ABOUT THE SPEAKER
Nicholas Christakis - Physician, social scientist
Nicholas Christakis explores how the large-scale, face-to-face social networks in which we are embedded affect our lives, and what we can do to take advantage of this fact.

Why you should listen

People aren't merely social animals in the usual sense, for we don't just live in groups. We live in networks -- and we have done so ever since we emerged from the African savannah. Via intricately branching paths tracing out cascading family connections, friendship ties, and work relationships, we are interconnected to hundreds or even thousands of specific people, most of whom we do not know. We affect them and they affect us.

Nicholas Christakis' work examines the biological, psychological, sociological, and mathematical rules that govern how we form these social networks, and the rules that govern how they shape our lives. His work shows how phenomena as diverse as obesity, smoking, emotions, ideas, germs, and altruism can spread through our social ties, and how genes can partially underlie our creation of social ties to begin with. His work also sheds light on how we might take advantage of an understanding of social networks to make the world a better place.

At Yale, Christakis is a Professor of Social and Natural Science, and he directs a diverse research group in the field of biosocial science, primarily investigating social networks. His popular undergraduate course "Health of the Public" is available as a podcast. His book, Connected, co-authored with James H. Fowler, appeared in 2009, and has been translated into 20 languages. In 2009, he was named by Time magazine to its annual list of the 100 most influential people in the world, and also, in 2009 and 2010, by Foreign Policy magazine to its list of 100 top global thinkers

More profile about the speaker
Nicholas Christakis | Speaker | TED.com
TED@Cannes

Nicholas Christakis: How social networks predict epidemics

古樂朋:利用人際網路預測流行趨勢

Filmed:
669,862 views

在建立了錯綜複雜的人際網路連結之後,古樂朋和同事James Fowler開始尋找運用這些資訊,促進我們生活的方法。這一次他的研究所帶來的頭條:研究人際網絡,能夠大幅提前預測流行趨勢的發生,不論是創新概念的散播,或是危險的傳染病(如H1N1)
- Physician, social scientist
Nicholas Christakis explores how the large-scale, face-to-face social networks in which we are embedded affect our lives, and what we can do to take advantage of this fact. Full bio

Double-click the English transcript below to play the video.

00:15
For the last 10 years年份, I've been spending開支 my time trying to figure數字 out
0
0
3000
過去10年來,我試著了解,
00:18
how and why human人的 beings眾生
1
3000
2000
人們為何形成社交網路,
00:20
assemble集合 themselves他們自己 into social社會 networks網絡.
2
5000
3000
以及這些網路是如何形成的。
00:23
And the kind of social社會 network網絡 I'm talking about
3
8000
2000
我所要談的網路,
00:25
is not the recent最近 online線上 variety品種,
4
10000
2000
並非現在所謂的網路社群。
00:27
but rather, the kind of social社會 networks網絡
5
12000
2000
而是更原始的社交網路,
00:29
that human人的 beings眾生 have been assembling組裝 for hundreds數以百計 of thousands數千 of years年份,
6
14000
3000
自從人類在非洲大草原出現以來,
00:32
ever since以來 we emerged出現 from the African非洲人 savannah大草原.
7
17000
3000
已經使用這種連結十幾萬年了。
00:35
So, I form形成 friendships友誼 and co-worker同事
8
20000
2000
我和其他人分享友誼、同事、
00:37
and sibling兄弟 and relative相對的 relationships關係 with other people
9
22000
3000
手足和親戚等等人際關係,
00:40
who in turn have similar類似 relationships關係 with other people.
10
25000
2000
這些人也和其他人有相似的連結。
00:42
And this spreads利差 on out endlessly不休 into a distance距離.
11
27000
3000
這樣的連結向外擴散,
00:45
And you get a network網絡 that looks容貌 like this.
12
30000
2000
從而得到的網路看起來會像這樣。
00:47
Every一切 dot is a person.
13
32000
2000
每點代表一個人,
00:49
Every一切 line between之間 them is a relationship關係 between之間 two people --
14
34000
2000
兩點間的線則代表兩個人之間的關係,
00:51
different不同 kinds of relationships關係.
15
36000
2000
各種不同的關係。
00:53
And you can get this kind of vast廣大 fabric of humanity人性,
16
38000
3000
種種的關係交織成一幅巨大的網路,
00:56
in which哪一個 we're all embedded嵌入式.
17
41000
2000
而我們都位於其中。
00:58
And my colleague同事, James詹姆士 Fowler福勒 and I have been studying研究 for quite相當 sometime某時
18
43000
3000
我的同事James Fowler和我花了滿長時間研究,
01:01
what are the mathematical數學的, social社會,
19
46000
2000
想找到一個基於數學、社會學、
01:03
biological生物 and psychological心理 rules規則
20
48000
3000
生物學或是心理學的規則,
01:06
that govern治理 how these networks網絡 are assembled組裝
21
51000
2000
能夠主導這些網路的形成。
01:08
and what are the similar類似 rules規則
22
53000
2000
以及是否有類似的規則
01:10
that govern治理 how they operate操作, how they affect影響 our lives生活.
23
55000
3000
主導網路的運作,進而影響我們的生活。
01:13
But recently最近, we've我們已經 been wondering想知道
24
58000
2000
直到最近,我們開始思考,
01:15
whether是否 it might威力 be possible可能 to take advantage優點 of this insight眼光,
25
60000
3000
是否有可能利用這些發現,
01:18
to actually其實 find ways方法 to improve提高 the world世界,
26
63000
2000
來找出增進人類福祉的方法,
01:20
to do something better,
27
65000
2000
改善現況,
01:22
to actually其實 fix固定 things, not just understand理解 things.
28
67000
3000
去導正,而非只是單純理解問題。
01:25
So one of the first things we thought we would tackle滑車
29
70000
3000
我們最先著手研究的議題,
01:28
would be how we go about predicting預測 epidemics流行病.
30
73000
3000
是如何預測流行趨勢。
01:31
And the current當前 state of the art藝術 in predicting預測 an epidemic疫情 --
31
76000
2000
目前最先進的預測方法—
01:33
if you're the CDCCDC or some other national國民 body身體 --
32
78000
3000
如果你在疾病管制中心(CDC)或類似的政府單位工作—
01:36
is to sit in the middle中間 where you are
33
81000
2000
是待在中央枯等,
01:38
and collect蒐集 data數據
34
83000
2000
並收集資料,
01:40
from physicians醫師 and laboratories實驗室 in the field領域
35
85000
2000
第一線的醫生和實驗室把資料傳進來,
01:42
that report報告 the prevalence流行 or the incidence發生率 of certain某些 conditions條件.
36
87000
3000
報告疾病的流行程度或發生機率。
01:45
So, so and so patients耐心 have been diagnosed確診 with something,
37
90000
3000
這邊有某個病患被診斷出來,
01:48
or other patients耐心 have been diagnosed確診,
38
93000
2000
那邊又有別人得病。
01:50
and all these data數據 are fed美聯儲 into a central中央 repository知識庫, with some delay延遲.
39
95000
3000
資訊經過一些延遲之後,傳進中央的資料庫裡。
01:53
And if everything goes smoothly順利,
40
98000
2000
如果一切順利,
01:55
one to two weeks from now
41
100000
2000
一到兩個禮拜之後,
01:57
you'll你會 know where the epidemic疫情 was today今天.
42
102000
3000
我們才會得知當天流行病的狀況。
02:00
And actually其實, about a year or so ago,
43
105000
2000
事實上一年多以前,
02:02
there was this promulgation發布
44
107000
2000
有人發表了這樣的概念,
02:04
of the idea理念 of Google谷歌 Flu流感 Trends趨勢, with respect尊重 to the flu流感,
45
109000
3000
使用Google流感趨勢(Flu Trends)來尋找流感。
02:07
where by looking at people's人們 searching搜索 behavior行為 today今天,
46
112000
3000
透過對搜尋行為的分析,
02:10
we could know where the flu流感 --
47
115000
2000
我們能夠得知流感發生的區域,
02:12
what the status狀態 of the epidemic疫情 was today今天,
48
117000
2000
得知當天傳染病的狀態,
02:14
what's the prevalence流行 of the epidemic疫情 today今天.
49
119000
3000
以及傳染病的影響程度。
02:17
But what I'd like to show顯示 you today今天
50
122000
2000
不過這次我要介紹的方法,
02:19
is a means手段 by which哪一個 we might威力 get
51
124000
2000
讓我們不只能夠
02:21
not just rapid快速 warning警告 about an epidemic疫情,
52
126000
3000
得到傳染病的快速預警,
02:24
but also actually其實
53
129000
2000
更能夠讓我們
02:26
early detection發現 of an epidemic疫情.
54
131000
2000
提早偵測到流行病的發生。
02:28
And, in fact事實, this idea理念 can be used
55
133000
2000
事實上,這個概念不止能夠
02:30
not just to predict預測 epidemics流行病 of germs病菌,
56
135000
3000
用來預測病菌的流行,
02:33
but also to predict預測 epidemics流行病 of all sorts排序 of kinds.
57
138000
3000
也能夠應用來預測各種事物的趨勢。
02:37
For example, anything that spreads利差 by a form形成 of social社會 contagion傳染性
58
142000
3000
例如,任何能透過社群的方式傳播的事物,
02:40
could be understood了解 in this way,
59
145000
2000
都可以用這種方式理解。
02:42
from abstract抽象 ideas思路 on the left
60
147000
2000
從左邊的抽象概念,
02:44
like patriotism愛國主義, or altruism利他主義, or religion宗教
61
149000
3000
像是愛國主義、利他精神,或是宗教,
02:47
to practices做法
62
152000
2000
到具體的事物,
02:49
like dieting節食 behavior行為, or book purchasing購買,
63
154000
2000
像是飲食行為、購買書籍、
02:51
or drinking, or bicycle-helmet自行車頭盔 [and] other safety安全 practices做法,
64
156000
3000
酗酒、使用腳踏車安全帽等安全措施,
02:54
or products製品 that people might威力 buy購買,
65
159000
2000
或是日常用品,
02:56
purchases購買 of electronic電子 goods產品,
66
161000
2000
電子產品,
02:58
anything in which哪一個 there's kind of an interpersonal人際交往 spread傳播.
67
163000
3000
任何透過人與人之間傳遞的事物。
03:01
A kind of a diffusion擴散 of innovation革新
68
166000
2000
這種創新的擴散,
03:03
could be understood了解 and predicted預料到的
69
168000
2000
可以透過接下來我將展示的機制,
03:05
by the mechanism機制 I'm going to show顯示 you now.
70
170000
3000
來理解並且預測。
03:08
So, as all of you probably大概 know,
71
173000
2000
你們或許知道,
03:10
the classic經典 way of thinking思維 about this
72
175000
2000
最經典的範例,
03:12
is the diffusion-of-innovation擴散的創新,
73
177000
2000
就是創新的擴散,
03:14
or the adoption採用 curve曲線.
74
179000
2000
或是所謂的「普及曲線」。
03:16
So here on the Y-axisY軸, we have the percent百分 of the people affected受影響,
75
181000
2000
Y軸是受影響人數的百分比,
03:18
and on the X-axisX軸, we have time.
76
183000
2000
X軸表示時間的推移。
03:20
And at the very beginning開始, not too many許多 people are affected受影響,
77
185000
3000
剛開始沒有太多人受到影響,
03:23
and you get this classic經典 sigmoidalS形,
78
188000
2000
然後你會看到經典的反曲線,
03:25
or S-shapedS-形, curve曲線.
79
190000
2000
或是S型曲線。
03:27
And the reason原因 for this shape形狀 is that at the very beginning開始,
80
192000
2000
形成這種曲線的原因是,
03:29
let's say one or two people
81
194000
2000
一開始只有一兩個人
03:31
are infected感染, or affected受影響 by the thing
82
196000
2000
被影響,或是被「感染」,
03:33
and then they affect影響, or infect感染, two people,
83
198000
2000
然後傳遞給另外兩個人,
03:35
who in turn affect影響 four, eight, 16 and so forth向前,
84
200000
3000
接著4、8、16,以此類推,
03:38
and you get the epidemic疫情 growth發展 phase of the curve曲線.
85
203000
3000
這時進入迅速增長的階段。
03:41
And eventually終於, you saturate飽和 the population人口.
86
206000
2000
最終擴散到整個群體。
03:43
There are fewer and fewer people
87
208000
2000
於是越來越難找到
03:45
who are still available可得到 that you might威力 infect感染,
88
210000
2000
尚未被影響的人,
03:47
and then you get the plateau高原 of the curve曲線,
89
212000
2000
這時候曲線進入高原期,
03:49
and you get this classic經典 sigmoidalS形 curve曲線.
90
214000
3000
形成整條反曲線。
03:52
And this holds持有 for germs病菌, ideas思路,
91
217000
2000
這個模式在病菌、創意、
03:54
product產品 adoption採用, behaviors行為,
92
219000
2000
新產品的普及、行為,
03:56
and the like.
93
221000
2000
以及類似情況都適用。
03:58
But things don't just diffuse擴散 in human人的 populations人群 at random隨機.
94
223000
3000
要注意的是,事物並不是隨機在人群中蔓延,
04:01
They actually其實 diffuse擴散 through通過 networks網絡.
95
226000
2000
而是隨著網路分布來擴散。
04:03
Because, as I said, we live生活 our lives生活 in networks網絡,
96
228000
3000
因為我們活在網路的世界,
04:06
and these networks網絡 have a particular特定 kind of a structure結構體.
97
231000
3000
而這種網路有特定的結構。
04:09
Now if you look at a network網絡 like this --
98
234000
2000
觀察這個網路,
04:11
this is 105 people.
99
236000
2000
裡面有105人。
04:13
And the lines represent代表 -- the dots are the people,
100
238000
2000
每個點代表一個人
04:15
and the lines represent代表 friendship友誼 relationships關係.
101
240000
2000
每條線代表彼此間的友誼關係。
04:17
You might威力 see that people occupy佔據
102
242000
2000
人們在這個網路中
04:19
different不同 locations地點 within the network網絡.
103
244000
2000
佔據不同的位置,
04:21
And there are different不同 kinds of relationships關係 between之間 the people.
104
246000
2000
彼此間有不同類型的關係。
04:23
You could have friendship友誼 relationships關係, sibling兄弟 relationships關係,
105
248000
3000
可能是朋友、手足、
04:26
spousal配偶 relationships關係, co-worker同事 relationships關係,
106
251000
3000
配偶、同事、
04:29
neighbor鄰居 relationships關係 and the like.
107
254000
3000
鄰居等等。
04:32
And different不同 sorts排序 of things
108
257000
2000
不同的事物會
04:34
spread傳播 across橫過 different不同 sorts排序 of ties聯繫.
109
259000
2000
透過不同的關係來傳播。
04:36
For instance, sexually transmitted發送 diseases疾病
110
261000
2000
例如,性傳染病,
04:38
will spread傳播 across橫過 sexual有性 ties聯繫.
111
263000
2000
會藉由性伴侶的聯繫來散佈。
04:40
Or, for instance, people's人們 smoking抽煙 behavior行為
112
265000
2000
或者像人們吸菸,
04:42
might威力 be influenced影響 by their friends朋友.
113
267000
2000
可能是受到朋友的影響。
04:44
Or their altruistic利他 or their charitable慈善 giving behavior行為
114
269000
2000
人們的善行或捐助,
04:46
might威力 be influenced影響 by their coworkers合作夥伴,
115
271000
2000
可能是出自同事間的影響,
04:48
or by their neighbors鄰居.
116
273000
2000
或是他們鄰居的行為。
04:50
But not all positions位置 in the network網絡 are the same相同.
117
275000
3000
但是網路中的位置並非都一樣。
04:53
So if you look at this, you might威力 immediately立即 grasp把握
118
278000
2000
這張圖或許能讓你了解,
04:55
that different不同 people have different不同 numbers數字 of connections連接.
119
280000
3000
不同人有不同數量的連結。
04:58
Some people have one connection連接, some have two,
120
283000
2000
有的人一個,有人兩個,
05:00
some have six, some have 10 connections連接.
121
285000
3000
有人六個,有的人擁有十個連結。
05:03
And this is called the "degree" of a node節點,
122
288000
2000
也就是一個節點的「度數」,
05:05
or the number of connections連接 that a node節點 has.
123
290000
2000
或是一個節點所擁有的連結數。
05:07
But in addition加成, there's something else其他.
124
292000
2000
除此之外,
05:09
So, if you look at nodes節點 A and B,
125
294000
2000
如果觀察節點A與B,
05:11
they both have six connections連接.
126
296000
2000
兩者都擁有六個連結。
05:13
But if you can see this image圖片 [of the network網絡] from a bird's鳥類 eye view視圖,
127
298000
3000
但是如果鳥瞰整個圖像,
05:16
you can appreciate欣賞 that there's something very different不同
128
301000
2000
你就會發現兩者之間,
05:18
about nodes節點 A and B.
129
303000
2000
A與B的不同之處
05:20
So, let me ask you this -- I can cultivate培育 this intuition直覺 by asking a question --
130
305000
3000
問題來了 -請用直覺回答-
05:23
who would you rather be
131
308000
2000
你比較想當誰:
05:25
if a deadly致命 germ病菌 was spreading傳播 through通過 the network網絡, A or B?
132
310000
3000
如果致命病菌正在網路中散佈,A或是B?
05:28
(Audience聽眾: B.) Nicholas尼古拉斯 Christakis克里斯塔基斯: B, it's obvious明顯.
133
313000
2000
(觀眾:B)很明顯的是B。
05:30
B is located位於 on the edge邊緣 of the network網絡.
134
315000
2000
B處在網路的邊緣。
05:32
Now, who would you rather be
135
317000
2000
現在,你比較想當誰:
05:34
if a juicy多汁 piece of gossip八卦 were spreading傳播 through通過 the network網絡?
136
319000
3000
如果網路中流傳著一個天大的八卦?
05:37
A. And you have an immediate即時 appreciation升值
137
322000
3000
A。而且你馬上能夠理解到,
05:40
that A is going to be more likely容易
138
325000
2000
A會有更高的機率
05:42
to get the thing that's spreading傳播 and to get it sooner
139
327000
3000
趕上流行,而且早先一步。
05:45
by virtue美德 of their structural結構 location位置 within the network網絡.
140
330000
3000
這要歸功於他們在網路中的位置。
05:48
A, in fact事實, is more central中央,
141
333000
2000
A比較靠近中央,
05:50
and this can be formalized形式化 mathematically數學.
142
335000
3000
這可以用數學形式來描述。
05:53
So, if we want to track跟踪 something
143
338000
2000
因此,如果我們希望追蹤某些事物
05:55
that was spreading傳播 through通過 a network網絡,
144
340000
3000
在網路中散佈的狀態,
05:58
what we ideally理想 would like to do is to set up sensors傳感器
145
343000
2000
理想狀況是佈置感測器,
06:00
on the central中央 individuals個人 within the network網絡,
146
345000
2000
對準網路裡的中央個體,
06:02
including包含 node節點 A,
147
347000
2000
包括節點A。
06:04
monitor監控 those people that are right there in the middle中間 of the network網絡,
148
349000
3000
監視這些位於中心位置的人們,
06:07
and somehow不知何故 get an early detection發現
149
352000
2000
以早期的預警到
06:09
of whatever隨你 it is that is spreading傳播 through通過 the network網絡.
150
354000
3000
正在網路上傳播的事物。
06:12
So if you saw them contract合同 a germ病菌 or a piece of information信息,
151
357000
3000
亦即,如果這些人染病或是獲悉某些資訊,
06:15
you would know that, soon不久 enough足夠,
152
360000
2000
你就可以推斷,要不了多久,
06:17
everybody每個人 was about to contract合同 this germ病菌
153
362000
2000
所有人都會被波及,不管是染病,
06:19
or this piece of information信息.
154
364000
2000
或是得到資訊。
06:21
And this would be much better
155
366000
2000
這樣的作法遠勝於
06:23
than monitoring監控 six randomly隨機 chosen選擇 people,
156
368000
2000
隨機挑選六個人來監控,
06:25
without reference參考 to the structure結構體 of the population人口.
157
370000
3000
因為該做法並未考慮到群體的結構。
06:28
And in fact事實, if you could do that,
158
373000
2000
若是真的能夠實行,
06:30
what you would see is something like this.
159
375000
2000
我們會得到類似這樣的情況:
06:32
On the left-hand左手 panel面板, again, we have the S-shapedS-形 curve曲線 of adoption採用.
160
377000
3000
左邊的圖表,是S型的普及曲線。
06:35
In the dotted red line, we show顯示
161
380000
2000
我們用紅色虛線標示出,
06:37
what the adoption採用 would be in the random隨機 people,
162
382000
2000
一般人的普及情形,
06:39
and in the left-hand左手 line, shifted to the left,
163
384000
3000
左邊的線段,則向左偏移,
06:42
we show顯示 what the adoption採用 would be
164
387000
2000
顯示出網路中的核心個體,
06:44
in the central中央 individuals個人 within the network網絡.
165
389000
2000
他們的普及情形。
06:46
On the Y-axisY軸 is the cumulative累積的 instances實例 of contagion傳染性,
166
391000
2000
Y軸是受到傳染「病例」的累積數量,
06:48
and on the X-axisX軸 is the time.
167
393000
2000
X軸則是時間。
06:50
And on the right-hand右手 side, we show顯示 the same相同 data數據,
168
395000
2000
右邊的圖表是相同的資料,
06:52
but here with daily日常 incidence發生率.
169
397000
2000
呈現的是每日的「感染」數字。
06:54
And what we show顯示 here is -- like, here --
170
399000
2000
我們想要傳達的是,
06:56
very few少數 people are affected受影響, more and more and more and up to here,
171
401000
2000
一開始少數人受到影響,然後越來越多直到這裡,
06:58
and here's這裡的 the peak of the epidemic疫情.
172
403000
2000
這裡就是傳播的高峰期。
07:00
But shifted to the left is what's occurring發生 in the central中央 individuals個人.
173
405000
2000
向左偏的則是在核心個體發生的情形,
07:02
And this difference區別 in time between之間 the two
174
407000
3000
這兩條曲線間的時間差,
07:05
is the early detection發現, the early warning警告 we can get,
175
410000
3000
就是預測時差,我們可以從中得到預警,
07:08
about an impending即將到來的 epidemic疫情
176
413000
2000
人群中是否有
07:10
in the human人的 population人口.
177
415000
2000
即將爆發的疫情。
07:12
The problem問題, however然而,
178
417000
2000
然而問題在於,
07:14
is that mapping製圖 human人的 social社會 networks網絡
179
419000
2000
人際間的社交網路,
07:16
is not always possible可能.
180
421000
2000
並不容易繪測。
07:18
It can be expensive昂貴, not feasible可行,
181
423000
2000
這樣的計畫可能所費不貲、非常困難、
07:20
unethical不道德的,
182
425000
2000
具有道德爭議
07:22
or, frankly坦率地說, just not possible可能 to do such這樣 a thing.
183
427000
3000
說實話,就是不可能。
07:25
So, how can we figure數字 out
184
430000
2000
所以,我們要如何找出,
07:27
who the central中央 people are in a network網絡
185
432000
2000
網路中的核心個體在哪,
07:29
without actually其實 mapping製圖 the network網絡?
186
434000
3000
而無需繪出整個網路?
07:32
What we came來了 up with
187
437000
2000
我們所想到的,
07:34
was an idea理念 to exploit利用 an old fact事實,
188
439000
2000
是利用一個既有的事實
07:36
or a known已知 fact事實, about social社會 networks網絡,
189
441000
2000
關於社交網路,眾所皆知的事實。
07:38
which哪一個 goes like this:
190
443000
2000
也就是:
07:40
Do you know that your friends朋友
191
445000
2000
你知道你的朋友,
07:42
have more friends朋友 than you do?
192
447000
3000
所擁有的友人數目比你還多嗎?
07:45
Your friends朋友 have more friends朋友 than you do,
193
450000
3000
朋友的友人數目比自己擁有的還多,
07:48
and this is known已知 as the friendship友誼 paradox悖論.
194
453000
2000
通常這種情況被稱做「友誼悖論」。
07:50
Imagine想像 a very popular流行 person in the social社會 network網絡 --
195
455000
2000
試想社交網路中的人氣王 -
07:52
like a party派對 host主辦 who has hundreds數以百計 of friends朋友 --
196
457000
3000
例如派對的主人,身邊有上百個朋友 --
07:55
and a misanthrope憤世嫉俗者 who has just one friend朋友,
197
460000
2000
和孤僻成性,只有一個朋友的人。
07:57
and you pick someone有人 at random隨機 from the population人口;
198
462000
3000
若是你隨便從人群中挑出一位,
08:00
they were much more likely容易 to know the party派對 host主辦.
199
465000
2000
他們就非常有可能認識這位派對主人,
08:02
And if they nominate提名 the party派對 host主辦 as their friend朋友,
200
467000
2000
而當他們舉出派對主人是自己的朋友,
08:04
that party派對 host主辦 has a hundred friends朋友,
201
469000
2000
由於他有上百個朋友,
08:06
therefore因此, has more friends朋友 than they do.
202
471000
3000
因此遠比自己的朋友數目還多。
08:09
And this, in essence本質, is what's known已知 as the friendship友誼 paradox悖論.
203
474000
3000
在本質上,這就是友誼悖論:
08:12
The friends朋友 of randomly隨機 chosen選擇 people
204
477000
3000
隨機挑選的人,他的朋友,
08:15
have higher更高 degree, and are more central中央
205
480000
2000
會有較高的連結數目,也較為趨近核心,
08:17
than the random隨機 people themselves他們自己.
206
482000
2000
因而優於那些隨機挑選的人。
08:19
And you can get an intuitive直觀的 appreciation升值 for this
207
484000
2000
因此,你可以憑直覺想像,
08:21
if you imagine想像 just the people at the perimeter周長 of the network網絡.
208
486000
3000
如果是那些位於網路邊緣的人,
08:24
If you pick this person,
209
489000
2000
這樣的人,
08:26
the only friend朋友 they have to nominate提名 is this person,
210
491000
3000
他的朋友只會有這個人,
08:29
who, by construction施工, must必須 have at least最小 two
211
494000
2000
而結構上來說,這個人至少會有兩位、
08:31
and typically一般 more friends朋友.
212
496000
2000
甚至更多的朋友。
08:33
And that happens發生 at every一切 peripheral外圍設備 node節點.
213
498000
2000
在每個外圍的節點都是這樣。
08:35
And in fact事實, it happens發生 throughout始終 the network網絡 as you move移動 in,
214
500000
3000
當你越往網路的中心移動時就越常見,
08:38
everyone大家 you pick, when they nominate提名 a random隨機 --
215
503000
2000
每個被你挑到的人,當他們隨意提出一個...
08:40
when a random隨機 person nominates提名 a friend朋友 of theirs他們的,
216
505000
3000
每當提出一個他們的朋友,
08:43
you move移動 closer接近 to the center中央 of the network網絡.
217
508000
3000
你就越靠近網路的中心。
08:46
So, we thought we would exploit利用 this idea理念
218
511000
3000
於是我們認為可以利用這個概念,
08:49
in order訂購 to study研究 whether是否 we could predict預測 phenomena現象 within networks網絡.
219
514000
3000
來研究我們是否能預測網路中所發生的現象。
08:52
Because now, with this idea理念
220
517000
2000
因為有了這樣的發現,
08:54
we can take a random隨機 sample樣品 of people,
221
519000
2000
我們可以從人群中隨機挑選樣本,
08:56
have them nominate提名 their friends朋友,
222
521000
2000
請他們指出他們的朋友,
08:58
those friends朋友 would be more central中央,
223
523000
2000
這些朋友會比較靠近中心,
09:00
and we could do this without having to map地圖 the network網絡.
224
525000
3000
而我們就無須標出整個網路的圖像。
09:03
And we tested測試 this idea理念 with an outbreak暴發 of H1N1 flu流感
225
528000
3000
在哈佛大學,我們利用H1N1流感的爆發
09:06
at Harvard哈佛 College學院
226
531000
2000
來測試這個概念。
09:08
in the fall秋季 and winter冬季 of 2009, just a few少數 months個月 ago.
227
533000
3000
在2009年秋冬,只有幾個月前,
09:11
We took 1,300 randomly隨機 selected undergraduates本科生,
228
536000
3000
我們隨機挑選了1300位大學生,
09:14
we had them nominate提名 their friends朋友,
229
539000
2000
請這些人提供他們的朋友名單,
09:16
and we followed其次 both the random隨機 students學生們 and their friends朋友
230
541000
2000
我們同時追蹤了這些人和他們的朋友,
09:18
daily日常 in time
231
543000
2000
每天為間隔,
09:20
to see whether是否 or not they had the flu流感 epidemic疫情.
232
545000
3000
確認他們是否染上流感。
09:23
And we did this passively被動 by looking at whether是否 or not they'd他們會 gone走了 to university大學 health健康 services服務.
233
548000
3000
除了被動觀察他們是否去健康中心報到,
09:26
And also, we had them [actively積極地] email電子郵件 us a couple一對 of times a week.
234
551000
3000
同時也要求每個禮拜Email給我們。
09:29
Exactly究竟 what we predicted預料到的 happened發生.
235
554000
3000
結果一如我們所預期。
09:32
So the random隨機 group is in the red line.
236
557000
3000
隨機挑選的群體用紅線標示,
09:35
The epidemic疫情 in the friends朋友 group has shifted to the left, over here.
237
560000
3000
他們的朋友則向左邊偏移,在這邊。
09:38
And the difference區別 in the two is 16 days.
238
563000
3000
兩者間的差距是16天。
09:41
By monitoring監控 the friends朋友 group,
239
566000
2000
觀察朋友的群體,
09:43
we could get 16 days advance提前 warning警告
240
568000
2000
能夠讓我們提早16天得到警示,
09:45
of an impending即將到來的 epidemic疫情 in this human人的 population人口.
241
570000
3000
警告人群中即將爆發的傳染病。
09:48
Now, in addition加成 to that,
242
573000
2000
除此之外,
09:50
if you were an analyst分析人士 who was trying to study研究 an epidemic疫情
243
575000
3000
如果你是研究傳染病的分析師,
09:53
or to predict預測 the adoption採用 of a product產品, for example,
244
578000
3000
或者想要預測產品的普及情形。
09:56
what you could do is you could pick a random隨機 sample樣品 of the population人口,
245
581000
3000
你可以從人群中挑選隨機樣本,
09:59
also have them nominate提名 their friends朋友 and follow跟隨 the friends朋友
246
584000
3000
請他們指出自己的朋友,
10:02
and follow跟隨 both the randoms隨機量 and the friends朋友.
247
587000
3000
並且同時追蹤這兩群樣本("隨機群"和"朋友群")。
10:05
Among其中 the friends朋友, the first evidence證據 you saw of a blip曇花一現 above以上 zero
248
590000
3000
在朋友群中,當曲線首次開始上升...
10:08
in adoption採用 of the innovation革新, for example,
249
593000
3000
...例如創新概念的普及,
10:11
would be evidence證據 of an impending即將到來的 epidemic疫情.
250
596000
2000
這個轉折便能標示出即將發生的流行趨勢。
10:13
Or you could see the first time the two curves曲線 diverged分歧,
251
598000
3000
另一種情況是當兩條曲線首次出現分歧時,
10:16
as shown顯示 on the left.
252
601000
2000
如左圖所示。
10:18
When did the randoms隨機量 -- when did the friends朋友 take off
253
603000
3000
隨機群...他們的朋友群是何時起頭,
10:21
and leave離開 the randoms隨機量,
254
606000
2000
離開隨機群的曲線,
10:23
and [when did] their curve曲線 start開始 shifting?
255
608000
2000
使得這條曲線開始偏移?
10:25
And that, as indicated指示 by the white白色 line,
256
610000
2000
從白線上可以發現,
10:27
occurred發生 46 days
257
612000
2000
在整體趨勢達到高峰之前,
10:29
before the peak of the epidemic疫情.
258
614000
2000
提早了46天。
10:31
So this would be a technique技術
259
616000
2000
這樣的技術,
10:33
whereby因此 we could get more than a month-and-a-half一個月和半 warning警告
260
618000
2000
可以讓我們提早一個半月得到預警,
10:35
about a flu流感 epidemic疫情 in a particular特定 population人口.
261
620000
3000
得知特定群體中感冒的流行。
10:38
I should say that
262
623000
2000
應該這樣說,
10:40
how far advanced高級 a notice注意 one might威力 get about something
263
625000
2000
我們能夠多早預知事件的發生,
10:42
depends依靠 on a host主辦 of factors因素.
264
627000
2000
取決於幾個主要的因素。
10:44
It could depend依靠 on the nature性質 of the pathogen病原 --
265
629000
2000
可能由於病原的性質 -
10:46
different不同 pathogens病原體,
266
631000
2000
不同的病原體,
10:48
using運用 this technique技術, you'd get different不同 warning警告 --
267
633000
2000
利用這個技術,可以得到不同的警示 -
10:50
or other phenomena現象 that are spreading傳播,
268
635000
2000
或是可以說,在人際網路的結構裡
10:52
or frankly坦率地說, on the structure結構體 of the human人的 network網絡.
269
637000
3000
某些正在傳播中的現象。
10:55
Now in our case案件, although雖然 it wasn't necessary必要,
270
640000
3000
雖然並非必要,不過在這個案例中,
10:58
we could also actually其實 map地圖 the network網絡 of the students學生們.
271
643000
2000
我們可以將學生的網路完整描繪出來,
11:00
So, this is a map地圖 of 714 students學生們
272
645000
2000
所以,這幅圖包含了714個學生,
11:02
and their friendship友誼 ties聯繫.
273
647000
2000
以及他們的人際關係。
11:04
And in a minute分鐘 now, I'm going to put this map地圖 into motion運動.
274
649000
2000
接下來我會用動畫呈現這幅圖,
11:06
We're going to take daily日常 cuts削減 through通過 the network網絡
275
651000
2000
逐日推進,
11:08
for 120 days.
276
653000
2000
一共120天。
11:10
The red dots are going to be cases of the flu流感,
277
655000
3000
紅點代表受到感染的案例,
11:13
and the yellow黃色 dots are going to be friends朋友 of the people with the flu流感.
278
658000
3000
黃點則代表受感染學生的朋友,
11:16
And the size尺寸 of the dots is going to be proportional成比例的
279
661000
2000
而點的大小則以比例的方式,
11:18
to how many許多 of their friends朋友 have the flu流感.
280
663000
2000
呈現它周遭朋友受到傳染的數量,
11:20
So bigger dots mean more of your friends朋友 have the flu流感.
281
665000
3000
也就是說,越大的點代表你有越多的朋友感冒。
11:23
And if you look at this image圖片 -- here we are now in September九月 the 13th --
282
668000
3000
觀察這張圖 -現在是9月13號-
11:26
you're going to see a few少數 cases light up.
283
671000
2000
你會看到幾個病例亮起來。
11:28
You're going to see kind of blooming怒放 of the flu流感 in the middle中間.
284
673000
2000
中心區域裡,傳染就像開花一樣向外散布。
11:30
Here we are on October十月 the 19th.
285
675000
3000
接下來到了10月19號,
11:33
The slope of the epidemic疫情 curve曲線 is approaching接近 now, in November十一月.
286
678000
2000
傳染曲線開始上升,到了11月,
11:35
Bang, bang, bang, bang, bang -- you're going to see lots of blooming怒放 in the middle中間,
287
680000
3000
砰,砰,砰,越來越多病例在中央區域發生。
11:38
and then you're going to see a sort分類 of leveling練級 off,
288
683000
2000
接著情勢開始趨緩,
11:40
fewer and fewer cases towards the end結束 of December十二月.
289
685000
3000
越來越少人受到感染,直到十二月底。
11:43
And this type類型 of a visualization可視化
290
688000
2000
這種類型的圖像化資訊,
11:45
can show顯示 that epidemics流行病 like this take root
291
690000
2000
可以呈現出流行事件開始扎根,
11:47
and affect影響 central中央 individuals個人 first,
292
692000
2000
先影響中心的個體,
11:49
before they affect影響 others其他.
293
694000
2000
再向外擴散的全貌。
11:51
Now, as I've been suggesting提示,
294
696000
2000
如我之前所說的,
11:53
this method方法 is not restricted限制 to germs病菌,
295
698000
3000
這套方法並不局限於病菌,
11:56
but actually其實 to anything that spreads利差 in populations人群.
296
701000
2000
可以是透過人群傳播的任何事物。
11:58
Information信息 spreads利差 in populations人群,
297
703000
2000
資訊透過人群傳遞,
12:00
norms規範 can spread傳播 in populations人群,
298
705000
2000
規則能透過人群來散佈,
12:02
behaviors行為 can spread傳播 in populations人群.
299
707000
2000
行為也能夠透過人群傳播
12:04
And by behaviors行為, I can mean things like criminal刑事 behavior行為,
300
709000
3000
談到行為,像是犯罪,
12:07
or voting表決 behavior行為, or health健康 care關心 behavior行為,
301
712000
3000
投票,衛生習慣-
12:10
like smoking抽煙, or vaccination疫苗接種,
302
715000
2000
像是吸菸或是疫苗接種,
12:12
or product產品 adoption採用, or other kinds of behaviors行為
303
717000
2000
新產品的採用,或是其他種類的行為,
12:14
that relate涉及 to interpersonal人際交往 influence影響.
304
719000
2000
與人們之間的相互影響有關。
12:16
If I'm likely容易 to do something that affects影響 others其他 around me,
305
721000
3000
如果我打算做某些事來影響周圍的人,
12:19
this technique技術 can get early warning警告 or early detection發現
306
724000
3000
這套技巧就可以提前預警,或是偵測,
12:22
about the adoption採用 within the population人口.
307
727000
3000
事物在人群中的普及程度。
12:25
The key thing is that for it to work,
308
730000
2000
讓它管用的關鍵在於,
12:27
there has to be interpersonal人際交往 influence影響.
309
732000
2000
人們之間要能互相影響,
12:29
It cannot不能 be because of some broadcast廣播 mechanism機制
310
734000
2000
而非因為某種廣播機制,
12:31
affecting影響 everyone大家 uniformly均勻.
311
736000
3000
使得每個人都受到相同的影響。
12:35
Now the same相同 insights見解
312
740000
2000
同樣的發現,
12:37
can also be exploited利用 -- with respect尊重 to networks網絡 --
313
742000
3000
透過網路的傳播,也能夠有
12:40
can also be exploited利用 in other ways方法,
314
745000
3000
各式各樣的應用,
12:43
for example, in the use of targeting針對
315
748000
2000
例如,用來標示出,
12:45
specific具體 people for interventions干預措施.
316
750000
2000
特定的目標以進行干預。
12:47
So, for example, most of you are probably大概 familiar
317
752000
2000
舉例來說,大部分的人可能對
12:49
with the notion概念 of herd放牧 immunity免疫.
318
754000
2000
"群體免疫力"感到熟悉。
12:51
So, if we have a population人口 of a thousand people,
319
756000
3000
如果這裡有一千人的群體,
12:54
and we want to make the population人口 immune免疫的 to a pathogen病原,
320
759000
3000
我們希望讓群體對某個病原體免疫,
12:57
we don't have to immunize免疫 every一切 single person.
321
762000
2000
我們不需要對每個人施打疫苗。
12:59
If we immunize免疫 960 of them,
322
764000
2000
若是讓其中960人免疫,
13:01
it's as if we had immunized免疫 a hundred [percent百分] of them.
323
766000
3000
效果就相當於整個群體都免疫,
13:04
Because even if one or two of the non-immune非免疫 people gets得到 infected感染,
324
769000
3000
因為即使一兩個沒有免疫能力的人受到感染,
13:07
there's no one for them to infect感染.
325
772000
2000
他也沒有人能夠傳染,
13:09
They are surrounded包圍 by immunized免疫 people.
326
774000
2000
感染者被免疫的人所圍繞。
13:11
So 96 percent百分 is as good as 100 percent百分.
327
776000
3000
所以百分之96的效果相當於百分之百。
13:14
Well, some other scientists科學家們 have estimated預計
328
779000
2000
其他的科學家估計,
13:16
what would happen發生 if you took a 30 percent百分 random隨機 sample樣品
329
781000
2000
如果只靠30%的隨機樣本,
13:18
of these 1000 people, 300 people and immunized免疫 them.
330
783000
3000
30%在1000人中,也就是讓300個人免疫,
13:21
Would you get any population-level人口水平 immunity免疫?
331
786000
2000
是否能夠達到群體層次的免疫?
13:23
And the answer回答 is no.
332
788000
3000
答案是"不能"。
13:26
But if you took this 30 percent百分, these 300 people
333
791000
2000
但是,如果對這30%,要300個人
13:28
and had them nominate提名 their friends朋友
334
793000
2000
舉出他們的朋友,
13:30
and took the same相同 number of vaccine疫苗 doses劑量
335
795000
3000
然後用同樣數量的疫苗藥劑,
13:33
and vaccinated接種疫苗 the friends朋友 of the 300 --
336
798000
2000
為這群300人的朋友接種,
13:35
the 300 friends朋友 --
337
800000
2000
300位朋友,
13:37
you can get the same相同 level水平 of herd放牧 immunity免疫
338
802000
2000
就能夠得到相同於,讓96%的人免疫
13:39
as if you had vaccinated接種疫苗 96 percent百分 of the population人口
339
804000
3000
所達到的群體免疫程度。
13:42
at a much greater更大 efficiency效率, with a strict嚴格 budget預算 constraint約束.
340
807000
3000
更有效率,也節省預算。
13:45
And similar類似 ideas思路 can be used, for instance,
341
810000
2000
類似的概念也能用於
13:47
to target目標 distribution分配 of things like bed nets
342
812000
2000
物資的分配標的,例如在發展中國家
13:49
in the developing發展 world世界.
343
814000
2000
蚊帳的分發方式。
13:51
If we could understand理解 the structure結構體 of networks網絡 in villages村莊,
344
816000
3000
若是能夠了解村落中的網路架構,
13:54
we could target目標 to whom to give the interventions干預措施
345
819000
2000
我們就能影響關鍵的節點,
13:56
to foster培育 these kinds of spreads利差.
346
821000
2000
以增進這種形式的散佈。
13:58
Or, frankly坦率地說, for advertising廣告 with all kinds of products製品.
347
823000
3000
或是老實說,用來宣傳各式各樣的產品。
14:01
If we could understand理解 how to target目標,
348
826000
2000
如果能夠了解
14:03
it could affect影響 the efficiency效率
349
828000
2000
如何鎖定焦點,
14:05
of what we're trying to achieve實現.
350
830000
2000
就可以提高成功的效率。
14:07
And in fact事實, we can use data數據
351
832000
2000
事實上現在有數不清的來源。
14:09
from all kinds of sources來源 nowadays如今 [to do this].
352
834000
2000
能夠提供我們所需的資料。
14:11
This is a map地圖 of eight million百萬 phone電話 users用戶
353
836000
2000
這是一份歐洲國家中,
14:13
in a European歐洲的 country國家.
354
838000
2000
八百萬電話用戶的分布圖。
14:15
Every一切 dot is a person, and every一切 line represents代表
355
840000
2000
每個點代表一個用戶,每條線
14:17
a volume of calls電話 between之間 the people.
356
842000
2000
代表人們之間的通話量。
14:19
And we can use such這樣 data數據, that's being存在 passively被動 obtained獲得,
357
844000
3000
我們可以利用這份被動獲得的資料,
14:22
to map地圖 these whole整個 countries國家
358
847000
2000
描繪出整個國家的全貌,
14:24
and understand理解 who is located位於 where within the network網絡.
359
849000
3000
並且定位每個人在網路中的位置,
14:27
Without沒有 actually其實 having to query詢問 them at all,
360
852000
2000
而無須一個個去問,
14:29
we can get this kind of a structural結構 insight眼光.
361
854000
2000
從而得到對整體架構的瞭解。
14:31
And other sources來源 of information信息, as you're no doubt懷疑 aware知道的
362
856000
3000
你一定也知道,其他來源的資訊
14:34
are available可得到 about such這樣 features特徵, from email電子郵件 interactions互動,
363
859000
3000
也能提供類似的特徵,從email互動,
14:37
online線上 interactions互動,
364
862000
2000
線上互動,
14:39
online線上 social社會 networks網絡 and so forth向前.
365
864000
3000
線上社群網站等等。
14:42
And in fact事實, we are in the era時代 of what I would call
366
867000
2000
而事實上我們正在這樣的一個世界,
14:44
"massive-passive大規模被動" data數據 collection採集 efforts努力.
367
869000
3000
「巨量-被動」的資料被收集起來。
14:47
They're all kinds of ways方法 we can use massively大規模 collected data數據
368
872000
3000
我們有一大堆方法可以使用這些廣泛收集的資料,
14:50
to create創建 sensor傳感器 networks網絡
369
875000
3000
用來建立偵測網路,
14:53
to follow跟隨 the population人口,
370
878000
2000
用來追蹤人群,
14:55
understand理解 what's happening事件 in the population人口,
371
880000
2000
找出群體中正在發生的事件,
14:57
and intervene干預 in the population人口 for the better.
372
882000
3000
並且適時介入以改善情況。
15:00
Because these new technologies技術 tell us
373
885000
2000
因為這些新的科技讓我們理解,
15:02
not just who is talking to whom,
374
887000
2000
不只是誰正和誰溝通,
15:04
but where everyone大家 is,
375
889000
2000
還有每個人的位置所在。
15:06
and what they're thinking思維 based基於 on what they're uploading上傳 on the Internet互聯網,
376
891000
3000
人們在想什麼,是看他們上傳了什麼到網路上,
15:09
and what they're buying購買 based基於 on their purchases購買.
377
894000
2000
現在的購買決策受到過去購物的影響。
15:11
And all this administrative行政的 data數據 can be pulled together一起
378
896000
3000
所有這樣的資料可以組織起來,
15:14
and processed處理 to understand理解 human人的 behavior行為
379
899000
2000
經過處理以了解人類的行為,
15:16
in a way we never could before.
380
901000
3000
以一種前所未見的方式。
15:19
So, for example, we could use truckers'卡車司機 purchases購買 of fuel汽油.
381
904000
3000
舉例來說,我們可以觀察卡車司機加油,
15:22
So the truckers卡車司機 are just going about their business商業,
382
907000
2000
司機們正準備開工,
15:24
and they're buying購買 fuel汽油.
383
909000
2000
他們買入了汽油,
15:26
And we see a blip曇花一現 up in the truckers'卡車司機 purchases購買 of fuel汽油,
384
911000
3000
我們觀察到卡車司機加油的曲線開始上升,
15:29
and we know that a recession不景氣 is about to end結束.
385
914000
2000
而能夠推估景氣即將好轉了。
15:31
Or we can monitor監控 the velocity速度
386
916000
2000
或是可以透過手機,
15:33
with which哪一個 people are moving移動 with their phones手機 on a highway高速公路,
387
918000
3000
監視高速公路上人們的移動速度,
15:36
and the phone電話 company公司 can see,
388
921000
2000
電信公司便能夠得知,
15:38
as the velocity速度 is slowing減緩 down,
389
923000
2000
當移動速度下降的時候,
15:40
that there's a traffic交通 jam果醬.
390
925000
2000
代表可能有交通堵塞。
15:42
And they can feed飼料 that information信息 back to their subscribers用戶,
391
927000
3000
這些資訊便回傳給電信公司的用戶,
15:45
but only to their subscribers用戶 on the same相同 highway高速公路
392
930000
2000
並且針對那些在同一條高速公路上,
15:47
located位於 behind背後 the traffic交通 jam果醬!
393
932000
2000
位於車陣後方的用戶!
15:49
Or we can monitor監控 doctors醫生 prescribing處方 behaviors行為, passively被動,
394
934000
3000
我們也可以被動監測醫生開藥的行為,
15:52
and see how the diffusion擴散 of innovation革新 with pharmaceuticals藥品
395
937000
3000
以了解對藥品的接受度,
15:55
occurs發生 within [networks網絡 of] doctors醫生.
396
940000
2000
是如何在醫生之間擴散的。
15:57
Or again, we can monitor監控 purchasing購買 behavior行為 in people
397
942000
2000
我們也可以監測人們的購買行為,
15:59
and watch how these types類型 of phenomena現象
398
944000
2000
觀察購買現象是如何
16:01
can diffuse擴散 within human人的 populations人群.
399
946000
3000
在人群中散播的。
16:04
And there are three ways方法, I think,
400
949000
2000
我認為這些巨量-被動收集所得的資料,
16:06
that these massive-passive大規模被動 data數據 can be used.
401
951000
2000
有三種方式可以利用。
16:08
One is fully充分 passive被動,
402
953000
2000
一種是完全的被動,
16:10
like I just described描述 --
403
955000
2000
像我剛剛所描述的 -
16:12
as in, for instance, the trucker卡車司機 example,
404
957000
2000
例如卡車司機的例子,
16:14
where we don't actually其實 intervene干預 in the population人口 in any way.
405
959000
2000
我們並不對群體做任何形式的干預。
16:16
One is quasi-active準活躍,
406
961000
2000
一種是半主動,
16:18
like the flu流感 example I gave,
407
963000
2000
像是之前流感的例子,
16:20
where we get some people to nominate提名 their friends朋友
408
965000
3000
我們讓某些人舉出他們的朋友,
16:23
and then passively被動 monitor監控 their friends朋友 --
409
968000
2000
然後被動的觀察他們的朋友 -
16:25
do they have the flu流感, or not? -- and then get warning警告.
410
970000
2000
他們感冒了沒?- 並據此取得預警。
16:27
Or another另一個 example would be,
411
972000
2000
另外一個例子是,
16:29
if you're a phone電話 company公司, you figure數字 out who's誰是 central中央 in the network網絡
412
974000
3000
電信公司可以想辦法找出網路的中心群,
16:32
and you ask those people, "Look, will you just text文本 us your fever發熱 every一切 day?
413
977000
3000
問他們,"你能不能每天用簡訊,讓我們知道你發燒了沒?
16:35
Just text文本 us your temperature溫度."
414
980000
2000
只要傳送體溫即可"
16:37
And collect蒐集 vast廣大 amounts of information信息 about people's人們 temperature溫度,
415
982000
3000
然後從中心群體裡,
16:40
but from centrally中央 located位於 individuals個人.
416
985000
2000
大量收集體溫資料,
16:42
And be able能夠, on a large scale規模,
417
987000
2000
便能夠用少量的資料輸入,
16:44
to monitor監控 an impending即將到來的 epidemic疫情
418
989000
2000
來進行大規模的監控,
16:46
with very minimal最小 input輸入 from people.
419
991000
2000
以預測流感的爆發。
16:48
Or, finally最後, it can be more fully充分 active活性 --
420
993000
2000
最後是完全主動的方式 -
16:50
as I know subsequent隨後 speakers音箱 will also talk about today今天 --
421
995000
2000
就我所知下位演講者也會談到-
16:52
where people might威力 globally全球 participate參加 in wikis維基,
422
997000
2000
現在全世界的人都參與維基百科的編寫、
16:54
or photographing拍攝, or monitoring監控 elections選舉,
423
999000
3000
拍攝照片、或是監視選舉,
16:57
and upload上載 information信息 in a way that allows允許 us to pool
424
1002000
2000
人們將資訊上傳,使得我們能夠匯集
16:59
information信息 in order訂購 to understand理解 social社會 processes流程
425
1004000
2000
資訊以了解社會進程,
17:01
and social社會 phenomena現象.
426
1006000
2000
以及社會現象的產生。
17:03
In fact事實, the availability可用性 of these data數據, I think,
427
1008000
2000
我認為這些資料的垂手可得,
17:05
heralds傳令官 a kind of new era時代
428
1010000
2000
揭示了一個新時代的來臨,
17:07
of what I and others其他 would like to call
429
1012000
2000
我們將之稱作
17:09
"computational計算 social社會 science科學."
430
1014000
2000
"計算社會科學"。
17:11
It's sort分類 of like when Galileo伽利略 invented發明 -- or, didn't invent發明 --
431
1016000
3000
有點類似伽利略發明 -或許沒有發明-
17:14
came來了 to use a telescope望遠鏡
432
1019000
2000
望遠鏡的誕生,
17:16
and could see the heavens in a new way,
433
1021000
2000
而可以從全新的角度來觀看天空。
17:18
or Leeuwenhoek列文虎克 became成為 aware知道的 of the microscope顯微鏡 --
434
1023000
2000
或是雷文霍克發現顯微鏡 -
17:20
or actually其實 invented發明 --
435
1025000
2000
或許是他發明的-
17:22
and could see biology生物學 in a new way.
436
1027000
2000
而能夠用新的方式看待生物學。
17:24
But now we have access訪問 to these kinds of data數據
437
1029000
2000
現在我們能夠取得的資料,
17:26
that allow允許 us to understand理解 social社會 processes流程
438
1031000
2000
能夠讓我們用過去未見的嶄新角度
17:28
and social社會 phenomena現象
439
1033000
2000
了解社會的進程,
17:30
in an entirely完全 new way that was never before possible可能.
440
1035000
3000
以及其中發生的現象。
17:33
And with this science科學, we can
441
1038000
2000
有了這樣的科學,
17:35
understand理解 how exactly究竟
442
1040000
2000
我們就能夠了解
17:37
the whole整個 comes to be greater更大
443
1042000
2000
群體的綜效,是如何優於
17:39
than the sum of its parts部分.
444
1044000
2000
單純個體的加總。
17:41
And actually其實, we can use these insights見解
445
1046000
2000
我們也能運用這些理解,
17:43
to improve提高 society社會 and improve提高 human人的 well-being福利.
446
1048000
3000
來增進社會以及人類的福祉。
17:46
Thank you.
447
1051000
2000
謝謝。
Translated by Hsin Cheng Lin
Reviewed by Adrienne Lin

▲Back to top

ABOUT THE SPEAKER
Nicholas Christakis - Physician, social scientist
Nicholas Christakis explores how the large-scale, face-to-face social networks in which we are embedded affect our lives, and what we can do to take advantage of this fact.

Why you should listen

People aren't merely social animals in the usual sense, for we don't just live in groups. We live in networks -- and we have done so ever since we emerged from the African savannah. Via intricately branching paths tracing out cascading family connections, friendship ties, and work relationships, we are interconnected to hundreds or even thousands of specific people, most of whom we do not know. We affect them and they affect us.

Nicholas Christakis' work examines the biological, psychological, sociological, and mathematical rules that govern how we form these social networks, and the rules that govern how they shape our lives. His work shows how phenomena as diverse as obesity, smoking, emotions, ideas, germs, and altruism can spread through our social ties, and how genes can partially underlie our creation of social ties to begin with. His work also sheds light on how we might take advantage of an understanding of social networks to make the world a better place.

At Yale, Christakis is a Professor of Social and Natural Science, and he directs a diverse research group in the field of biosocial science, primarily investigating social networks. His popular undergraduate course "Health of the Public" is available as a podcast. His book, Connected, co-authored with James H. Fowler, appeared in 2009, and has been translated into 20 languages. In 2009, he was named by Time magazine to its annual list of the 100 most influential people in the world, and also, in 2009 and 2010, by Foreign Policy magazine to its list of 100 top global thinkers

More profile about the speaker
Nicholas Christakis | Speaker | TED.com

Data provided by TED.

This site was created in May 2015 and the last update was on January 12, 2020. It will no longer be updated.

We are currently creating a new site called "eng.lish.video" and would be grateful if you could access it.

If you have any questions or suggestions, please feel free to write comments in your language on the contact form.

Privacy Policy

Developer's Blog

Buy Me A Coffee