ABOUT THE SPEAKER
Ray Kurzweil - Inventor, futurist
Ray Kurzweil is an engineer who has radically advanced the fields of speech, text and audio technology. He's revered for his dizzying -- yet convincing -- writing on the advance of technology, the limits of biology and the future of the human species.

Why you should listen

Inventor, entrepreneur, visionary, Ray Kurzweil's accomplishments read as a startling series of firsts -- a litany of technological breakthroughs we've come to take for granted. Kurzweil invented the first optical character recognition (OCR) software for transforming the written word into data, the first print-to-speech software for the blind, the first text-to-speech synthesizer, and the first music synthesizer capable of recreating the grand piano and other orchestral instruments, and the first commercially marketed large-vocabulary speech recognition.

Yet his impact as a futurist and philosopher is no less significant. In his best-selling books, which include How to Create a Mind, The Age of Spiritual Machines, The Singularity Is Near: When Humans Transcend Biology, Kurzweil depicts in detail a portrait of the human condition over the next few decades, as accelerating technologies forever blur the line between human and machine.

In 2009, he unveiled Singularity University, an institution that aims to "assemble, educate and inspire leaders who strive to understand and facilitate the development of exponentially advancing technologies." He is a Director of Engineering at Google, where he heads up a team developing machine intelligence and natural language comprehension.

More profile about the speaker
Ray Kurzweil | Speaker | TED.com
TED2014

Ray Kurzweil: Get ready for hybrid thinking

雷.科哲威: 準備好迎接生物與非生物混和的思考能力

Filmed:
3,548,296 views

兩億年前,我們的哺乳類祖先發展了一種新的大腦特點:新皮層。 這個郵票大小的組織 (包覆一個胡桃大小的大腦) 是人類文明發展的關鍵。而現在,未來主義者雷.科哲威提議,我們應該準備好迎接腦力的下一晉級,進軍雲端的計算能力。
- Inventor, futurist
Ray Kurzweil is an engineer who has radically advanced the fields of speech, text and audio technology. He's revered for his dizzying -- yet convincing -- writing on the advance of technology, the limits of biology and the future of the human species. Full bio

Double-click the English transcript below to play the video.

00:12
Let me tell you a story故事.
0
988
2316
首先,我想與大家分享一個故事。
00:15
It goes back 200 million百萬 years年份.
1
3304
1799
時鐘撥回到兩億年前,
00:17
It's a story故事 of the neocortex新皮層,
2
5103
1984
我們的故事,
00:19
which哪一個 means手段 "new rind果皮."
3
7087
1974
與新皮層(neocortex)有關。
00:21
So in these early mammals哺乳動物,
4
9061
2431
早期哺乳動物
00:23
because only mammals哺乳動物 have a neocortex新皮層,
5
11492
2055
(實際上只有哺乳動物才有新皮層)
00:25
rodent-like囓齒動物類 creatures生物.
6
13547
1664
比如齧齒類動物,
00:27
It was the size尺寸 of a postage郵資 stamp郵票 and just as thin,
7
15211
3579
擁有一種尺寸和厚度與郵票相當的新皮層,
00:30
and was a thin covering覆蓋 around
8
18790
1439
它像一層薄膜,
00:32
their walnut-sized核桃大小 brain,
9
20229
2264
包覆著這些動物核桃大小的大腦。
00:34
but it was capable of a new type類型 of thinking思維.
10
22493
3701
新皮層的功能不可小覷,
它賦予動物新的思考能力。
00:38
Rather than the fixed固定 behaviors行為
11
26194
1567
不像非哺乳類動物,
00:39
that non-mammalian非哺乳動物 animals動物 have,
12
27761
1992
牠們的行為基本上固定不變,
00:41
it could invent發明 new behaviors行為.
13
29753
2692
擁有新皮層的哺乳動物能發明新的行為。
00:44
So a mouse老鼠 is escaping逃逸 a predator捕食者,
14
32445
2553
比如,老鼠逃避天敵的追捕時,
00:46
its path路徑 is blocked受阻,
15
34998
1540
一旦發現此路不通,
00:48
it'll它會 try to invent發明 a new solution.
16
36538
2129
牠會嘗試去找新的出路。
00:50
That may可能 work, it may可能 not,
17
38667
1266
最終可能逃之夭夭,也可能落入貓口,
00:51
but if it does, it will remember記得 that
18
39933
1910
但僥倖成功時,牠會記取成功的經驗,
00:53
and have a new behavior行為,
19
41843
1292
最終形成一種新的行為。
00:55
and that can actually其實 spread傳播 virally病毒
20
43135
1457
值得一提的是,這種新近習得的行為,
00:56
through通過 the rest休息 of the community社區.
21
44592
2195
會迅速傳遍整個鼠群。
00:58
Another另一個 mouse老鼠 watching觀看 this could say,
22
46787
1609
我們可以想像,一旁觀望的老鼠會說:
01:00
"Hey, that was pretty漂亮 clever聰明, going around that rock,"
23
48396
2704
“哇,真是急中生智,居然想到繞開石頭來逃生!”
01:03
and it could adopt採用 a new behavior行為 as well.
24
51100
3725
然後,輕而易舉也掌握了這種技能。
01:06
Non-mammalian非哺乳動物 animals動物
25
54825
1717
但是,非哺乳動物
01:08
couldn't不能 do any of those things.
26
56542
1713
對此完全無能為力,
01:10
They had fixed固定 behaviors行為.
27
58255
1215
牠們的行為一成不變。
01:11
Now they could learn學習 a new behavior行為
28
59470
1331
準確地說,牠們也能習得新的行為,
01:12
but not in the course課程 of one lifetime一生.
29
60801
2576
但不是在一朝一夕之間,
01:15
In the course課程 of maybe a thousand lifetimes壽命,
30
63377
1767
可能需要歷經一千個世代,
01:17
it could evolve發展 a new fixed固定 behavior行為.
31
65144
3330
整個種群才能形成一種新的固定行為。
01:20
That was perfectly完美 okay 200 million百萬 years年份 ago.
32
68474
3377
在兩億年前的蠻荒世界,
這種進化節奏並無大礙。
01:23
The environment環境 changed very slowly慢慢地.
33
71851
1981
那時,環境變遷步履蹣跚,
01:25
It could take 10,000 years年份 for there to be
34
73832
1554
大約每一萬年,
01:27
a significant重大 environmental環境的 change更改,
35
75386
2092
才發生一回滄海桑田的巨變,
01:29
and during that period of time
36
77478
1382
在這樣一個漫長的時間跨度裏,
01:30
it would evolve發展 a new behavior行為.
37
78860
2929
動物才形成了一種新的行為。
01:33
Now that went along沿 fine,
38
81789
1521
往後,一切安好。
01:35
but then something happened發生.
39
83310
1704
直到,禍從天降。
01:37
Sixty-five六十五 million百萬 years年份 ago,
40
85014
2246
時間快進到6500萬年前,
01:39
there was a sudden突然, violent暴力
change更改 to the environment環境.
41
87260
2615
地球遭遇一場突如其來的環境遽變,
01:41
We call it the Cretaceous白堊紀 extinction滅絕 event事件.
42
89875
3505
後人稱之為“白堊紀物種大滅絕”。
01:45
That's when the dinosaurs恐龍 went extinct絕種,
43
93380
2293
恐龍遭受滅頂之災;
01:47
that's when 75 percent百分 of the
44
95673
3449
75%的地球物種
01:51
animal動物 and plant species種類 went extinct絕種,
45
99122
2746
走向滅絕;
01:53
and that's when mammals哺乳動物
46
101868
1745
而哺乳動物
01:55
overtook超越 their ecological生態 niche壁龕,
47
103613
2152
趁機佔領了其他物種的生存地盤。
01:57
and to anthropomorphize人格化, biological生物 evolution演化 said,
48
105765
3654
我們可以假託這些哺乳動物的口吻,
來評論這一進化過程:
02:01
"Hmm, this neocortex新皮層 is pretty漂亮 good stuff東東,"
49
109419
2025
“唔,關鍵時候我們的新皮層真派上用場了。”
02:03
and it began開始 to grow增長 it.
50
111444
1793
此後,新皮層繼續發育。
02:05
And mammals哺乳動物 got bigger,
51
113237
1342
哺乳動物個頭也日漸見長,
02:06
their brains大腦 got bigger at an even faster更快 pace步伐,
52
114579
2915
大腦容量迅速擴大,
02:09
and the neocortex新皮層 got bigger even faster更快 than that
53
117494
3807
其中新皮層的發育堪稱突飛猛進,
02:13
and developed發達 these distinctive獨特 ridges and folds褶皺
54
121301
2929
已經逐步形成獨特的溝回和褶皺,
02:16
basically基本上 to increase增加 its surface表面 area.
55
124230
2881
這可以進一步增加其表面積。
02:19
If you took the human人的 neocortex新皮層
56
127111
1819
人類的新皮層,
02:20
and stretched拉伸 it out,
57
128930
1301
如果充分展開平鋪,
02:22
it's about the size尺寸 of a table napkin餐巾,
58
130231
1713
尺寸可達一張餐巾大小。
02:23
and it's still a thin structure結構體.
59
131944
1306
但它仍然保持了纖薄的結構,
02:25
It's about the thickness厚度 of a table napkin餐巾.
60
133250
1980
厚度也與餐巾不相上下。
02:27
But it has so many許多 convolutions卷積 and ridges
61
135230
2497
外形曲折複雜,呈現千溝萬壑,
02:29
it's now 80 percent百分 of our brain,
62
137727
3075
新皮層已佔據大腦體積的80%左右,
02:32
and that's where we do our thinking思維,
63
140802
2461
不僅肩負思考的重任,
02:35
and it's the great sublimator昇華.
64
143263
1761
還約束和昇華個人的行為。
02:37
We still have that old brain
65
145024
1114
今天,我們的大腦
02:38
that provides提供 our basic基本 drives驅動器 and motivations動機,
66
146138
2764
仍然製造原始的需求和動機。
02:40
but I may可能 have a drive駕駛 for conquest征服,
67
148902
2716
但是,對於我們內心狂野的征服欲望,
02:43
and that'll那會 be sublimated昇華 by the neocortex新皮層
68
151618
2715
這個新皮層起著春風化雨、潤物無聲的作用,
02:46
into writing寫作 a poem or inventing發明了 an app應用
69
154333
2909
最終將這種欲望化作創造詩歌、開發APP、
02:49
or giving a TEDTED Talk,
70
157242
1509
甚至是發表TED演講這樣的文明行為。
02:50
and it's really the neocortex新皮層 that's where
71
158751
3622
對於這一切,
02:54
the action行動 is.
72
162373
1968
新皮層功不可沒。
02:56
Fifty五十 years年份 ago, I wrote a paper
73
164341
1717
50年前,我完成了一篇論文,
02:58
describing說明 how I thought the brain worked工作,
74
166058
1918
探究大腦的工作原理,
02:59
and I described描述 it as a series系列 of modules模塊.
75
167976
3199
我認為大腦是一系列模塊的有機結合。
03:03
Each module could do things with a pattern模式.
76
171175
2128
每個模塊按照某種模式各司其職,
03:05
It could learn學習 a pattern模式. It could remember記得 a pattern模式.
77
173303
2746
但也可以學習、記憶新的模式,
03:08
It could implement實行 a pattern模式.
78
176049
1407
並將模式付諸應用。
03:09
And these modules模塊 were organized有組織的 in hierarchies等級,
79
177456
2679
這些模式以層級結構進行組織,
03:12
and we created創建 that hierarchy等級制度 with our own擁有 thinking思維.
80
180135
2954
當然,我們借助自己的思考
假設了這種層級結構。
03:15
And there was actually其實 very little to go on
81
183089
3333
50年前,由於各種條件限制,
03:18
50 years年份 ago.
82
186422
1562
研究進展緩慢,
03:19
It led me to meet遇到 President主席 Johnson約翰遜.
83
187984
2115
但這項成果使我獲得了
約翰遜總統的接見。
03:22
I've been thinking思維 about this for 50 years年份,
84
190099
2173
50年來,我一直潛心研究這個領域,
03:24
and a year and a half ago I came來了 out with the book
85
192272
2828
就在一年半前,我又發表了一部新的著作
03:27
"How To Create創建 A Mind心神,"
86
195100
1265
——《心智的構建》。
03:28
which哪一個 has the same相同 thesis論文,
87
196365
1613
該專著探討了同一個課題,
03:29
but now there's a plethora過多 of evidence證據.
88
197978
2812
幸運的是,我現在擁有充足的證據支撐。
03:32
The amount of data數據 we're getting得到 about the brain
89
200790
1814
神經科學為我們貢獻
大量有關大腦的數據,
03:34
from neuroscience神經科學 is doubling加倍 every一切 year.
90
202604
2203
還在以逐年翻倍的速度劇增;
03:36
Spatial空間的 resolution解析度 of brainscanningbrainscanning of all types類型
91
204807
2654
各種腦部掃描技術的空間解析度,
03:39
is doubling加倍 every一切 year.
92
207461
2285
也在逐年翻倍。
03:41
We can now see inside a living活的 brain
93
209746
1717
現在,我們能親眼窺見活體大腦的內部,
03:43
and see individual個人 interneuralinterneural connections連接
94
211463
2870
觀察單個神經間的連接,
03:46
connecting in real真實 time, firing射擊 in real真實 time.
95
214333
2703
目睹神經連接、觸發的實時發生。
03:49
We can see your brain create創建 your thoughts思念.
96
217036
2419
我們親眼看到大腦如何創造思維,
03:51
We can see your thoughts思念 create創建 your brain,
97
219455
1575
或者反過來說,思維如何增強和促進大腦,
03:53
which哪一個 is really key to how it works作品.
98
221030
1999
思維本身對大腦進化至關重要。
03:55
So let me describe描述 briefly簡要地 how it works作品.
99
223029
2219
接下來,我想簡單介紹大腦的工作方式。
03:57
I've actually其實 counted these modules模塊.
100
225248
2275
實際上,我統計過這些模塊的數量。
03:59
We have about 300 million百萬 of them,
101
227523
2046
我們總共有大約三億模塊,
04:01
and we create創建 them in these hierarchies等級.
102
229569
2229
分佈在不同的層級中。
04:03
I'll give you a simple簡單 example.
103
231798
2082
讓我們來看一個簡單的例子。
04:05
I've got a bunch of modules模塊
104
233880
2805
假設我有一組模塊,
04:08
that can recognize認識 the crossbar橫梁 to a capital首都 A,
105
236685
3403
可以識別大寫字母“A”中間的短橫線,
04:12
and that's all they care關心 about.
106
240088
1914
它們的主要職責就在於此。
04:14
A beautiful美麗 song歌曲 can play,
107
242002
1578
無論周遭播放著美妙的音樂,
04:15
a pretty漂亮 girl女孩 could walk步行 by,
108
243580
1434
還是一位妙齡女郎翩然而至,
04:17
they don't care關心, but they see
a crossbar橫梁 to a capital首都 A,
109
245014
2846
它們都渾然不覺。但是,一旦發現“A”的短橫線,
04:19
they get very excited興奮 and they say "crossbar橫梁,"
110
247860
3021
它們就興奮異常,異口同聲喊出:“短橫線!”
04:22
and they put out a high probability可能性
111
250881
2112
同時,它們立即報告神經軸突,
04:24
on their output產量 axon軸突.
112
252993
1634
識別任務已經順利完成。
04:26
That goes to the next下一個 level水平,
113
254627
1333
接下來,更高級別的模塊——
04:27
and these layers are organized有組織的 in conceptual概念上的 levels水平.
114
255960
2750
概念級別的模塊,將依次登場。
04:30
Each is more abstract抽象 than the next下一個 one,
115
258710
1856
級別越高,思考的抽象程度越高。
04:32
so the next下一個 one might威力 say "capital首都 A."
116
260566
2418
例如,較低的級別可識別字母“A”,
04:34
That goes up to a higher更高
level水平 that might威力 say "Apple蘋果."
117
262984
2891
逐級上升後,某個級別能識別“APPLE”這個單詞。
04:37
Information信息 flows流動 down also.
118
265875
2167
同時,信息也在持續傳遞。
04:40
If the apple蘋果 recognizer識別 has seen看到 A-P-P-LAPPL,
119
268042
2936
負責識別“APPLE”的級別,發現A-P-P-L時,
04:42
it'll它會 think to itself本身, "Hmm, I
think an E is probably大概 likely容易,"
120
270978
3219
它會想:“唔,我猜下一個字母應該是E吧。”
04:46
and it'll它會 send發送 a signal信號 down to all the E recognizers識別
121
274197
2564
然後,它會將信號傳達到
負責識別“E”的那些模塊,
04:48
saying, "Be on the lookout小心 for an E,
122
276761
1619
並發出預警:“嘿,各位注意,
04:50
I think one might威力 be coming未來."
123
278380
1556
字母E就要出現了!”
04:51
The E recognizers識別 will lower降低 their threshold
124
279936
2843
字母“E”的識別模塊於是降低了閥值,
04:54
and they see some sloppy稀鬆
thing, could be an E.
125
282779
1945
一旦發現疑似字母,便認為是“E”。
04:56
Ordinarily按說 you wouldn't不會 think so,
126
284724
1490
當然,這並非通常情況下的處理機制,
04:58
but we're expecting期待 an E, it's good enough足夠,
127
286214
2009
但現在我們正在等待“E”的出現,
而疑似字母與它足夠相似,
05:00
and yeah, I've seen看到 an E, and then apple蘋果 says,
128
288223
1817
所以,我們斷定它就是“E”。
05:02
"Yeah, I've seen看到 an Apple蘋果."
129
290040
1728
“E”識別後,“APPLE”識別成功。
05:03
Go up another另一個 five levels水平,
130
291768
1746
如果我們再躍升五個級別,
05:05
and you're now at a pretty漂亮 high level水平
131
293514
1353
那麼,在整個層級結構上,
05:06
of this hierarchy等級制度,
132
294867
1569
就到達了較高水平。
05:08
and stretch伸展 down into the different不同 senses感官,
133
296436
2353
這個水平上,我們具有各種感知功能,
05:10
and you may可能 have a module
that sees看到 a certain某些 fabric,
134
298789
2655
某些模塊能夠感知特定的布料質地,
05:13
hears就听 a certain某些 voice語音 quality質量,
smells氣味 a certain某些 perfume香水,
135
301444
2844
辨識特定的音色,甚至嗅到特定的香水味,
05:16
and will say, "My wife妻子 has entered進入 the room房間."
136
304288
2513
然後告诉我:妻子剛進到房间!
05:18
Go up another另一個 10 levels水平, and now you're at
137
306801
1895
再上升10級,
05:20
a very high level水平.
138
308696
1160
我們就到達了一個很高的水平,
05:21
You're probably大概 in the frontal前面的 cortex皮質,
139
309856
1937
可能來到了額葉皮層。
05:23
and you'll你會 have modules模塊 that say, "That was ironic具有諷刺意味.
140
311793
3767
在這兒,我們的模塊已經能夠臧否人物了,
05:27
That's funny滑稽. She's pretty漂亮."
141
315560
2370
比如:這事有點滑稽可笑!她真是秀色可餐!
05:29
You might威力 think that those are more sophisticated複雜的,
142
317930
2105
大家可能覺得,這整個過程有點複雜。
05:32
but actually其實 what's more complicated複雜
143
320035
1506
實際上,更讓人費解的是
05:33
is the hierarchy等級制度 beneath下面 them.
144
321541
2669
是這些過程的層級結構。
05:36
There was a 16-year-old-歲 girl女孩, she had brain surgery手術,
145
324210
2620
曾經有位16歲的姑娘,當時正接受腦部手術。
05:38
and she was conscious意識 because the surgeons外科醫生
146
326830
2051
由於手術過程中醫生需要跟她講話,
05:40
wanted to talk to her.
147
328881
1537
所以就讓她保持清醒。
05:42
You can do that because there's no pain疼痛 receptors受體
148
330418
1822
保持清醒的意識,這對於手術並無妨礙,
05:44
in the brain.
149
332240
1038
因為大腦內沒有痛覺感受器。
05:45
And whenever每當 they stimulated刺激 particular特定,
150
333278
1800
我們驚奇地發現,當醫生刺激新皮層上
05:47
very small points on her neocortex新皮層,
151
335078
2463
某些細小區域時,就是圖中的紅色部位,
05:49
shown顯示 here in red, she would laugh.
152
337541
2665
這個姑娘就會放聲大笑。
05:52
So at first they thought they were triggering觸發
153
340206
1440
起初,大家以為,
05:53
some kind of laugh reflex反射,
154
341646
1720
可能是因為觸發了笑反應神經。
05:55
but no, they quickly很快 realized實現 they had found發現
155
343366
2519
他們很快意識到事實並非如此,
05:57
the points in her neocortex新皮層 that detect檢測 humor幽默,
156
345885
3044
這些新皮層上的特定區域能夠理會幽默,
06:00
and she just found發現 everything hilarious歡鬧的
157
348929
1969
只要醫生刺激這些區域,
06:02
whenever每當 they stimulated刺激 these points.
158
350898
2437
她就會覺得所有的一切都滑稽有趣。
06:05
"You guys are so funny滑稽 just standing常設 around,"
159
353335
1925
“你們這幫人光站在那裏,就讓人想笑。”
06:07
was the typical典型 comment評論,
160
355260
1738
那位姑娘典型的解釋道。
06:08
and they weren't funny滑稽,
161
356998
2302
我們知道,這個場景並不滑稽可笑,
06:11
not while doing surgery手術.
162
359300
3247
因為大家都在進行緊張的手術。
06:14
So how are we doing today今天?
163
362547
4830
現在,我們又有哪些新的進展呢?
06:19
Well, computers電腦 are actually其實 beginning開始 to master
164
367377
3054
計算機日益智能化,
06:22
human人的 language語言 with techniques技術
165
370431
2001
利用功能類似新皮層的先進技術,
06:24
that are similar類似 to the neocortex新皮層.
166
372432
2867
它們可以學習和掌握人類的語言。
06:27
I actually其實 described描述 the algorithm算法,
167
375299
1514
我曾描述過一種算法,
06:28
which哪一個 is similar類似 to something called
168
376813
2054
與層級隱含式馬爾可夫模型類似,
06:30
a hierarchical分級 hidden Markov馬爾科夫 model模型,
169
378867
2233
(馬爾可夫模型是用於自然語言處理的統計模型)
06:33
something I've worked工作 on since以來 the '90s.
170
381100
3241
上世紀90年以來我一直研究這種算法。
06:36
"Jeopardy危險" is a very broad廣闊 natural自然 language語言 game遊戲,
171
384341
3238
“Jeopardy”(危境)是一個
自然語言類的智力競賽節目,
06:39
and Watson沃森 got a higher更高 score得分了
172
387579
1892
IBM研發的沃森計算機在比賽中
06:41
than the best最好 two players玩家 combined結合.
173
389471
2000
勇奪高分,總分超過兩名最佳選手的總和。
06:43
It got this query詢問 correct正確:
174
391471
2499
連這個難題都被它輕鬆化解了:
06:45
"A long, tiresome煩人的 speech言語
175
393970
2085
“定義:由起泡的派餡料發表的冗長而乏味的演講。
06:48
delivered交付 by a frothy多泡的 pie餡餅 topping配料,"
176
396055
2152
請問:這定義的是什麼?”
06:50
and it quickly很快 responded回應,
"What is a meringue酥皮 harangue長篇大論?"
177
398207
2796
它迅速回答道:愛開腔的蛋白霜。
06:53
And Jennings詹寧斯 and the other guy didn't get that.
178
401003
2635
而詹尼斯和另外一名選手卻一頭霧水。
06:55
It's a pretty漂亮 sophisticated複雜的 example of
179
403638
1926
這個問題難度很大,極富挑戰性,
06:57
computers電腦 actually其實 understanding理解 human人的 language語言,
180
405564
1914
向我們展示了計算機
正在掌握人類的語言。
06:59
and it actually其實 got its knowledge知識 by reading
181
407478
1652
實際上,沃森是通過廣泛閱讀維基百科
07:01
Wikipedia維基百科 and several一些 other encyclopedias百科全書.
182
409130
3785
及其他百科全書來發展語言能力的。
07:04
Five to 10 years年份 from now,
183
412915
2133
5至10年以後,
07:07
search搜索 engines引擎 will actually其實 be based基於 on
184
415048
2184
我們的搜索引擎
07:09
not just looking for combinations組合 of words and links鏈接
185
417232
2794
不再只是搜索詞語和鏈接這樣的簡單組合,
07:12
but actually其實 understanding理解,
186
420026
1914
它會嘗試去理解信息,
07:13
reading for understanding理解 the billions數十億 of pages網頁
187
421940
2411
通過涉獵浩如煙海的互聯網和書籍,
07:16
on the web捲筒紙 and in books圖書.
188
424351
2733
攫取和提煉知識。
07:19
So you'll你會 be walking步行 along沿, and Google谷歌 will pop流行的 up
189
427084
2616
想像有一天,你正在悠閒地散步,
07:21
and say, "You know, Mary瑪麗, you expressed表達 concern關心
190
429700
3081
智能設備端的 Google 助理突然和你說:
07:24
to me a month ago that your glutathione穀胱甘肽 supplement補充
191
432781
3019
“瑪麗,你上月提到,正在服用的谷胱甘肽補充劑
07:27
wasn't getting得到 past過去 the blood-brain血腦屏障 barrier屏障.
192
435800
2231
因為無法透過血腦屏障,所以暫時不起作用。
07:30
Well, new research研究 just came來了 out 13 seconds ago
193
438031
2593
告訴你一個好消息!就在13秒鐘前,
07:32
that shows節目 a whole整個 new approach途徑 to that
194
440624
1711
一項新的研究成果表明,
07:34
and a new way to take glutathione穀胱甘肽.
195
442335
1993
可以透過一个新的途徑來補充谷胱甘肽。
07:36
Let me summarize總結 it for you."
196
444328
2562
讓我給你概括一下這個報告。”
07:38
Twenty二十 years年份 from now, we'll have nanobots納米機器人,
197
446890
3684
20年以後,我們將迎來奈米機器人,
07:42
because another另一個 exponential指數 trend趨勢
198
450574
1627
目前,科技產品正在日益微型化,
07:44
is the shrinking萎縮 of technology技術.
199
452201
1615
這一趨勢愈演愈烈。
07:45
They'll他們會 go into our brain
200
453816
2370
科技設備將通過毛細血管
07:48
through通過 the capillaries毛細血管
201
456186
1703
進入我們的大腦,
07:49
and basically基本上 connect our neocortex新皮層
202
457889
2477
最終,將我們自身的新皮層
07:52
to a synthetic合成的 neocortex新皮層 in the cloud
203
460366
3185
與雲端的人工合成新皮層相連,
07:55
providing提供 an extension延期 of our neocortex新皮層.
204
463551
3591
使它成為新皮層的延伸和擴展。
07:59
Now today今天, I mean,
205
467142
1578
今天,
08:00
you have a computer電腦 in your phone電話,
206
468720
1530
智慧型手機都內置了一台計算機。
08:02
but if you need 10,000 computers電腦 for a few少數 seconds
207
470250
2754
假如我們需要一萬台計算機,
08:05
to do a complex複雜 search搜索,
208
473004
1495
在幾秒鐘內完成一次複雜的搜索,
08:06
you can access訪問 that for a second第二 or two in the cloud.
209
474499
3396
我們可以通過訪問雲端來獲得這種能力。
08:09
In the 2030s, if you need some extra額外 neocortex新皮層,
210
477895
3095
到了2030年,當你需要更加強大的新皮層時,
08:12
you'll你會 be able能夠 to connect to that in the cloud
211
480990
2273
你可以直接從你的大腦連接到雲端,
08:15
directly from your brain.
212
483263
1648
來獲得超凡的能力。
08:16
So I'm walking步行 along沿 and I say,
213
484911
1543
舉個例子,我正在漫步,遠遠看到一個人。
08:18
"Oh, there's Chris克里斯 Anderson安德森.
214
486454
1363
“老天,那不是克里斯.安德森(TED主持人)嗎?
08:19
He's coming未來 my way.
215
487817
1525
他正朝我這邊走來。
08:21
I'd better think of something clever聰明 to say.
216
489342
2335
我要抓住這個機遇,一鳴驚人!
08:23
I've got three seconds.
217
491677
1524
但是,我只有三秒鐘,
08:25
My 300 million百萬 modules模塊 in my neocortex新皮層
218
493201
3097
我新皮層的三億個模塊
08:28
isn't going to cut it.
219
496298
1240
顯然不夠用。
08:29
I need a billion十億 more."
220
497538
1246
我需要借來10億模塊增援!”
08:30
I'll be able能夠 to access訪問 that in the cloud.
221
498784
3323
於是,我會立即連通雲端。
08:34
And our thinking思維, then, will be a hybrid混合動力
222
502107
2812
我的思考,綜合了生物體和非生物體
08:36
of biological生物 and non-biological非生物 thinking思維,
223
504919
3522
這兩者的優勢。
08:40
but the non-biological非生物 portion一部分
224
508441
1898
非生物部分的思考能力,
08:42
is subject學科 to my law of accelerating加速 returns回報.
225
510339
2682
將受益於“加速回報定律”,
08:45
It will grow增長 exponentially成倍.
226
513021
2239
這是說,科技帶來的回報
呈指數級增長,而非線性。
08:47
And remember記得 what happens發生
227
515260
2016
大家是否還記得,上次新皮層大幅擴張時
08:49
the last time we expanded擴大 our neocortex新皮層?
228
517276
2645
發生了哪些重大變化?
08:51
That was two million百萬 years年份 ago
229
519921
1426
那是200萬年前,
08:53
when we became成為 humanoids類人型機器人
230
521347
1236
我們那時還只是猿人,
08:54
and developed發達 these large foreheads額頭.
231
522583
1594
開始發育出碩大的前額。
08:56
Other primates靈長類動物 have a slanted傾斜 brow眉頭.
232
524177
2583
而其他靈長類動物的前額向後傾斜,
08:58
They don't have the frontal前面的 cortex皮質.
233
526760
1745
因為牠們沒有額葉皮層。
09:00
But the frontal前面的 cortex皮質 is not
really qualitatively定性 different不同.
234
528505
3685
但是,額葉皮層並不意味著質的變化;
09:04
It's a quantitative expansion擴張 of neocortex新皮層,
235
532190
2743
而是新皮層量的提升,
09:06
but that additional額外 quantity數量 of thinking思維
236
534933
2703
帶來了額外的思考能力,
09:09
was the enabling啟用 factor因子 for us to take
237
537636
1779
最終促成了質的飛躍。
09:11
a qualitative定性 leap飛躍 and invent發明 language語言
238
539415
3346
我們因而能夠發明語言,
09:14
and art藝術 and science科學 and technology技術
239
542761
1967
創造藝術,發展科技,
09:16
and TEDTED conferences會議.
240
544728
1454
並舉辦TED演講,
09:18
No other species種類 has doneDONE that.
241
546182
2131
這都是其他物種難以完成的創舉。
09:20
And so, over the next下一個 few少數 decades幾十年,
242
548313
2075
我相信未來數十年,
09:22
we're going to do it again.
243
550388
1760
我們將再次創造偉大的奇蹟。
09:24
We're going to again expand擴大 our neocortex新皮層,
244
552148
2274
我們將借助科技,再次擴張新皮層,
09:26
only this time we won't慣於 be limited有限
245
554422
1756
不同之處在於,
09:28
by a fixed固定 architecture建築 of enclosure附件.
246
556178
4280
我們將不再受到頭顱空間的局限,
09:32
It'll它會 be expanded擴大 without limit限制.
247
560458
3304
意味著擴張並無止境。
09:35
That additional額外 quantity數量 will again
248
563762
2243
隨之而來的量的增加
09:38
be the enabling啟用 factor因子 for another另一個 qualitative定性 leap飛躍
249
566005
3005
在人文和科技領域,
09:41
in culture文化 and technology技術.
250
569010
1635
將再次引發一輪質的飛躍。
09:42
Thank you very much.
251
570645
2054
謝謝大家!
09:44
(Applause掌聲)
252
572699
3086
(掌聲)
Translated by FBC Global
Reviewed by Cheng Zhang

▲Back to top

ABOUT THE SPEAKER
Ray Kurzweil - Inventor, futurist
Ray Kurzweil is an engineer who has radically advanced the fields of speech, text and audio technology. He's revered for his dizzying -- yet convincing -- writing on the advance of technology, the limits of biology and the future of the human species.

Why you should listen

Inventor, entrepreneur, visionary, Ray Kurzweil's accomplishments read as a startling series of firsts -- a litany of technological breakthroughs we've come to take for granted. Kurzweil invented the first optical character recognition (OCR) software for transforming the written word into data, the first print-to-speech software for the blind, the first text-to-speech synthesizer, and the first music synthesizer capable of recreating the grand piano and other orchestral instruments, and the first commercially marketed large-vocabulary speech recognition.

Yet his impact as a futurist and philosopher is no less significant. In his best-selling books, which include How to Create a Mind, The Age of Spiritual Machines, The Singularity Is Near: When Humans Transcend Biology, Kurzweil depicts in detail a portrait of the human condition over the next few decades, as accelerating technologies forever blur the line between human and machine.

In 2009, he unveiled Singularity University, an institution that aims to "assemble, educate and inspire leaders who strive to understand and facilitate the development of exponentially advancing technologies." He is a Director of Engineering at Google, where he heads up a team developing machine intelligence and natural language comprehension.

More profile about the speaker
Ray Kurzweil | Speaker | TED.com

Data provided by TED.

This site was created in May 2015 and the last update was on January 12, 2020. It will no longer be updated.

We are currently creating a new site called "eng.lish.video" and would be grateful if you could access it.

If you have any questions or suggestions, please feel free to write comments in your language on the contact form.

Privacy Policy

Developer's Blog

Buy Me A Coffee