ABOUT THE SPEAKER
Stuart Russell - AI expert
Stuart Russell wrote the standard text on AI; now he thinks deeply on AI's future -- and the future of us humans, too.

Why you should listen

Stuart Russell is a professor (and formerly chair) of Electrical Engineering and Computer Sciences at University of California at Berkeley. His book Artificial Intelligence: A Modern Approach (with Peter Norvig) is the standard text in AI; it has been translated into 13 languages and is used in more than 1,300 universities in 118 countries. His research covers a wide range of topics in artificial intelligence including machine learning, probabilistic reasoning, knowledge representation, planning, real-time decision making, multitarget tracking, computer vision, computational physiology, global seismic monitoring and philosophical foundations.

He also works for the United Nations, developing a new global seismic monitoring system for the nuclear-test-ban treaty. His current concerns include the threat of autonomous weapons and the long-term future of artificial intelligence and its relation to humanity.

More profile about the speaker
Stuart Russell | Speaker | TED.com
TED2017

Stuart Russell: 3 principles for creating safer AI

斯圖爾特 · 羅素: 人工智慧如何讓我們更美好

Filmed:
1,465,832 views

我們要如何駕馭超級人工智慧,並同時避免類似「被機器人全面掌控」的災難發生?當我們還在為創造出全能機器人而努力時,人工智慧專家斯圖爾特 · 羅素( Stuart Russell)已經開始投入不同的領域:機器人內在的不確定性。來聽聽他對能與人類和諧共處的 AI 的願景,這些 AI 通過常識、利他主義以及其他人類價值觀來解決問題。
- AI expert
Stuart Russell wrote the standard text on AI; now he thinks deeply on AI's future -- and the future of us humans, too. Full bio

Double-click the English transcript below to play the video.

這是李世石。
00:12
This is Lee背風處 SedolSedol.
0
712
1552
00:14
Lee背風處 SedolSedol is one of the world's世界
greatest最大 Go players玩家,
1
2288
3997
李世石是全世界
頂尖圍棋高手之一,
00:18
and he's having what my friends朋友
in Silicon Valley call
2
6309
2885
此時,他正在經歷的是
我的矽谷朋友們稱之為
00:21
a "Holy Cow" moment時刻 --
3
9218
1510
「我的媽呀!」的時刻......
00:22
(Laughter笑聲)
4
10752
1073
(笑聲)
00:23
a moment時刻 where we realize實現
5
11849
2188
在這一刻讓我們意識到,
00:26
that AIAI is actually其實 progressing進展
a lot faster更快 than we expected預期.
6
14061
3296
原來人工智慧發展的進程
比我們預期的要快得多。
00:30
So humans人類 have lost丟失 on the Go board.
What about the real真實 world世界?
7
18154
3047
人類已在圍棋博弈中落敗,
那現實世界中情況又如何?
00:33
Well, the real真實 world世界 is much bigger,
8
21225
2100
當然啦,現實世界要比棋盤
廣闊、複雜得多,
00:35
much more complicated複雜 than the Go board.
9
23349
2249
00:37
It's a lot less visible可見,
10
25622
1819
它也遠不如棋盤上那麽黑白分明,
00:39
but it's still a decision決定 problem問題.
11
27465
2038
但仍然是個判定問題
(Decision Problem)。
00:42
And if we think about some
of the technologies技術
12
30948
2321
如果我們思考一些
即將問世的新科技……
00:45
that are coming未來 down the pike梭子魚 ...
13
33293
1749
00:47
Noriko紀子 [Arai新井] mentioned提到 that reading
is not yet然而 happening事件 in machines,
14
35738
4335
新井紀子提到機器仍無法 「閱讀」,
至少無法真正理解文本含義。
00:52
at least最小 with understanding理解.
15
40097
1500
00:53
But that will happen發生,
16
41621
1536
但這項能力最終會被機器掌握,
00:55
and when that happens發生,
17
43181
1771
而當這一切發生時,
00:56
very soon不久 afterwards之後,
18
44976
1187
不久之後,
00:58
machines will have read everything
that the human人的 race種族 has ever written書面.
19
46187
4572
機器就能讀遍所有人類寫下的東西。
01:03
And that will enable啟用 machines,
20
51850
2030
這會讓機器擁有比人類
更深刻的遠見和洞察力。
01:05
along沿 with the ability能力 to look
further進一步 ahead than humans人類 can,
21
53904
2920
01:08
as we've我們已經 already已經 seen看到 in Go,
22
56848
1680
就如我們在這場圍棋博弈中所見,
01:10
if they also have access訪問
to more information信息,
23
58552
2164
如果機器能接觸到比人類更多的信息,
01:12
they'll他們會 be able能夠 to make better decisions決定
in the real真實 world世界 than we can.
24
60740
4268
那機器將能夠在現實世界中
做出比人類更好的決策。
01:18
So is that a good thing?
25
66792
1606
那這會是一件好事嗎?
01:21
Well, I hope希望 so.
26
69898
2232
我當然希望如此。
01:26
Our entire整個 civilization文明,
everything that we value,
27
74694
3255
人類的全部文明,
我們所珍視的一切,
01:29
is based基於 on our intelligence情報.
28
77973
2068
都是基於我們的智慧。
01:32
And if we had access訪問
to a lot more intelligence情報,
29
80065
3694
如果我們能獲得更強大的智慧,
01:35
then there's really no limit限制
to what the human人的 race種族 can do.
30
83783
3302
那人類將無所不能了。
01:40
And I think this could be,
as some people have described描述 it,
31
88665
3325
我在想,到時後就像
一些人所描述的那樣,
01:44
the biggest最大 event事件 in human人的 history歷史.
32
92014
2016
這會是人類歷史上最重要的事件。
01:48
So why are people saying things like this,
33
96665
2829
那為什麽有的人會說出
以下的言論呢?
01:51
that AIAI might威力 spell拼寫 the end結束
of the human人的 race種族?
34
99518
2876
說人工智慧將是人類的末日呢?
01:55
Is this a new thing?
35
103438
1659
這是新鮮事嗎?
01:57
Is it just Elon伊隆 Musk and Bill法案 Gates蓋茨
and Stephen斯蒂芬 Hawking霍金?
36
105121
4110
這僅僅只是伊隆馬斯克、比爾蓋茲、
史蒂芬霍金的新發明嗎?
02:01
Actually其實, no. This idea理念
has been around for a while.
37
109953
3262
實際上不是,這個概念
已經存在很長的時間了。
02:05
Here's這裡的 a quotation行情:
38
113239
1962
請看這段話:
02:07
"Even if we could keep the machines
in a subservient奴顏婢膝 position位置,
39
115225
4350
「即便我們能讓機器屈從於我們,
02:11
for instance, by turning車削 off the power功率
at strategic戰略 moments瞬間" --
40
119599
2984
比如說,在重要時刻關掉它。」
02:14
and I'll come back to that
"turning車削 off the power功率" idea理念 later後來 on --
41
122607
3237
我等會兒會再來討論
「關機」這一話題。
02:17
"we should, as a species種類,
feel greatly非常 humbled自愧不如."
42
125868
2804
「我們作為人類,仍應懷着謙卑......」
這段話是誰說的呢?
是艾倫 · 圖靈在 1951 年說的。
02:22
So who said this?
This is Alan艾倫 Turing圖靈 in 1951.
43
130177
3448
02:26
Alan艾倫 Turing圖靈, as you know,
is the father父親 of computer電腦 science科學
44
134300
2763
眾所皆知艾倫 · 圖靈是計算機科學之父,
02:29
and in many許多 ways方法,
the father父親 of AIAI as well.
45
137087
3048
並且從很多方面來講,
他也是人工智慧之父。
02:33
So if we think about this problem問題,
46
141239
1882
所以,當我們在思考「創造出
比自己更聰明的物種」這個問題時,
02:35
the problem問題 of creating創建 something
more intelligent智能 than your own擁有 species種類,
47
143145
3787
02:38
we might威力 call this "the gorilla大猩猩 problem問題,"
48
146956
2622
我們不妨將它稱為「大猩猩問題」。
02:42
because gorillas'大猩猩“ ancestors祖先 did this
a few少數 million百萬 years年份 ago,
49
150345
3750
因為大猩猩的祖先們
在幾百萬年前就親歷此境,
02:46
and now we can ask the gorillas大猩猩:
50
154119
1745
我們可以去問大猩猩們:
02:48
Was this a good idea理念?
51
156752
1160
「這是不是一個好主意?」
02:49
So here they are having a meeting會議
to discuss討論 whether是否 it was a good idea理念,
52
157936
3530
圖片中,牠們正在開會討論
那麽做是不是一個好主意,
02:53
and after a little while,
they conclude得出結論, no,
53
161490
3346
過了一會兒,牠們總結出:「不。」
02:56
this was a terrible可怕 idea理念.
54
164860
1345
這是個很爛的主意──
02:58
Our species種類 is in dire可怕的 straits海峽.
55
166229
1782
作為靈長類的我們正岌岌可危。
03:00
In fact事實, you can see the existential存在
sadness in their eyes眼睛.
56
168538
4263
你可以從牠們的眼神中
看到存亡攸關的憂傷。
03:04
(Laughter笑聲)
57
172825
1640
(笑聲)
03:06
So this queasy動盪 feeling感覺 that making製造
something smarter聰明 than your own擁有 species種類
58
174489
4840
「創造出比你自己更聰明的物種
並不是什麽妙計」
03:11
is maybe not a good idea理念 --
59
179353
2365
這種感覺很倒胃口。
03:14
what can we do about that?
60
182488
1491
那我們能做些什麽呢?
03:16
Well, really nothing,
except stop doing AIAI,
61
184003
4767
其實,除非停止人工智慧的研究,
否則束手無策。
03:20
and because of all
the benefits好處 that I mentioned提到
62
188794
2510
因為我所提到的人工智慧的各種裨益,
03:23
and because I'm an AIAI researcher研究員,
63
191328
1716
也因為我是人工智慧的研究人員,
03:25
I'm not having that.
64
193068
1791
我可不同意就此止步。
03:27
I actually其實 want to be able能夠
to keep doing AIAI.
65
195283
2468
實際上,我想一直研究人工智慧。
03:30
So we actually其實 need to nail down
the problem問題 a bit more.
66
198615
2678
所以我們需要更加明確問題所在。
03:33
What exactly究竟 is the problem問題?
67
201317
1371
這個問題到底是什麽呢?
03:34
Why is better AIAI possibly或者 a catastrophe災難?
68
202712
3246
為什麽更強大的人工智慧
可能會是個災難呢?
03:39
So here's這裡的 another另一個 quotation行情:
69
207398
1498
還有一句名言:
03:41
"We had better be quite相當 sure
that the purpose目的 put into the machine
70
209935
3335
「我們最好確保我們向機器發出的指令
與我們的真正目的相吻合。」
03:45
is the purpose目的 which哪一個 we really desire慾望."
71
213294
2298
03:48
This was said by Norbert諾伯特 Wiener維納 in 1960,
72
216282
3498
這句話是諾伯特 · 維納在 1960 年說的,
03:51
shortly不久 after he watched看著
one of the very early learning學習 systems系統
73
219804
4002
就在他看完一個早期的學習系統
(Learning System)之後。
03:55
learn學習 to play checkers跳棋
better than its creator創造者.
74
223830
2583
這個系統在學習如何能把
西洋棋下得比發明它的人更好。
04:00
But this could equally一樣 have been said
75
228602
2683
但如出一轍的一句話,
04:03
by King國王 Midas邁達斯.
76
231309
1167
邁達斯國王也說過。
04:05
King國王 Midas邁達斯 said, "I want everything
I touch觸摸 to turn to gold,"
77
233083
3134
他說:「我希望我觸碰的
所有東西都變成金子。」
04:08
and he got exactly究竟 what he asked for.
78
236241
2473
結果他真的獲得了點石成金的能力。
04:10
That was the purpose目的
that he put into the machine,
79
238738
2751
可以說,這就是他給機器下的指令。
04:13
so to speak說話,
80
241513
1450
04:14
and then his food餐飲 and his drink
and his relatives親戚們 turned轉身 to gold
81
242987
3444
結果他的食物、飲料
和家人都變成了金子,
04:18
and he died死亡 in misery苦難 and starvation飢餓.
82
246455
2281
最後他死於痛苦與饑餓當中。
04:22
So we'll call this
"the King國王 Midas邁達斯 problem問題"
83
250444
2341
所以我們把這類問題叫做
「邁達斯國王問題」,
04:24
of stating說明 an objective目的
which哪一個 is not, in fact事實,
84
252809
3305
這個比喻是要說明這種
不符合實際需求的 「目的」。
04:28
truly aligned對齊 with what we want.
85
256138
2413
用現代的術語來說,我們把它稱為
「價值取向不一致問題」。
04:30
In modern現代 terms條款, we call this
"the value alignment對準 problem問題."
86
258575
3253
04:37
Putting in the wrong錯誤 objective目的
is not the only part部分 of the problem問題.
87
265047
3485
「設錯了目標」不是唯一的問題,
04:40
There's another另一個 part部分.
88
268556
1152
還有其他的。
04:42
If you put an objective目的 into a machine,
89
270160
1943
如果你給機器人設了個目標,
04:44
even something as simple簡單 as,
"Fetch the coffee咖啡,"
90
272127
2448
即使簡單如「去把咖啡端來。」
04:47
the machine says to itself本身,
91
275908
1841
那機器人會對自己說:
04:50
"Well, how might威力 I fail失敗
to fetch the coffee咖啡?
92
278733
2623
「什麼會讓我無法去拿咖啡?
04:53
Someone有人 might威力 switch開關 me off.
93
281380
1580
說不定有人會把我關機;
好,那我要想辦法阻止,
04:55
OK, I have to take steps腳步 to prevent避免 that.
94
283645
2387
04:58
I will disable禁用 my 'off'“關” switch開關.
95
286056
1906
我得讓我的「關機」開關失效。
05:00
I will do anything to defend保衛 myself
against反對 interference干擾
96
288534
2959
我得盡一切可能防衛自己,
免得別人干涉我去達成
所被賦予的任務。」
05:03
with this objective目的
that I have been given特定."
97
291517
2629
05:06
So this single-minded專一 pursuit追求
98
294170
2012
這種專注的行事,以一種
極端自我保護的模式在執行,
05:09
in a very defensive防禦性 mode模式
of an objective目的 that is, in fact事實,
99
297213
2945
05:12
not aligned對齊 with the true真正 objectives目標
of the human人的 race種族 --
100
300182
2814
實際上與我們人類
想要的目標並不一致。
這就是我們面臨的問題。
05:16
that's the problem問題 that we face面對.
101
304122
1862
05:19
And in fact事實, that's the high-value高價值
takeaway帶走 from this talk.
102
307007
4767
而這就是這場演講的
核心想法,也是價值所在。
05:23
If you want to remember記得 one thing,
103
311798
2055
如果你想從這場演講中汲取什麽,
05:25
it's that you can't fetch
the coffee咖啡 if you're dead.
104
313877
2675
那你只要記得:
如果死了,就不能端咖啡了。
05:28
(Laughter笑聲)
105
316576
1061
(笑聲)
05:29
It's very simple簡單. Just remember記得 that.
Repeat重複 it to yourself你自己 three times a day.
106
317661
3829
這很簡單,記住就行了,
每天早晚覆誦三遍。
05:33
(Laughter笑聲)
107
321514
1821
(笑聲)
05:35
And in fact事實, this is exactly究竟 the plot情節
108
323359
2754
實際上,這正是電影
《2001太空漫步》的劇情。
05:38
of "2001: [A Space空間 Odyssey奧德賽]"
109
326137
2648
05:41
HALHAL has an objective目的, a mission任務,
110
329226
2090
HAL 有一個目標,一個任務,
05:43
which哪一個 is not aligned對齊
with the objectives目標 of the humans人類,
111
331340
3732
但這個目標與人類的目標不一致,
05:47
and that leads引線 to this conflict衝突.
112
335096
1810
最後導致了衝突。
幸運的是, HAL 並沒有超級智慧,
05:49
Now fortunately幸好, HALHAL
is not superintelligent超智.
113
337494
2969
05:52
He's pretty漂亮 smart聰明,
but eventually終於 Dave戴夫 outwitsoutwits him
114
340487
3587
它挺聰明的,
但還是比不過人類戴夫,
05:56
and manages管理 to switch開關 him off.
115
344098
1849
戴夫可以把 HAL 關掉。
06:01
But we might威力 not be so lucky幸運.
116
349828
1619
但我們可能就沒有這麽幸運了。
06:08
So what are we going to do?
117
356193
1592
那我們應該怎麽辦呢?
06:12
I'm trying to redefine重新定義 AIAI
118
360371
2601
我想要重新定義人工智慧,
06:14
to get away from this classical古典 notion概念
119
362996
2061
不再囿於傳統的概念:
06:17
of machines that intelligently智能
pursue追求 objectives目標.
120
365081
4567
能明智地達成目標的機器。
06:22
There are three principles原則 involved參與.
121
370712
1798
新的定義涉及三條原則。
06:24
The first one is a principle原理
of altruism利他主義, if you like,
122
372534
3289
第一個原則是利他主義原則,
06:27
that the robot's機器人 only objective目的
123
375847
3262
也就是說,機器的唯一目標
06:31
is to maximize最大化 the realization實現
of human人的 objectives目標,
124
379133
4246
就是要最大化地實現
人類的目標、人類的價值。
06:35
of human人的 values.
125
383403
1390
06:36
And by values here I don't mean
touchy-feely煽情, goody-goody偽善 values.
126
384817
3330
這種價值不是指多愁善感
或者假裝乖巧,
06:40
I just mean whatever隨你 it is
that the human人的 would prefer比較喜歡
127
388171
3787
而是指人類所嚮往、追求的生活,
無論現狀如何。
06:43
their life to be like.
128
391982
1343
06:47
And so this actually其實 violates違反 Asimov's阿西莫夫的 law
129
395364
2309
事實上,這樣就違反了艾西莫夫定律,
06:49
that the robot機器人 has to protect保護
its own擁有 existence存在.
130
397697
2329
定律裡的機器人必須維護自己的生存。
06:52
It has no interest利益 in preserving
its existence存在 whatsoever任何.
131
400050
3723
而在這條原則裡
機器對自身生存與否毫不關心。
06:57
The second第二 law is a law
of humility謙遜, if you like.
132
405420
3768
第二個原則,不妨稱之為謙遜原則。
07:01
And this turns out to be really
important重要 to make robots機器人 safe安全.
133
409974
3743
這一條對製造出安全的機器人十分重要。
07:05
It says that the robot機器人 does not know
134
413741
3142
它是指機器人不知道人類的價值是什麽,
07:08
what those human人的 values are,
135
416907
2028
07:10
so it has to maximize最大化 them,
but it doesn't know what they are.
136
418959
3178
它只知道將該價值最大化,
但卻不知道該價值究竟是什麽。
07:15
And that avoids避免 this problem問題
of single-minded專一 pursuit追求
137
423254
2626
這就避免了「追求單一目的
而不知變通」的現象。
07:17
of an objective目的.
138
425904
1212
07:19
This uncertainty不確定 turns out to be crucial關鍵.
139
427140
2172
這種不確定性就變得很重要了。
為了對我們有益,
07:21
Now, in order訂購 to be useful有用 to us,
140
429726
1639
07:23
it has to have some idea理念 of what we want.
141
431389
2731
機械就得大概明白我們想要什麽。
07:27
It obtains取得 that information信息 primarily主要
by observation意見 of human人的 choices選擇,
142
435223
5427
它要獲取這類信息,主要是
透過觀察人類的決策,
07:32
so our own擁有 choices選擇 reveal揭示 information信息
143
440674
2801
所以我們的決策會揭露
我們生活的意願,
07:35
about what it is that we prefer比較喜歡
our lives生活 to be like.
144
443499
3300
07:40
So those are the three principles原則.
145
448632
1683
所以,這三條原則,
07:42
Let's see how that applies適用
to this question of:
146
450339
2318
讓我們來看看要如何
應用到圖靈所說的問題:
07:44
"Can you switch開關 the machine off?"
as Turing圖靈 suggested建議.
147
452681
2789
「你能不能將機器關掉?」
07:49
So here's這裡的 a PRPR2 robot機器人.
148
457073
2120
這是 PR2 機器人,
07:51
This is one that we have in our lab實驗室,
149
459217
1821
這是我們實驗室裡的其中一台,
07:53
and it has a big red "off" switch開關
right on the back.
150
461062
2903
它的背面有一個大大的紅色開關。
07:56
The question is: Is it
going to let you switch開關 it off?
151
464541
2615
那問題來了:它會讓你把它關掉嗎?
07:59
If we do it the classical古典 way,
152
467180
1465
如果我們用傳統的定義製造它,
08:00
we give it the objective目的 of, "Fetch
the coffee咖啡, I must必須 fetch the coffee咖啡,
153
468669
3482
我們給它一個「去拿咖啡」的目標,
它會想:「我必須去拿咖啡,
08:04
I can't fetch the coffee咖啡 if I'm dead,"
154
472175
2580
但如果我死了,就不能拿咖啡了。」
08:06
so obviously明顯 the PRPR2
has been listening to my talk,
155
474779
3341
看來, PR2 聽過我的演講了,
08:10
and so it says, therefore因此,
"I must必須 disable禁用 my 'off'“關” switch開關,
156
478144
3753
因此它說:「我必須讓自己的開關失靈,
08:14
and probably大概 taser泰瑟槍 all the other
people in Starbucks星巴克
157
482976
2694
可能還要通過電擊把那些在
星巴克裡干擾我的人都擊暈。」
08:17
who might威力 interfere干擾 with me."
158
485694
1560
08:19
(Laughter笑聲)
159
487278
2062
(笑聲)
08:21
So this seems似乎 to be inevitable必然, right?
160
489364
2153
這無法避免,對吧?
08:23
This kind of failure失敗 mode模式
seems似乎 to be inevitable必然,
161
491541
2398
這種失敗看起來是必然的,
08:25
and it follows如下 from having
a concrete具體, definite objective目的.
162
493963
3543
因為機器人會遵循一個
十分明確的目標。
08:30
So what happens發生 if the machine
is uncertain不確定 about the objective目的?
163
498812
3144
那如果機器對目標
不那麽確定會發生什麽呢?
08:33
Well, it reasons原因 in a different不同 way.
164
501980
2127
那它的思路就不一樣了。
08:36
It says, "OK, the human人的
might威力 switch開關 me off,
165
504131
2424
它會說:「好的,人類可能會把我關掉,
08:39
but only if I'm doing something wrong錯誤.
166
507144
1866
但只有我做錯事了,才會把我關掉。
沒錯,我真的不知道什麽才是錯,
08:41
Well, I don't really know what wrong錯誤 is,
167
509747
2475
08:44
but I know that I don't want to do it."
168
512246
2044
但我知道我不該做錯的事。」
這就是第一和第二原則。
08:46
So that's the first and second第二
principles原則 right there.
169
514314
3010
「所以我應該讓人類把我關掉。」
08:49
"So I should let the human人的 switch開關 me off."
170
517348
3359
08:53
And in fact事實 you can calculate計算
the incentive激勵 that the robot機器人 has
171
521721
3956
事實上你可以推斷出機器人為了
允許讓人類關掉它所包含的動機,
08:57
to allow允許 the human人的 to switch開關 it off,
172
525701
2493
09:00
and it's directly tied to the degree
173
528218
1914
而且這與根本目標的
不確定性程度直接相關。
09:02
of uncertainty不確定 about
the underlying底層 objective目的.
174
530156
2746
09:05
And then when the machine is switched交換的 off,
175
533977
2949
當機器被關閉後,
09:08
that third第三 principle原理 comes into play.
176
536950
1805
第三條原則就起作用了。
09:10
It learns獲悉 something about the objectives目標
it should be pursuing追求,
177
538779
3062
機器開始學習它應追求的目標,
09:13
because it learns獲悉 that
what it did wasn't right.
178
541865
2533
因為它知道它剛才做的事是不對的。
09:16
In fact事實, we can, with suitable適當 use
of Greek希臘語 symbols符號,
179
544422
3570
實際上,我們可以適當地
使用些希臘字母,
09:20
as mathematicians數學家 usually平時 do,
180
548016
2131
就像數學家們經常做的那樣,
09:22
we can actually其實 prove證明 a theorem定理
181
550171
1984
直接證明這一個理論:這樣的
機器人對人類是絕對有利的。
09:24
that says that such這樣 a robot機器人
is provably可證明 beneficial有利 to the human人的.
182
552179
3553
09:27
You are provably可證明 better off
with a machine that's designed設計 in this way
183
555756
3803
可以證明如此設計出來的機器人,
對我們的生活是是有益的。
09:31
than without it.
184
559583
1246
09:33
So this is a very simple簡單 example,
but this is the first step
185
561237
2906
這個例子很簡單,
但它是我們嘗試實現
能與人類和諧共處的 AI 的第一步。
09:36
in what we're trying to do
with human-compatible與人相容 AIAI.
186
564167
3903
09:42
Now, this third第三 principle原理,
187
570657
3257
現在來看第三個原則,
09:45
I think is the one that you're probably大概
scratching搔抓 your head over.
188
573938
3112
我知道各位可能還在為
這一個原則傷腦筋。
09:49
You're probably大概 thinking思維, "Well,
you know, I behave表現 badly.
189
577074
3239
你可能會想:「你懂的,
我行為舉止比較差勁。
09:52
I don't want my robot機器人 to behave表現 like me.
190
580337
2929
我的機器人可不能被我帶壞。
09:55
I sneak潛行 down in the middle中間 of the night
and take stuff東東 from the fridge冰箱.
191
583290
3434
我有時後會大半夜偷偷摸摸地
從冰箱裡找東西吃,
09:58
I do this and that."
192
586748
1168
東瞅瞅,西摸摸。」
09:59
There's all kinds of things
you don't want the robot機器人 doing.
193
587940
2797
有各種各樣的事
你是不希望機器人去做的。
但實際上不是那樣。
10:02
But in fact事實, it doesn't
quite相當 work that way.
194
590761
2071
10:04
Just because you behave表現 badly
195
592856
2155
你行為不檢,
不代表機器人就得有樣學樣。
10:07
doesn't mean the robot機器人
is going to copy複製 your behavior行為.
196
595035
2623
它會去嘗試理解你做事的動機,
10:09
It's going to understand理解 your motivations動機
and maybe help you resist them,
197
597682
3910
而且可能會在合適的情況下
幫助你、制止你。
10:13
if appropriate適當.
198
601616
1320
但這仍然十分困難。
10:16
But it's still difficult.
199
604206
1464
10:18
What we're trying to do, in fact事實,
200
606302
2545
實際上,我們是要讓機器
10:20
is to allow允許 machines to predict預測
for any person and for any possible可能 life
201
608871
5796
為任何人、任何一種
可能的生活去預測:
他們更想怎樣?更想要什麽?
10:26
that they could live生活,
202
614691
1161
10:27
and the lives生活 of everybody每個人 else其他:
203
615876
1597
10:29
Which哪一個 would they prefer比較喜歡?
204
617497
2517
這涉及到諸多困難,
10:34
And there are many許多, many許多
difficulties困難 involved參與 in doing this;
205
622061
2954
10:37
I don't expect期望 that this
is going to get solved解決了 very quickly很快.
206
625039
2932
我不認為這會很快地就被解決。
10:39
The real真實 difficulties困難, in fact事實, are us.
207
627995
2643
實際上,真正的困難是我們自己。
10:44
As I have already已經 mentioned提到,
we behave表現 badly.
208
632149
3117
就像我剛說的那樣,
我們做事不守規矩。
10:47
In fact事實, some of us are downright徹頭徹尾 nasty討厭.
209
635290
2321
我們當中就有人是非常惡劣的。
10:50
Now the robot機器人, as I said,
doesn't have to copy複製 the behavior行為.
210
638431
3052
如前所說,機器人
未必得要複製那些行為。
10:53
The robot機器人 does not have
any objective目的 of its own擁有.
211
641507
2791
機器人沒有自己的目標,
10:56
It's purely純粹 altruistic利他.
212
644322
1737
它是完全利他的。
10:59
And it's not designed設計 just to satisfy滿足
the desires慾望 of one person, the user用戶,
213
647293
5221
它的誕生不僅僅是為了去滿足
某一個人、某一個用戶的欲望,
11:04
but in fact事實 it has to respect尊重
the preferences優先 of everybody每個人.
214
652538
3138
而是去尊重所有人的意願。
11:09
So it can deal合同 with a certain某些
amount of nastiness污穢,
215
657263
2570
所以它懂得抵制一些惡劣的行為,
11:11
and it can even understand理解
that your nastiness污穢, for example,
216
659857
3701
它甚至能理解你為什麼惡劣,比如說,
11:15
you may可能 take bribes行賄 as a passport護照 official官方
217
663582
2671
如果你是一個邊境護照官員,
你可能會收取賄賂,
11:18
because you need to feed飼料 your family家庭
and send發送 your kids孩子 to school學校.
218
666277
3812
因為你得養家、供孩子們上學。
機器人能理解這一點,
但不代表它也會學你偷錢,
11:22
It can understand理解 that;
it doesn't mean it's going to steal.
219
670113
2906
11:25
In fact事實, it'll它會 just help you
send發送 your kids孩子 to school學校.
220
673043
2679
它反而會幫助你去供孩子們上學。
11:28
We are also computationally計算 limited有限.
221
676976
3012
我們的計算能力也是有限的。
11:32
Lee背風處 SedolSedol is a brilliant輝煌 Go player播放機,
222
680012
2505
李世石是一個傑出的圍棋大師,
11:34
but he still lost丟失.
223
682541
1325
但他還是輸了。
11:35
So if we look at his actions行動,
he took an action行動 that lost丟失 the game遊戲.
224
683890
4239
如果我們仔細觀察他的棋路,
他下錯了那幾步以致輸棋,
11:40
That doesn't mean he wanted to lose失去.
225
688153
2161
但這不意味著他想要輸。
11:43
So to understand理解 his behavior行為,
226
691340
2040
所以要理解他的行為,
11:45
we actually其實 have to invert倒置
through通過 a model模型 of human人的 cognition認識
227
693404
3644
我們得從人類認知的模型回推過來,
11:49
that includes包括 our computational計算
limitations限制 -- a very complicated複雜 model模型.
228
697072
4977
它包含了我們計算能力上的局限,
是一個很覆雜的模型。
11:54
But it's still something
that we can work on understanding理解.
229
702073
2993
但我們仍然可以嘗試去理解。
11:57
Probably大概 the most difficult part部分,
from my point of view視圖 as an AIAI researcher研究員,
230
705876
4320
可能對於我這樣的 AI 研究人員來說,
12:02
is the fact事實 that there are lots of us,
231
710220
2575
最大的困難是,人有很多種,
12:06
and so the machine has to somehow不知何故
trade貿易 off, weigh稱重 up the preferences優先
232
714294
3581
所以機器必須想辦法去協調、
權衡不同人之間的喜好、需求,
12:09
of many許多 different不同 people,
233
717899
2225
而要做到這一點有多種不同的方法。
12:12
and there are different不同 ways方法 to do that.
234
720148
1906
12:14
Economists經濟學家, sociologists社會學家,
moral道德 philosophers哲學家 have understood了解 that,
235
722078
3689
經濟學家、社會學家、
道德哲學家都理解這一點,
12:17
and we are actively積極地
looking for collaboration合作.
236
725791
2455
我們正積極地尋求合作。
12:20
Let's have a look and see what happens發生
when you get that wrong錯誤.
237
728270
3251
讓我們來看看,如果我們把這一步
走錯了會怎麽樣。
12:23
So you can have
a conversation會話, for example,
238
731545
2133
比如說,你可能會與你的
人工智慧助理有這樣的對話,
12:25
with your intelligent智能 personal個人 assistant助理
239
733702
1944
12:27
that might威力 be available可得到
in a few少數 years'年份' time.
240
735670
2285
這樣的人工智慧可能幾年內就會出現。
12:29
Think of a SiriSiri的 on steroids類固醇.
241
737979
2524
可以把它想成是強化版的 Siri 。
12:33
So SiriSiri的 says, "Your wife妻子 called
to remind提醒 you about dinner晚餐 tonight今晚."
242
741627
4322
Siri 對你說:「你老婆打電話
提醒你別忘了今天的晚宴。」
12:38
And of course課程, you've forgotten忘記了.
"What? What dinner晚餐?
243
746616
2508
當然你早就忘了這回事:
「什麽?什麽晚宴?你在說什麽?」
12:41
What are you talking about?"
244
749148
1425
12:42
"Uh, your 20th anniversary週年 at 7pm下午."
245
750597
3746
「呃.....今晚 7 點
慶祝結婚 20 周年。」
12:48
"I can't do that. I'm meeting會議
with the secretary-general秘書長 at 7:30.
246
756915
3719
「我可去不了,
我晚上 7 點半要見秘書長。
12:52
How could this have happened發生?"
247
760658
1692
怎麽會這樣呢?」
12:54
"Well, I did warn警告 you, but you overrode凌駕於
my recommendation建議."
248
762374
4660
「呃,我可是提醒過你的,
但你沒有理會我的建議。」
13:00
"Well, what am I going to do?
I can't just tell him I'm too busy."
249
768146
3328
「我該怎麽辦呢?我可不能跟秘書長說
我有事,沒空見他。」
13:04
"Don't worry擔心. I arranged安排
for his plane平面 to be delayed延遲."
250
772490
3281
「別擔心。我已經安排了,
讓他的航班延誤。」
13:07
(Laughter笑聲)
251
775795
1682
(笑聲)
13:10
"Some kind of computer電腦 malfunction故障."
252
778249
2101
「用某種電腦故障。」
13:12
(Laughter笑聲)
253
780374
1212
(笑聲)
13:13
"Really? You can do that?"
254
781610
1617
「真的嗎?這個你也能做到?」
13:16
"He sends發送 his profound深刻 apologies道歉
255
784400
2179
「秘書長很不好意思,跟你道歉,
13:18
and looks容貌 forward前鋒 to meeting會議 you
for lunch午餐 tomorrow明天."
256
786603
2555
並邀請你明天中午吃飯。」
13:21
(Laughter笑聲)
257
789182
1299
(笑聲)
13:22
So the values here --
there's a slight輕微 mistake錯誤 going on.
258
790505
4403
所以這裡談的價值觀就有點問題了,
13:26
This is clearly明確地 following以下 my wife's妻子 values
259
794932
3009
這顯然是在遵循我老婆的價值觀,
13:29
which哪一個 is "Happy快樂 wife妻子, happy快樂 life."
260
797965
2069
也就是「老婆開心,生活舒心」。
13:32
(Laughter笑聲)
261
800058
1583
(笑聲)
13:33
It could go the other way.
262
801665
1444
它也有可能發展成另一種情況。
13:35
You could come home
after a hard day's work,
263
803821
2201
你忙碌一天,回到家裏,
13:38
and the computer電腦 says, "Long day?"
264
806046
2195
電腦對你說:「今天很忙喔?」
13:40
"Yes, I didn't even have time for lunch午餐."
265
808265
2288
「是啊,我連午飯都沒來得及吃。」
13:42
"You must必須 be very hungry飢餓."
266
810577
1282
「那你一定很餓了吧。」
13:43
"Starving挨餓, yeah.
Could you make some dinner晚餐?"
267
811883
2646
「快餓暈了。你能做點晚飯嗎?」
13:48
"There's something I need to tell you."
268
816070
2090
「有一件事我得告訴你。」
13:50
(Laughter笑聲)
269
818184
1155
(笑聲)
13:52
"There are humans人類 in South Sudan蘇丹
who are in more urgent緊急 need than you."
270
820193
4905
「南蘇丹人民的情況
比你更緊急,更需要照顧。」
13:57
(Laughter笑聲)
271
825122
1104
(笑聲)
13:58
"So I'm leaving離開. Make your own擁有 dinner晚餐."
272
826250
2075
「所以我要走了。你自己做飯去吧。」
14:00
(Laughter笑聲)
273
828349
2000
(笑聲)
我們得解決這類的問題,
14:02
So we have to solve解決 these problems問題,
274
830823
1739
14:04
and I'm looking forward前鋒
to working加工 on them.
275
832586
2515
我也很期待能解決這樣的問題。
我們有理由感到樂觀。
14:07
There are reasons原因 for optimism樂觀.
276
835125
1843
14:08
One reason原因 is,
277
836992
1159
理由之一是,
14:10
there is a massive大規模的 amount of data數據.
278
838175
1868
我們有大量的數據資料。
14:12
Because remember記得 -- I said
they're going to read everything
279
840067
2794
記住,我說過機器將能夠
閱讀所有人類寫下來的東西。
14:14
the human人的 race種族 has ever written書面.
280
842885
1546
而我們寫下的文字大都類似於
14:16
Most of what we write about
is human人的 beings眾生 doing things
281
844455
2724
「人類做了一些事情
導致其他人對此感到沮喪」。
14:19
and other people getting得到 upset煩亂 about it.
282
847203
1914
14:21
So there's a massive大規模的 amount
of data數據 to learn學習 from.
283
849141
2398
所以機器可以從
大量的數據中去學習。
14:23
There's also a very
strong強大 economic經濟 incentive激勵
284
851563
2236
同時從經濟的角度,
我們也有足夠的動機去做好這件事。
14:27
to get this right.
285
855331
1186
14:28
So imagine想像 your domestic國內 robot's機器人 at home.
286
856541
2001
想像一下,你家裡有個居家機器人。
14:30
You're late晚了 from work again
and the robot機器人 has to feed飼料 the kids孩子,
287
858566
3067
而你又得加班,
機器人得給孩子們做飯,
14:33
and the kids孩子 are hungry飢餓
and there's nothing in the fridge冰箱.
288
861657
2823
孩子們很餓,
但冰箱裡什麽都沒有。
14:36
And the robot機器人 sees看到 the cat.
289
864504
2605
然後機器人看到了家裡的貓。
14:39
(Laughter笑聲)
290
867133
1692
(笑聲)
14:40
And the robot機器人 hasn't有沒有 quite相當 learned學到了
the human人的 value function功能 properly正確,
291
868849
4190
機器人還沒學透人類的價值觀。
14:45
so it doesn't understand理解
292
873063
1251
所以它不知道,
貓的情感價值大於其營養價值。
14:46
the sentimental感傷 value of the cat outweighs勝過
the nutritional營養 value of the cat.
293
874338
4844
14:51
(Laughter笑聲)
294
879206
1095
(笑聲)
14:52
So then what happens發生?
295
880325
1748
接下來會發生什麽事?
14:54
Well, it happens發生 like this:
296
882097
3297
頭版頭條可能會是這樣:
14:57
"Deranged瘋狂 robot機器人 cooks廚師 kitty貓咪
for family家庭 dinner晚餐."
297
885418
2964
「瘋狂機器人煮了貓咪當晚餐!」
15:00
That one incident事件 would be the end結束
of the domestic國內 robot機器人 industry行業.
298
888406
4523
這場意外就足以結束
整個居家機器人的產業。
15:04
So there's a huge巨大 incentive激勵
to get this right
299
892953
3372
所以在我們實現超級 AI 之前,
我們有足夠的動機把它做對做好。
15:08
long before we reach達到
superintelligent超智 machines.
300
896349
2715
15:12
So to summarize總結:
301
900128
1535
總結來說:
15:13
I'm actually其實 trying to change更改
the definition定義 of AIAI
302
901687
2881
我事實上想要改變人工智慧的定義,
15:16
so that we have provably可證明
beneficial有利 machines.
303
904592
2993
這樣我們就可以製造出
對我們有益無害的機器人。
15:19
And the principles原則 are:
304
907609
1222
這三個原則是:
15:20
machines that are altruistic利他,
305
908855
1398
機器是利他的,
15:22
that want to achieve實現 only our objectives目標,
306
910277
2804
只想著實現我們的目標,
15:25
but that are uncertain不確定
about what those objectives目標 are,
307
913105
3116
但它不確定我們的目標是什麽,
15:28
and will watch all of us
308
916245
1998
並且它會觀察我們,
15:30
to learn學習 more about what it is
that we really want.
309
918267
3203
從中學習我們想要的究竟是什麽。
15:34
And hopefully希望 in the process處理,
we will learn學習 to be better people.
310
922373
3559
希望在這個過程中,
我們也能學會成為更好的人。
15:37
Thank you very much.
311
925956
1191
謝謝大家。
15:39
(Applause掌聲)
312
927171
3709
(掌聲)
克里斯安德森:非常有意思,斯圖爾特。
15:42
Chris克里斯 Anderson安德森: So interesting有趣, Stuart斯圖爾特.
313
930904
1868
15:44
We're going to stand here a bit
because I think they're setting設置 up
314
932796
3170
趁工作人員為下一位講者佈置的時候,
我們先站在這裡聊幾句。
15:47
for our next下一個 speaker揚聲器.
315
935990
1151
15:49
A couple一對 of questions問題.
316
937165
1538
我有幾個問題。
15:50
So the idea理念 of programming程序設計 in ignorance無知
seems似乎 intuitively直觀地 really powerful強大.
317
938727
5453
將「無知」編寫到程式中,
這種思想真的很有衝擊力。
15:56
As you get to superintelligence超級智能,
318
944204
1594
當機器人有超級智慧時,
15:57
what's going to stop a robot機器人
319
945822
2258
還有什麽東西能阻檔機器人閱讀書籍,
16:00
reading literature文學 and discovering發現
this idea理念 that knowledge知識
320
948104
2852
並了解到:博學比無知要好得多,
16:02
is actually其實 better than ignorance無知
321
950980
1572
16:04
and still just shifting its own擁有 goals目標
and rewriting重寫 that programming程序設計?
322
952576
4218
進而改變它的目標,
重新編寫自己的程式呢?
16:09
Stuart斯圖爾特 Russell羅素: Yes, so we want
it to learn學習 more, as I said,
323
957692
6356
斯圖爾特拉塞爾:是的,
我們想要它去學習,就像我說的,
讓機器人學習我們的目標,
16:16
about our objectives目標.
324
964072
1287
16:17
It'll它會 only become成為 more certain某些
as it becomes more correct正確,
325
965383
5521
只有在理解得越正確的時候,
它們才會更明確我們要的東西,
16:22
so the evidence證據 is there
326
970928
1945
佐證擺在那裡,
16:24
and it's going to be designed設計
to interpret it correctly正確地.
327
972897
2724
並且我們使它能夠正確解讀這些目標。
16:27
It will understand理解, for example,
that books圖書 are very biased
328
975645
3956
比如說,它能夠從書中的佐證
判斷出那些富含偏見的書,
16:31
in the evidence證據 they contain包含.
329
979625
1483
16:33
They only talk about kings國王 and princes王子
330
981132
2397
像是只講述國王、王子,
和男性精英白人之類的書。
16:35
and elite原種 white白色 male people doing stuff東東.
331
983553
2800
16:38
So it's a complicated複雜 problem問題,
332
986377
2096
所以這是一個複雜的問題,
16:40
but as it learns獲悉 more about our objectives目標
333
988497
3872
但當它更深入地學習我們的目標時,
16:44
it will become成為 more and more useful有用 to us.
334
992393
2063
它會變得越來越有用。
16:46
CACA: And you couldn't不能
just boil it down to one law,
335
994480
2526
CA:所以它十分複雜,
遠不足以濃縮成一條法則嗎?
16:49
you know, hardwired硬線 in:
336
997030
1650
像是,把這樣的命令燒録進去:
16:50
"if any human人的 ever tries嘗試 to switch開關 me off,
337
998704
3293
「如果人類想把我關掉,
16:54
I comply執行. I comply執行."
338
1002021
1935
我要服從。我要服從。」
16:55
SRSR: Absolutely絕對 not.
339
1003980
1182
SR:絕對不行。
16:57
That would be a terrible可怕 idea理念.
340
1005186
1499
那將是一個很糟糕的主意。
16:58
So imagine想像 that you have
a self-driving自駕車 car汽車
341
1006709
2689
試想一下,你有一輛無人駕駛汽車,
17:01
and you want to send發送 your five-year-old五十歲
342
1009422
2433
你想讓它送你五歲的孩子去幼稚園。
17:03
off to preschool幼兒.
343
1011879
1174
17:05
Do you want your five-year-old五十歲
to be able能夠 to switch開關 off the car汽車
344
1013077
3101
你會希望你五歲的孩子
在汽車運行的過程中將它關閉嗎?
17:08
while it's driving主動 along沿?
345
1016202
1213
應該不會吧。
17:09
Probably大概 not.
346
1017439
1159
所以它得理解
17:10
So it needs需求 to understand理解 how rational合理的
and sensible明智 the person is.
347
1018622
4703
下指令的人有多理智、有多講道理。
17:15
The more rational合理的 the person,
348
1023349
1676
這個人越理智,
17:17
the more willing願意 you are
to be switched交換的 off.
349
1025049
2103
它就越願意被你關掉。
如果這個人是完全思緒混亂
或者甚至是有惡意的,
17:19
If the person is completely全然
random隨機 or even malicious惡毒,
350
1027176
2543
那它就不太願意被你關掉了。
17:21
then you're less willing願意
to be switched交換的 off.
351
1029743
2512
17:24
CACA: All right. Stuart斯圖爾特, can I just say,
352
1032279
1866
CA:好吧。斯圖爾特,我得說,
17:26
I really, really hope希望 you
figure數字 this out for us.
353
1034169
2314
我真的希望你為我們所有人,
找到解決的辦法。
很感謝你的演講。
十分精彩。
17:28
Thank you so much for that talk.
That was amazing驚人.
354
1036507
2375
SR:謝謝。
CA:謝謝。
17:30
SRSR: Thank you.
355
1038906
1167
(掌聲)
17:32
(Applause掌聲)
356
1040097
1837
Translated by Yi-Fan Yu
Reviewed by Wilde Luo

▲Back to top

ABOUT THE SPEAKER
Stuart Russell - AI expert
Stuart Russell wrote the standard text on AI; now he thinks deeply on AI's future -- and the future of us humans, too.

Why you should listen

Stuart Russell is a professor (and formerly chair) of Electrical Engineering and Computer Sciences at University of California at Berkeley. His book Artificial Intelligence: A Modern Approach (with Peter Norvig) is the standard text in AI; it has been translated into 13 languages and is used in more than 1,300 universities in 118 countries. His research covers a wide range of topics in artificial intelligence including machine learning, probabilistic reasoning, knowledge representation, planning, real-time decision making, multitarget tracking, computer vision, computational physiology, global seismic monitoring and philosophical foundations.

He also works for the United Nations, developing a new global seismic monitoring system for the nuclear-test-ban treaty. His current concerns include the threat of autonomous weapons and the long-term future of artificial intelligence and its relation to humanity.

More profile about the speaker
Stuart Russell | Speaker | TED.com

Data provided by TED.

This site was created in May 2015 and the last update was on January 12, 2020. It will no longer be updated.

We are currently creating a new site called "eng.lish.video" and would be grateful if you could access it.

If you have any questions or suggestions, please feel free to write comments in your language on the contact form.

Privacy Policy

Developer's Blog

Buy Me A Coffee