modeled even down to the molecular and genetic level. Computing power marching rightward and up along the graph of Moore's Law, Markram is sure to be at the forefront as answers to the mysteries of cognition emerge.

More profile about the speaker
Henry Markram | Speaker | TED.com

Data provided by TED.

This site was created in May 2015 and the last update was on January 12, 2020. It will no longer be updated.

We are currently creating a new site called "eng.lish.video" and would be grateful if you could access it.

If you have any questions or suggestions, please feel free to write comments in your language on the contact form.

Privacy Policy

Developer's Blog

Buy Me A Coffee