ABOUT THE SPEAKER
Tom Chatfield - Gaming theorist
Tom Chatfield thinks about games -- what we want from them, what we get from them, and how we might use our hard-wired desire for a gamer's reward to change the way we learn.

Why you should listen

It can be difficult to wrap one's mind around the size and the reach of modern video- and online-game culture. But gaming is not only outstripping more-traditional media in revenue (it overtook music in 2008), it's become a powerful lens to re-examine our culture at large. Tom Chatfield, a longtime gamer, is the arts and books editor at the UK current-affairs magazine Prospect. In his book Fun Inc., he argues that games, with their immersive quests and deeply satisfying (and carefully designed) virtual rewards, are a great place to test new approaches to real-world systems that need a reboot.

More than a game journalist, Chatfield is a game theorist, looking at neurological research on how games engage our pleasure centers -- and then looking at a world where millions of videogame-veteran Generation Z'ers are entering the workforce and the voters' rolls. They're good with complex rule sets; they're used to forming ad hoc groups to reach a goal; and they love to tweak and mod existing systems. What if society harnessed that energy to redefine learning? Or voting? Understanding the psychology of the videogame reward schedule, Chatfield believes, is not only important for understanding the world of our children -- it's a stepping stone to improving our world right now.

More profile about the speaker
Tom Chatfield | Speaker | TED.com
TEDGlobal 2010

Tom Chatfield: 7 ways games reward the brain

汤姆查特菲尔德:游戏奖励大脑的7种方式

Filmed:
1,288,061 views

我们正将游戏性融入生活的诸多方面,花费无数个小时--和金钱--去探索虚拟世界中想象的宝藏。这些是因为什么?正如汤姆查特菲尔德所演示的,游戏正在完美地变为调动大脑参与活动,促使我们保持不断探索的动力
- Gaming theorist
Tom Chatfield thinks about games -- what we want from them, what we get from them, and how we might use our hard-wired desire for a gamer's reward to change the way we learn. Full bio

Double-click the English transcript below to play the video.

00:15
I love video视频 games游戏.
0
0
3000
我爱电子游戏
00:18
I'm also slightly in awe威严 of them.
1
3000
3000
也对它抱有些许敬畏
00:21
I'm in awe威严 of their power功率
2
6000
2000
我敬畏它们
00:23
in terms条款 of imagination想像力, in terms条款 of technology技术,
3
8000
2000
想象力,技术
00:25
in terms条款 of concept概念.
4
10000
2000
概念方面的力量
00:27
But I think, above以上 all,
5
12000
2000
但是最重要的是
00:29
I'm in awe威严 at their power功率
6
14000
2000
我所敬畏它们能够
00:31
to motivate刺激, to compel迫使 us,
7
16000
3000
激励着,迫使着我们
00:34
to transfix刺穿 us,
8
19000
2000
让我们目瞪口呆,
00:36
like really nothing else其他 we've我们已经 ever invented发明
9
21000
3000
这是人类其它发明
00:39
has quite相当 doneDONE before.
10
24000
2000
所不能企及的。
00:41
And I think that we can learn学习 some pretty漂亮 amazing惊人 things
11
26000
3000
我们从观察玩电子游戏
00:44
by looking at how we do this.
12
29000
2000
中学到一些非常了不起的东西
00:46
And in particular特定, I think we can learn学习 things
13
31000
2000
特别是,我想我们能学习关于
00:48
about learning学习.
14
33000
3000
学习的本质
00:51
Now the video视频 games游戏 industry行业
15
36000
2000
现在电子游戏产业
00:53
is far and away the fastest最快的 growing生长
16
38000
2000
超速发展,远远领先于
00:55
of all modern现代 media媒体.
17
40000
2000
所有现代媒体
00:57
From about 10 billion十亿 in 1990,
18
42000
2000
从1990年代的大约100亿美元
00:59
it's worth价值 50 billion十亿 dollars美元 globally全球 today今天,
19
44000
3000
到今天在全球范围内值500亿美元
01:02
and it shows节目 no sign标志 of slowing减缓 down.
20
47000
3000
它没有显示出放缓的迹象
01:05
In four years'年份' time,
21
50000
2000
在未来的四年里
01:07
it's estimated预计 it'll它会 be worth价值 over 80 billion十亿 dollars美元.
22
52000
3000
据估计它的价值会超过800亿美元
01:10
That's about three times the recorded记录 music音乐 industry行业.
23
55000
3000
这大约是唱片行业的三倍
01:13
This is pretty漂亮 stunning令人惊叹,
24
58000
2000
真的很惊人
01:15
but I don't think it's the most telling告诉 statistic统计 of all.
25
60000
3000
但我不认为这就是所有统计数据中最据说服力的
01:18
The thing that really amazes惊讶 me
26
63000
2000
最使我惊讶的
01:20
is that, today今天,
27
65000
2000
就是,今天
01:22
people spend about
28
67000
2000
人们每年花费
01:24
eight billion十亿 real真实 dollars美元 a year
29
69000
3000
大约80亿美元现金
01:27
buying购买 virtual虚拟 items项目
30
72000
2000
用于购买仅存于
01:29
that only exist存在
31
74000
2000
电子游戏里的
01:31
inside video视频 games游戏.
32
76000
3000
虚拟iTunes服务
01:34
This is a screenshot截图 from the virtual虚拟 game游戏 world世界, Entropia安特罗皮亚 Universe宇宙.
33
79000
3000
这是一个虚拟游戏世界的截图,来自《安特罗皮亚世界》
01:37
Earlier this year,
34
82000
2000
今年的早些时候
01:39
a virtual虚拟 asteroid小行星 in it
35
84000
2000
在里面一个虚拟的小行星
01:41
sold出售 for 330,000 real真实 dollars美元.
36
86000
4000
卖到了33万美元现金
01:45
And this
37
90000
2000
这是
01:47
is a Titan泰坦 class ship
38
92000
3000
是一艘泰坦級的宇宙飛船
01:50
in the space空间 game游戏, EVE前夕 Online线上.
39
95000
2000
来自太空游戏《星战前夜Online》
01:52
And this virtual虚拟 object目的
40
97000
2000
这个虚拟的物体
01:54
takes 200 real真实 people
41
99000
2000
需要200个真人
01:56
about 56 days of real真实 time to build建立,
42
101000
3000
大约56个天建成
01:59
plus countless无数 thousands数千 of hours小时
43
104000
3000
还加上此前无数成千小时
02:02
of effort功夫 before that.
44
107000
2000
的前期工作
02:04
And yet然而, many许多 of these get built内置.
45
109000
3000
類似這樣被造出的還有很多
02:07
At the other end结束 of the scale规模,
46
112000
2000
而另一方面
02:09
the game游戏 Farmville法姆维尔 that you may可能 well have heard听说 of,
47
114000
3000
游戏《虚拟农场》,你也许早有耳闻
02:12
has 70 million百万 players玩家
48
117000
2000
在全世界范围内
02:14
around the world世界
49
119000
2000
拥有700亿玩家
02:16
and most of these players玩家
50
121000
2000
玩家中的绝大多数
02:18
are playing播放 it almost几乎 every一切 day.
51
123000
2000
几乎每天都在玩
02:20
This may可能 all sound声音
52
125000
2000
这也许听起来
02:22
really quite相当 alarming惊人 to some people,
53
127000
2000
对一些人来说,这是一个很令人警惕的
02:24
an index指数 of something worrying令人担忧
54
129000
2000
令人担忧的
02:26
or wrong错误 in society社会.
55
131000
2000
社会问题的象征
02:28
But we're here for the good news新闻,
56
133000
2000
但我们在这里讨论一些好消息
02:30
and the good news新闻 is
57
135000
2000
好消息就是
02:32
that I think we can explore探索
58
137000
2000
我们可以去探索
02:34
why this very real真实 human人的 effort功夫,
59
139000
3000
为什么这种真实的人类劳动
02:37
this very intense激烈 generation of value, is occurring发生.
60
142000
4000
这么巨大的价值的创造会得以出现
02:41
And by answering回答 that question,
61
146000
2000
借回答这个问题
02:43
I think we can take something
62
148000
2000
我觉得我们可以从中得到
02:45
extremely非常 powerful强大 away.
63
150000
2000
极其强大的信息。
02:47
And I think the most interesting有趣 way
64
152000
2000
我想最有趣的方式
02:49
to think about how all this is going on
65
154000
2000
思考这些问题的角度
02:51
is in terms条款 of rewards奖励.
66
156000
2000
就是奖赏。
02:53
And specifically特别, it's in terms条款
67
158000
3000
更具体来说,
02:56
of the very intense激烈 emotional情绪化 rewards奖励
68
161000
2000
就是非常密集的情感奖赏,
02:58
that playing播放 games游戏 offers报价 to people
69
163000
2000
通过玩游戏提供给人们,
03:00
both individually个别地
70
165000
2000
既是个人的,
03:02
and collectively.
71
167000
2000
也有集体的。
03:04
Now if we look at what's going on in someone's谁家 head
72
169000
2000
如果我们观察一下某人的大脑,
03:06
when they are being存在 engaged订婚,
73
171000
2000
当他们忙碌时是怎样运作的,
03:08
two quite相当 different不同 processes流程 are occurring发生.
74
173000
3000
两个相当不同的进程同时发生着。
03:11
On the one hand, there's the wanting希望 processes流程.
75
176000
3000
在一方面,有一个期望过程
03:14
This is a bit like ambition志向 and drive驾驶 -- I'm going to do that. I'm going to work hard.
76
179000
3000
有点像野心和驱动力--我要去做那件事,我要努力
03:17
On the other hand, there's the liking喜欢 processes流程,
77
182000
2000
在另一方面,有趣味的过程
03:19
fun开玩笑 and affection感情
78
184000
2000
乐趣,感情
03:21
and delight
79
186000
2000
和愉悦--
03:23
and an enormous巨大 flying飞行 beast with an orc兽人 on the back.
80
188000
2000
一个庞大的飞行动物背上骑着兽人
03:25
It's a really great image图片. It's pretty漂亮 cool.
81
190000
2000
真是一个绝佳的图像,真的太酷了
03:27
It's from the game游戏 World世界 of Warcraft魔兽 with more than 10 million百万 players玩家 globally全球,
82
192000
3000
它来自游戏《魔兽世界》,在全球拥有超过100万玩家
03:30
one of whom is me, another另一个 of whom is my wife妻子.
83
195000
3000
其中有一个就是我,还有一个是我妻子
03:33
And this kind of a world世界,
84
198000
2000
这是一种世界
03:35
this vast广大 flying飞行 beast you can ride around,
85
200000
2000
有大量的飞行动物你可以骑着到处跑
03:37
shows节目 why games游戏 are so very good
86
202000
2000
而这正显示出为什么游戏是多么善于
03:39
at doing both the wanting希望 and the liking喜欢.
87
204000
3000
让人同时做要做和喜欢做的事。
03:42
Because it's very powerful强大. It's pretty漂亮 awesome真棒.
88
207000
2000
因为它功能强大,它棒极了
03:44
It gives you great powers权力.
89
209000
2000
它给予你强大的力量
03:46
Your ambition志向 is satisfied满意, but it's very beautiful美丽.
90
211000
3000
你的野心被满足,同时它也是美好的
03:49
It's a very great pleasure乐趣 to fly around.
91
214000
3000
能够飞来飞去多妙啊
03:52
And so these combine结合 to form形成
92
217000
2000
所以所有这些东西结合起来构造了
03:54
a very intense激烈 emotional情绪化 engagement订婚.
93
219000
2000
一个非常强烈的情感活动
03:56
But this isn't the really interesting有趣 stuff东东.
94
221000
3000
但这并非真正有趣的东西
03:59
The really interesting有趣 stuff东东 about virtuality虚拟性
95
224000
2000
真正有趣的东西是它的虚拟性
04:01
is what you can measure测量 with it.
96
226000
2000
是用它你能度量一些东西
04:03
Because what you can measure测量 in virtuality虚拟性
97
228000
3000
因为在虚拟世界你可以度量
04:06
is everything.
98
231000
2000
任何东西
04:08
Every一切 single thing that every一切 single person
99
233000
2000
在游戏里玩过的每个人
04:10
who's谁是 ever played发挥 in a game游戏 has ever doneDONE can be measured测量.
100
235000
3000
做的每件事情,都可以被测量
04:13
The biggest最大 games游戏 in the world世界 today今天
101
238000
2000
目前全世界最大的游戏
04:15
are measuring测量 more than one billion十亿 points of data数据
102
240000
4000
所测量的数据超过数十亿份
04:19
about their players玩家, about what everybody每个人 does --
103
244000
2000
关于它的玩家,关于每个人的行动
04:21
far more detail详情 than you'd ever get from any website网站.
104
246000
3000
远远超过你从任何一个网站上所获得的细节
04:24
And this allows允许 something very special特别
105
249000
3000
这就使一些特殊的东西
04:27
to happen发生 in games游戏.
106
252000
2000
在游戏中发生
04:29
It's something called the reward奖励 schedule时间表.
107
254000
3000
这些东西名为奖励量表
04:32
And by this, I mean looking
108
257000
2000
说到这,我的意思是
04:34
at what millions百万 upon millions百万 of people have doneDONE
109
259000
2000
看着亿万人做了什么
04:36
and carefully小心 calibrating校准 the rate,
110
261000
2000
然后仔细校准在游戏中的
04:38
the nature性质, the type类型, the intensity强度 of rewards奖励 in games游戏
111
263000
3000
频率,性质,类型和奖励力度
04:41
to keep them engaged订婚
112
266000
2000
以保持他们参与
04:43
over staggering踉跄 amounts of time and effort功夫.
113
268000
3000
以这惊人数量的时间和努力
04:46
Now, to try and explain说明 this
114
271000
2000
现在,为了尝试做些
04:48
in sort分类 of real真实 terms条款,
115
273000
3000
实例性解释
04:51
I want to talk about a kind of task任务
116
276000
2000
我想谈谈在很多游戏里
04:53
that might威力 fall秋季 to you in so many许多 games游戏.
117
278000
2000
一种任务极可能降临到你身上
04:55
Go and get a certain某些 amount of a certain某些 little game-y游戏-Y item项目.
118
280000
3000
去寻找一定数量的某些游戏小玩意
04:58
Let's say, for the sake清酒 of argument论据,
119
283000
2000
比方说,为了便于讨论
05:00
my mission任务 is to get 15 pies馅饼
120
285000
3000
我的任务是去找15个馅饼
05:03
and I can get 15 pies馅饼
121
288000
3000
我可以得到15个馅饼
05:06
by killing谋杀 these cute可爱, little monsters怪物.
122
291000
2000
就靠去杀掉这些可爱的小怪物
05:08
Simple简单 game游戏 quest寻求.
123
293000
2000
很简单的游戏要求
05:10
Now you can think about this, if you like,
124
295000
2000
现在你可以把这个当做,如果你愿意
05:12
as a problem问题 about boxes盒子.
125
297000
2000
一个关于箱子的问题
05:14
I've got to keep opening开盘 boxes盒子.
126
299000
2000
我要一直打开箱子
05:16
I don't know what's inside them until直到 I open打开 them.
127
301000
3000
在打开它们之前我并不知道里面有什么
05:19
And I go around opening开盘 box after box until直到 I've got 15 pies馅饼.
128
304000
3000
所以我四处走,打开一个又一个箱子,直到我得到15个饼
05:22
Now, if you take a game游戏 like Warcraft魔兽,
129
307000
2000
现在,如果你玩像魔兽这类游戏
05:24
you can think about it, if you like,
130
309000
2000
你可以把它当做,如果你愿意的话
05:26
as a great box-opening盒子打开 effort功夫.
131
311000
3000
一个庞大的开箱子工程
05:29
The game's游戏 just trying to get people to open打开 about a million百万 boxes盒子,
132
314000
3000
游戏只是尽可能地让人们打开成千上万的箱子
05:32
getting得到 better and better stuff东东 in them.
133
317000
2000
从中获得越来越好的装备
05:34
This sounds声音 immensely非常 boring无聊
134
319000
3000
这听起来非常无聊
05:37
but games游戏 are able能够
135
322000
2000
但游戏却有能力
05:39
to make this process处理
136
324000
2000
将这一过程变得
05:41
incredibly令人难以置信 compelling引人注目.
137
326000
2000
异常地有吸引力
05:43
And the way they do this
138
328000
2000
而他们做到这些的方法就是
05:45
is through通过 a combination组合 of probability可能性 and data数据.
139
330000
3000
通过结合概率和数理统计
05:48
Let's think about probability可能性.
140
333000
2000
让我们先想想概率吧
05:50
If we want to engage从事 someone有人
141
335000
2000
如果我想让某人参与进
05:52
in the process处理 of opening开盘 boxes盒子 to try and find pies馅饼,
142
337000
3000
这个为了寻找馅饼去开箱子的过程中
05:55
we want to make sure it's neither也不 too easy简单,
143
340000
2000
我想要保证这一过程既不太简单
05:57
nor也不 too difficult, to find a pie馅饼.
144
342000
2000
也不会太难
05:59
So what do you do? Well, you look at a million百万 people --
145
344000
2000
所以你会怎么做?好的,你看着一百万人
06:01
no, 100 million百万 people, 100 million百万 box openers开罐器 --
146
346000
3000
不,一亿人,一亿个开箱者
06:04
and you work out, if you make the pie馅饼 rate
147
349000
3000
然后你计算,如果你使得到馅饼的几率成
06:07
about 25 percent百分 --
148
352000
2000
大约25%--
06:09
that's neither也不 too frustrating泄气, nor也不 too easy简单.
149
354000
3000
那就既不太让人丧气,又不会太简单
06:12
It keeps保持 people engaged订婚.
150
357000
2000
它能使人持续参与
06:14
But of course课程, that's not all you do -- there's 15 pies馅饼.
151
359000
3000
当然,这还不是全部, 这只是 15 个馅饼。
06:17
Now, I could make a game游戏 called PiecraftPiecraft,
152
362000
2000
现在,我可以做一个游戏名为《馅饼争霸》
06:19
where all you had to do was get a million百万 pies馅饼
153
364000
2000
在里面你要做的所有事就是得到一百万个馅饼
06:21
or a thousand pies馅饼.
154
366000
2000
或者一千个馅饼
06:23
That would be very boring无聊.
155
368000
2000
那会变得很无趣
06:25
Fifteen十五 is a pretty漂亮 optimal最佳 number.
156
370000
2000
15是个最佳的数字
06:27
You find that -- you know, between之间 five and 20
157
372000
2000
你得到--你知道,在5和20之间
06:29
is about the right number for keeping保持 people going.
158
374000
2000
这是维持人们进行的恰当的数字
06:31
But we don't just have pies馅饼 in the boxes盒子.
159
376000
2000
但我们在箱子里找到的不只是馅饼。
06:33
There's 100 percent百分 up here.
160
378000
2000
这点我敢百分百肯定。
06:35
And what we do is make sure that every一切 time a box is opened打开,
161
380000
3000
我们要做的就是保证每次一个箱子被打开
06:38
there's something in it, some little reward奖励
162
383000
2000
都有一些东西在里面,一些小奖励
06:40
that keeps保持 people progressing进展 and engaged订婚.
163
385000
2000
它能促使人们前进并参与活动
06:42
In most adventure冒险 games游戏,
164
387000
2000
在大多数冒险游戏中
06:44
it's a little bit in-game在游戏中 currency货币, a little bit experience经验.
165
389000
3000
会是一些游戏币,一些经验值
06:47
But we don't just do that either.
166
392000
2000
但我们也并不只做这些
06:49
We also say there's going to be loads负载 of other items项目
167
394000
2000
我们还说将会加载其他物品
06:51
of varying不同 qualities气质 and levels水平 of excitement激动.
168
396000
2000
它们具备各种属性和等级
06:53
There's going to be a 10 percent百分 chance机会 you get a pretty漂亮 good item项目.
169
398000
3000
你得到一个非常好的东西的几率是百分之十
06:56
There's going to be a 0.1 percent百分 chance机会
170
401000
2000
将会有千分之一的几率
06:58
you get an absolutely绝对 awesome真棒 item项目.
171
403000
3000
你能得到一个绝对超棒的物品
07:01
And each of these rewards奖励 is carefully小心 calibrated校准 to the item项目.
172
406000
3000
每一个奖励都被仔细和物品校准
07:04
And also, we say,
173
409000
2000
并且,我们假设
07:06
"Well, how many许多 monsters怪物? Should I have the entire整个 world世界 full充分 of a billion十亿 monsters怪物?"
174
411000
3000
“好的,需要多少怪物?我要用十亿个怪物把整个世界装满吗?”
07:09
No, we want one or two monsters怪物 on the screen屏幕 at any one time.
175
414000
3000
不,我们每次在屏幕场景中放一或两个怪物
07:12
So I'm drawn on. It's not too easy简单, not too difficult.
176
417000
3000
所以我描述了,这既不很简单,也不很难
07:15
So all this is very powerful强大.
177
420000
2000
所以这一切都非常有力
07:17
But we're in virtuality虚拟性. These aren't real真实 boxes盒子.
178
422000
3000
但我们在虚拟世界里,那些不是真的箱子
07:20
So we can do
179
425000
2000
所以我们可以做
07:22
some rather amazing惊人 things.
180
427000
2000
一些更加令人惊奇的事
07:24
We notice注意, looking at all these people opening开盘 boxes盒子,
181
429000
4000
我们发现,看着所有这些人打开箱子
07:28
that when people get to about 13 out of 15 pies馅饼,
182
433000
3000
当人们得到大约13到15个馅饼的时候
07:31
their perception知觉 shifts转变, they start开始 to get a bit bored无聊, a bit testy性急的.
183
436000
3000
他们的感觉变化了,他们开始觉得有点无趣,有点急躁
07:34
They're not rational合理的 about probability可能性.
184
439000
2000
他们对待概率并不理性
07:36
They think this game游戏 is unfair不公平.
185
441000
2000
他们觉得这个游戏不公平
07:38
It's not giving me my last two pies馅饼. I'm going to give up.
186
443000
2000
它仍没有给我最后两个馅饼,我要放弃了
07:40
If they're real真实 boxes盒子, there's not much we can do,
187
445000
2000
如果这些箱子都是真的的,我们就无能为力
07:42
but in a game游戏 we can just say, "Right, well.
188
447000
2000
但是在游戏中我们可以就这样说,“是的,好吧”
07:44
When you get to 13 pies馅饼, you've got 75 percent百分 chance机会 of getting得到 a pie馅饼 now."
189
449000
4000
当你得到13个馅饼的时候,你得到馅饼的机率会成为75%
07:48
Keep you engaged订婚. Look at what people do --
190
453000
2000
让你继续前进,观察人们如何玩游戏— —
07:50
adjust调整 the world世界 to match比赛 their expectation期望.
191
455000
2000
调整世界以符合他们的期望
07:52
Our games游戏 don't always do this.
192
457000
2000
我们的游戏并不一直做这些事情
07:54
And one thing they certainly当然 do at the moment时刻
193
459000
2000
但眼下有一件事情是他们必定做的
07:56
is if you got a 0.1 percent百分 awesome真棒 item项目,
194
461000
3000
就是,如果你得到了千分之一几率的超棒物品
07:59
they make very sure another另一个 one doesn't appear出现 for a certain某些 length长度 of time
195
464000
3000
它们绝对保证在一段时间里不会出现另一个
08:02
to keep the value, to keep it special特别.
196
467000
2000
以保持它的价值,保证它的独特性
08:04
And the point is really
197
469000
2000
关键在于
08:06
that we evolved进化 to be satisfied满意 by the world世界
198
471000
2000
我们进化去适应世界的需要
08:08
in particular特定 ways方法.
199
473000
2000
以一种特殊的方式
08:10
Over tens and hundreds数以百计 of thousands数千 of years年份,
200
475000
3000
历经了几千几万年
08:13
we evolved进化 to find certain某些 things stimulating刺激,
201
478000
2000
我们进化去找一些刺激的事
08:15
and as very intelligent智能, civilized文明 beings众生,
202
480000
2000
作为高等智能,社会化的人
08:17
we're enormously巨大 stimulated刺激 by problem问题 solving and learning学习.
203
482000
3000
我们受到解决问题和学习过程极大地激发
08:20
But now, we can reverse相反 engineer工程师 that
204
485000
2000
但现在,我们可以逆反这一过程
08:22
and build建立 worlds世界
205
487000
2000
并建造世界
08:24
that expressly明确地 tick our evolutionary发展的 boxes盒子.
206
489000
3000
明确地对我们的进化发展进行评估
08:27
So what does all this mean in practice实践?
207
492000
2000
所有这些对现实有什么意义?
08:29
Well, I've come up
208
494000
2000
好的,我将提出
08:31
with seven things
209
496000
2000
7件事
08:33
that, I think, show显示
210
498000
2000
我觉得能体现
08:35
how you can take these lessons教训 from games游戏
211
500000
2000
从游戏中你怎样学到这些经验
08:37
and use them outside of games游戏.
212
502000
3000
然后把它们运用到游戏之外
08:40
The first one is very simple简单:
213
505000
2000
首先看一个简单的:
08:42
experience经验 bars酒吧 measuring测量 progress进展 --
214
507000
2000
用经验值条量度进程— —
08:44
something that's been talked about brilliantly出色
215
509000
2000
它曾经被人精彩地讨论过
08:46
by people like Jesse杰西 Schell谢尔 earlier this year.
216
511000
3000
比如杰西谢尔,在今年的早些时候
08:49
It's already已经 been doneDONE at the University大学 of Indiana印地安那 in the States状态, among其中 other places地方.
217
514000
3000
它已经被美国印第安纳大学做到了,也在其他的地方
08:52
It's the simple简单 idea理念 that instead代替 of grading等级 people incrementally增量
218
517000
3000
这个朴素的理念是,取代用零碎的方式
08:55
in little bits and pieces,
219
520000
2000
将人们逐步分级
08:57
you give them one profile轮廓 character字符 avatar头像
220
522000
2000
你给他们一个人物轮廓
08:59
which哪一个 is constantly经常 progressing进展
221
524000
2000
一个可以不断进步的
09:01
in tiny, tiny, tiny little increments增量 which哪一个 they feel are their own拥有.
222
526000
3000
以非常,非常小的增量,一种他们感觉是自己的东西
09:04
And everything comes towards that,
223
529000
2000
然后所有事都向其发展
09:06
and they watch it creeping爬行 up, and they own拥有 that as it goes along沿.
224
531000
3000
他们看着其攀升,然后他们的自我也随之提升
09:09
Second第二, multiple long and short-term短期 aims目标 --
225
534000
2000
第二点,长期与短期目标
09:11
5,000 pies馅饼, boring无聊,
226
536000
2000
5000个馅饼,无趣
09:13
15 pies馅饼, interesting有趣.
227
538000
2000
15个,有趣
09:15
So, you give people
228
540000
2000
所以你给人们
09:17
lots and lots of different不同 tasks任务.
229
542000
2000
很多很多不同的任务
09:19
You say, it's about
230
544000
2000
你说,这个是
09:21
doing 10 of these questions问题,
231
546000
2000
解决其中的10个问题
09:23
but another另一个 task任务
232
548000
2000
但另一个任务
09:25
is turning车削 up to 20 classes on time,
233
550000
2000
是在规定时间里上升20个等级
09:27
but another另一个 task任务 is collaborating合作 with other people,
234
552000
3000
另一个任务是和其他人一起合作的
09:30
another另一个 task任务 is showing展示 you're working加工 five times,
235
555000
3000
另一个任务要求你工作量提高五倍
09:33
another另一个 task任务 is hitting this particular特定 target目标.
236
558000
2000
还有一个任务是达到某个特定目标
09:35
You break打破 things down into these calibrated校准 slices
237
560000
3000
你把事情分成这些可计量的小部分
09:38
that people can choose选择 and do in parallel平行
238
563000
2000
人们可以选择然后同时进行
09:40
to keep them engaged订婚
239
565000
2000
以让他们持续参与
09:42
and that you can use to point them
240
567000
2000
并将它们和
09:44
towards individually个别地 beneficial有利 activities活动.
241
569000
3000
个人的获利行为挂钩。
09:48
Third第三, you reward奖励 effort功夫.
242
573000
2000
第三,奖励成就
09:50
It's your 100 percent百分 factor因子. Games游戏 are brilliant辉煌 at this.
243
575000
3000
这是你百分之百的要素,游戏在此很明确
09:53
Every一切 time you do something, you get credit信用; you get a credit信用 for trying.
244
578000
3000
每次你做一些事,你得到功劳,你因尽力而为获得认可
09:56
You don't punish惩治 failure失败. You reward奖励 every一切 little bit of effort功夫 --
245
581000
3000
你不惩罚失败,你奖励每一个小小的努力
09:59
a little bit of gold, a little bit of credit信用. You've doneDONE 20 questions问题 -- tick.
246
584000
3000
你的一点金子,你的一点功劳--你解决了20个问题--打上勾
10:02
It all feeds供稿 in as minute分钟 reinforcement加强.
247
587000
3000
这些都是通过小小的鼓励实现的。
10:05
Fourth第四, feedback反馈.
248
590000
2000
第四,反馈
10:07
This is absolutely绝对 crucial关键,
249
592000
2000
这绝对关键
10:09
and virtuality虚拟性 is dazzling令人眼花缭乱 at delivering交付 this.
250
594000
2000
虚拟世界以眼花缭乱的方式传递这一信息
10:11
If you look at some of the most intractable棘手 problems问题 in the world世界 today今天
251
596000
3000
如果你看看今天世界上一些最棘手的问题
10:14
that we've我们已经 been hearing听力 amazing惊人 things about,
252
599000
2000
我们所听到的一些惊人的事情
10:16
it's very, very hard for people to learn学习
253
601000
3000
非常,非常难为人们所领会
10:19
if they cannot不能 link链接 consequences后果 to actions行动.
254
604000
3000
如果他们不能把结果与行为连接起来
10:22
Pollution污染, global全球 warming变暖, these things --
255
607000
2000
污染,全球变暖,这些事情
10:24
the consequences后果 are distant遥远 in time and space空间.
256
609000
2000
结果的产生在时间和空间上都是久远的
10:26
It's very hard to learn学习, to feel a lesson.
257
611000
2000
这非常难以学习或者体会经验
10:28
But if you can model模型 things for people,
258
613000
2000
但是如果你能模拟东西给人们看
10:30
if you can give things to people that they can manipulate操作
259
615000
2000
如果你给予人们一些东西,他们可以操作
10:32
and play with and where the feedback反馈 comes,
260
617000
2000
可以演示,可以收集反馈
10:34
then they can learn学习 a lesson, they can see,
261
619000
2000
人们就可以学到经验,他们能看
10:36
they can move移动 on, they can understand理解.
262
621000
3000
他们能行动,他们能明白
10:39
And fifth第五,
263
624000
2000
第五点
10:41
the element元件 of uncertainty不确定.
264
626000
2000
不确定性因素
10:43
Now this is the neurological神经 goldmine金矿,
265
628000
3000
现在这是个神经学金矿
10:46
if you like,
266
631000
2000
如果你愿意的话
10:48
because a known已知 reward奖励
267
633000
2000
因为一个已知的奖励
10:50
excites的激励 people,
268
635000
2000
会激发人们
10:52
but what really gets得到 them going
269
637000
2000
但是真正能让他们前进下去的
10:54
is the uncertain不确定 reward奖励,
270
639000
2000
是未知的奖励
10:56
the reward奖励 pitched倾斜的 at the right level水平 of uncertainty不确定,
271
641000
2000
带着适当不确定性的奖励
10:58
that they didn't quite相当 know whether是否 they were going to get it or not.
272
643000
3000
也就是人们不知道是否能得到的奖励
11:01
The 25 percent百分. This lights灯火 the brain up.
273
646000
3000
比如25%的获奖机率,会使大脑兴奋
11:04
And if you think about
274
649000
2000
如果你想把它
11:06
using运用 this in testing测试,
275
651000
2000
运用到测验中
11:08
in just introducing引入 control控制 elements分子 of randomness随机性
276
653000
2000
引入控制随机变量
11:10
in all forms形式 of testing测试 and training训练,
277
655000
2000
到任何形式的检测和训练里
11:12
you can transform转变 the levels水平 of people's人们 engagement订婚
278
657000
2000
你能够改变人们的投入程度
11:14
by tapping窃听 into this very powerful强大
279
659000
2000
通过引进这种非常有力的
11:16
evolutionary发展的 mechanism机制.
280
661000
2000
进化机制
11:18
When we don't quite相当 predict预测 something perfectly完美,
281
663000
2000
当我们不能完全预测某事时
11:20
we get really excited兴奋 about it.
282
665000
2000
我们为之十分兴奋
11:22
We just want to go back and find out more.
283
667000
2000
我们就想追溯出更多东西
11:24
As you probably大概 know, the neurotransmitter神经递质
284
669000
2000
你知道, 神经递质
11:26
associated相关 with learning学习 is called dopamine多巴胺.
285
671000
2000
伴随学习产生的神经递质叫做多巴胺。
11:28
It's associated相关 with reward-seeking寻求奖赏 behavior行为.
286
673000
3000
它与寻找奖励的行为相关联
11:31
And something very exciting扣人心弦 is just beginning开始 to happen发生
287
676000
3000
有些非常激动人心的事要开始发生在
11:34
in places地方 like the University大学 of Bristol布里斯托尔 in the U.K.,
288
679000
3000
像英国布里斯托尔大学这样的地方
11:37
where we are beginning开始 to be able能够 to model模型 mathematically数学
289
682000
3000
那里我们开始能用数学模型
11:40
dopamine多巴胺 levels水平 in the brain.
290
685000
2000
模拟大脑中多巴胺的水平
11:42
And what this means手段 is we can predict预测 learning学习,
291
687000
2000
这意味着我们能够预测学习过程
11:44
we can predict预测 enhanced增强 engagement订婚,
292
689000
3000
我们能预测加强型活动
11:47
these windows视窗, these windows视窗 of time,
293
692000
2000
这些机会期,这段时间
11:49
in which哪一个 the learning学习 is taking服用 place地点 at an enhanced增强 level水平.
294
694000
3000
学习的过程在其中一个更高的水平上进行
11:52
And two things really flow from this.
295
697000
2000
随之而来的是两样东西
11:54
The first has to do with memory记忆,
296
699000
2000
首先一定是关于记忆
11:56
that we can find these moments瞬间.
297
701000
2000
我们能发现这些时候
11:58
When someone有人 is more likely容易 to remember记得,
298
703000
2000
当一些人更容易记忆时
12:00
we can give them a nugget金块 in a window窗口.
299
705000
2000
我们可以给他们提供机会期这一宝贵的资源
12:02
And the second第二 thing is confidence置信度,
300
707000
2000
第二样东西是自信
12:04
that we can see how game-playing玩游戏 and reward奖励 structures结构
301
709000
2000
我们能看见游戏的运行和奖励结构
12:06
make people braver勇敢, make them more willing愿意 to take risks风险,
302
711000
3000
如何使人更勇敢,让他们更愿意去冒险
12:09
more willing愿意 to take on difficulty困难,
303
714000
2000
更愿意承担困难
12:11
harder更难 to discourage不鼓励.
304
716000
2000
更难被打击
12:13
This can all seem似乎 very sinister险恶.
305
718000
2000
这些都看来好像很险恶
12:15
But you know, sort分类 of "our brains大脑 have been manipulated操纵; we're all addicts瘾君子."
306
720000
2000
但你知道,有些“我们的大脑被控制了,我们都沉迷了”的说法
12:17
The word "addiction" is thrown抛出 around.
307
722000
2000
沉迷这个字眼总萦绕周围
12:19
There are real真实 concerns关注 there.
308
724000
2000
那有些真正的忧虑
12:21
But the biggest最大 neurological神经 turn-on打开 for people
309
726000
2000
但激发人类神经的最大因素是
12:23
is other people.
310
728000
2000
他人
12:25
This is what really excites的激励 us.
311
730000
3000
这才是真正让我们兴奋的
12:28
In reward奖励 terms条款, it's not money;
312
733000
2000
在奖励方面,不是金钱
12:30
it's not being存在 given特定 cash现金 -- that's nice不错 --
313
735000
3000
不是获得现金--那也不错--
12:33
it's doing stuff东东 with our peers同行,
314
738000
2000
而是与我们的同伴一起共事
12:35
watching观看 us, collaborating合作 with us.
315
740000
2000
看着我们,与我们合作
12:37
And I want to tell you a quick story故事 about 1999 --
316
742000
2000
我想说一个小故事,在1999年--
12:39
a video视频 game游戏 called EverQuest无尽的任务.
317
744000
2000
有一个游戏名为《无尽的任务》
12:41
And in this video视频 game游戏,
318
746000
2000
在这个游戏中
12:43
there were two really big dragons小龙, and you had to team球队 up to kill them --
319
748000
3000
有两条巨大的龙,而你需要组建起队伍去屠戮它们--
12:46
42 people, up to 42 to kill these big dragons小龙.
320
751000
3000
42人--总共42人去屠龙
12:49
That's a problem问题
321
754000
2000
那是个问题
12:51
because they dropped下降 two or three decent正经 items项目.
322
756000
3000
因为他们落下了两到三个合适的项目
12:54
So players玩家 addressed解决 this problem问题
323
759000
3000
所以玩家为了设法解决这个问题
12:57
by spontaneously自发 coming未来 up with a system系统
324
762000
2000
自发地形成了一个系统
12:59
to motivate刺激 each other,
325
764000
2000
公平地,公开地
13:01
fairly相当 and transparently透明.
326
766000
2000
激励彼此
13:03
What happened发生 was, they paid支付 each other a virtual虚拟 currency货币
327
768000
3000
事情是这样的,他们相互偿付一种虚拟的货币
13:06
they called "dragon kill points."
328
771000
3000
他们称之为弑龙点
13:09
And every一切 time you turned转身 up to go on a mission任务,
329
774000
2000
每次你出现去进行一项任务
13:11
you got paid支付 in dragon kill points.
330
776000
2000
你被得到弑龙点数作为报酬
13:13
They tracked追踪 these on a separate分离 website网站.
331
778000
2000
他们在另一个网站上对此进行追踪
13:15
So they tracked追踪 their own拥有 private私人的 currency货币,
332
780000
2000
所以玩家们能搜索自己私人的货币
13:17
and then players玩家 could bid出价 afterwards之后
333
782000
2000
于是他们可以在此之后竞价
13:19
for cool items项目 they wanted --
334
784000
2000
以获得他们想要的东西--
13:21
all organized有组织的 by the players玩家 themselves他们自己.
335
786000
2000
这些所有都由玩家自己安排
13:23
Now the staggering踉跄 system系统, not just that this worked工作 in EverQuest无尽的任务,
336
788000
3000
现在这个惊人的系统已经不只是像《无尽的任务》那样了
13:26
but that today今天, a decade on,
337
791000
2000
在今天,十年之后
13:28
every一切 single video视频 game游戏 in the world世界 with this kind of task任务
338
793000
3000
每个具有这种任务的单机游戏
13:31
uses使用 a version of this system系统 --
339
796000
2000
使用这样一个版本的系统--
13:33
tens of millions百万 of people.
340
798000
2000
依靠成千上万的人
13:35
And the success成功 rate
341
800000
2000
而成功率
13:37
is at close to 100 percent百分.
342
802000
2000
接近百分之百
13:39
This is a player-developed播放器开发,
343
804000
2000
这是基于玩家开发的
13:41
self-enforcing自我实施, voluntary自主性 currency货币,
344
806000
3000
自我实施的,自愿的货币
13:44
and it's incredibly令人难以置信 sophisticated复杂的
345
809000
2000
这真是难以置信的复杂的
13:46
player播放机 behavior行为.
346
811000
2000
玩家行为
13:50
And I just want to end结束 by suggesting提示
347
815000
2000
作为结束,我想提出
13:52
a few少数 ways方法 in which哪一个 these principles原则
348
817000
2000
一些方法使得这些原则
13:54
could fan风扇 out into the world世界.
349
819000
2000
可以在引入真实的世界
13:56
Let's start开始 with business商业.
350
821000
2000
我将从商业开始
13:58
I mean, we're beginning开始 to see some of the big problems问题
351
823000
2000
我的意思是,我们开始看见一些难题
14:00
around something like business商业 are
352
825000
2000
围绕在,比如商业
14:02
recycling回收 and energy能源 conservation保护.
353
827000
2000
回收和能源保护的周围
14:04
We're beginning开始 to see the emergence紧急情况 of wonderful精彩 technologies技术
354
829000
2000
我们开始看见对优秀技术的亟待需求
14:06
like real-time即时的 energy能源 meters.
355
831000
2000
比如实时能源表
14:08
And I just look at this, and I think, yes,
356
833000
2000
看到这些,我想,是的
14:10
we could take that so much further进一步
357
835000
3000
我们能可以把它带到更广阔的境界
14:13
by allowing允许 people to set targets目标
358
838000
2000
以让人们去设定目标的方式
14:15
by setting设置 calibrated校准 targets目标,
359
840000
2000
以设置校准目标的方式
14:17
by using运用 elements分子 of uncertainty不确定,
360
842000
3000
以使用不确定因素的方式
14:20
by using运用 these multiple targets目标,
361
845000
2000
以使用这些多重目标的方式
14:22
by using运用 a grand盛大, underlying底层 reward奖励 and incentive激励 system系统,
362
847000
3000
以一个浩大的,潜在的奖励和激励系统
14:25
by setting设置 people up
363
850000
2000
依靠建立合作
14:27
to collaborate合作 in terms条款 of groups, in terms条款 of streets街道
364
852000
2000
以群体形式,路边组合形式
14:29
to collaborate合作 and compete竞争,
365
854000
2000
协作,竞争
14:31
to use these very sophisticated复杂的
366
856000
2000
以这些我们看到的
14:33
group and motivational动机 mechanics机械学 we see.
367
858000
2000
非常复杂的群体和激励机制
14:35
In terms条款 of education教育,
368
860000
2000
这在教育方面
14:37
perhaps也许 most obviously明显 of all,
369
862000
2000
大概显然是最有效的
14:39
we can transform转变 how we engage从事 people.
370
864000
3000
就是我们可以改变和人共事的方式
14:42
We can offer提供 people the grand盛大 continuity连续性
371
867000
2000
我们可以提供人们在经历和
14:44
of experience经验 and personal个人 investment投资.
372
869000
3000
个人投资上浩大的连续性
14:47
We can break打破 things down
373
872000
2000
我们可以把事情拆分
14:49
into highly高度 calibrated校准 small tasks任务.
374
874000
2000
为可高度校准的小任务
14:51
We can use calculated计算 randomness随机性.
375
876000
2000
我们能用数理随机性
14:53
We can reward奖励 effort功夫 consistently始终如一
376
878000
2000
我们能持续奖励努力
14:55
as everything fields领域 together一起.
377
880000
3000
正如所有东西传递承接在一起
14:58
And we can use the kind of group behaviors行为
378
883000
2000
并且我们能用这种群体行为
15:00
that we see evolving进化 when people are at play together一起,
379
885000
3000
我们看到它在人们共同游戏时演变
15:03
these really quite相当 unprecedentedly空前 complex复杂
380
888000
3000
这些极空前复杂的
15:06
cooperative合作社 mechanisms机制.
381
891000
2000
合作机制
15:08
Government政府, well, one thing that comes to mind心神
382
893000
2000
政府,有件事在我脑海中浮现
15:10
is the U.S. government政府, among其中 others其他,
383
895000
3000
那就是美国政府,是所有政府中
15:13
is literally按照字面 starting开始 to pay工资 people
384
898000
2000
首次书面声明支付费用给人们
15:15
to lose失去 weight重量.
385
900000
2000
用于减肥
15:17
So we're seeing眼看 financial金融 reward奖励 being存在 used
386
902000
2000
所以我们在谈论财政激励被用于
15:19
to tackle滑车 the great issue问题 of obesity肥胖.
387
904000
2000
解决肥胖症的巨大问题
15:21
But again, those rewards奖励
388
906000
2000
但,那些激励
15:23
could be calibrated校准 so precisely恰恰
389
908000
3000
能够被如此精确地标量
15:26
if we were able能够 to use the vast广大 expertise专门知识
390
911000
3000
如果我们能够用游戏系统中庞大的
15:29
of gaming赌博 systems系统 to just jack插口 up that appeal上诉,
391
914000
3000
专门技术来支持这种需要
15:32
to take the data数据, to take the observations意见,
392
917000
2000
去积累数据,执行观察分析
15:34
of millions百万 of human人的 hours小时
393
919000
2000
代替百万人工作量
15:36
and plow that feedback反馈
394
921000
2000
和艰苦劳动来反馈
15:38
into increasing增加 engagement订婚.
395
923000
2000
提升人的参与度
15:40
And in the end结束, it's this word, "engagement订婚,"
396
925000
3000
最后,关键词是,参与度
15:43
that I want to leave离开 you with.
397
928000
2000
这是我要留给大家的
15:45
It's about how individual个人 engagement订婚
398
930000
2000
这是关于如何用心理学和神经学的经验
15:47
can be transformed改造
399
932000
2000
来转换
15:49
by the psychological心理 and the neurological神经 lessons教训
400
934000
3000
个人的参与行为
15:52
we can learn学习 from watching观看 people that are playing播放 games游戏.
401
937000
3000
我们可以从观察人的游戏中学习
15:55
But it's also about collective集体 engagement订婚
402
940000
3000
这同时也是关于集体参与
15:58
and about the unprecedented史无前例 laboratory实验室
403
943000
3000
这是前所未有的实验室
16:01
for observing观察 what makes品牌 people tick
404
946000
2000
我们通过游戏世界这个平台
16:03
and work and play and engage从事
405
948000
2000
观察什么让人行动
16:05
on a grand盛大 scale规模 in games游戏.
406
950000
3000
什么让人工作,游戏和投入
16:08
And if we can look at these things and learn学习 from them
407
953000
3000
如果我们观察这些并从中学习
16:11
and see how to turn them outwards向外,
408
956000
2000
并找到将它通用到游戏之外的方法
16:13
then I really think we have something quite相当 revolutionary革命的 on our hands.
409
958000
3000
那么我真的任务我们正在做的士一件具有革命性的事情
16:16
Thank you very much.
410
961000
2000
非常感谢
16:18
(Applause掌声)
411
963000
4000
(掌声)
Translated by Yanni Wu
Reviewed by Jenny Yang

▲Back to top

ABOUT THE SPEAKER
Tom Chatfield - Gaming theorist
Tom Chatfield thinks about games -- what we want from them, what we get from them, and how we might use our hard-wired desire for a gamer's reward to change the way we learn.

Why you should listen

It can be difficult to wrap one's mind around the size and the reach of modern video- and online-game culture. But gaming is not only outstripping more-traditional media in revenue (it overtook music in 2008), it's become a powerful lens to re-examine our culture at large. Tom Chatfield, a longtime gamer, is the arts and books editor at the UK current-affairs magazine Prospect. In his book Fun Inc., he argues that games, with their immersive quests and deeply satisfying (and carefully designed) virtual rewards, are a great place to test new approaches to real-world systems that need a reboot.

More than a game journalist, Chatfield is a game theorist, looking at neurological research on how games engage our pleasure centers -- and then looking at a world where millions of videogame-veteran Generation Z'ers are entering the workforce and the voters' rolls. They're good with complex rule sets; they're used to forming ad hoc groups to reach a goal; and they love to tweak and mod existing systems. What if society harnessed that energy to redefine learning? Or voting? Understanding the psychology of the videogame reward schedule, Chatfield believes, is not only important for understanding the world of our children -- it's a stepping stone to improving our world right now.

More profile about the speaker
Tom Chatfield | Speaker | TED.com

Data provided by TED.

This site was created in May 2015 and the last update was on January 12, 2020. It will no longer be updated.

We are currently creating a new site called "eng.lish.video" and would be grateful if you could access it.

If you have any questions or suggestions, please feel free to write comments in your language on the contact form.

Privacy Policy

Developer's Blog

Buy Me A Coffee