Ben Wellington: How we found the worst place to park in New York City -- using big data
Ben Wellington: Jak znaleźliśmy najgorsze miejsce do parkowania w Nowym Jorku za pomocą danych statystycznych
Ben Wellington blends his love of statistics, the city, and comedy in his entertaining analysis of the story of New York City, told through data. Full bio
Double-click the English transcript below to play the video.
the infrastructure of New York City.
na infrastrukturę Nowego Jorku.
of our infrastructure.
released in reports by city agencies.
agencji miejskich.
prawdopodobnie poinformuje,
of Transportation will probably tell you
of subway track there are.
długością torów metra.
13,500 taxis here in New York City.
że po mieście jeździ 13 500 taksówek.
where these numbers came from?
skąd pochodzą te liczby?
someone at the city agency
that somebody might want want to know.
którą ktoś chciałby poznać.
that our citizens want to know.
will have numbers like this.
all of our questions?
an infinite number of questions
nieskończenie wiele pytań.
and I think our policymakers realize that,
i urzędnicy chyba o tym wiedzą.
signed into law what he called
podpisał ustawę, którą nazwał
open data legislation in the country.
prawodawstwem otwartych danych w kraju".
the city has released 1,000 datasets
umieściło 1000 zbiorów danych
the number of cabs,
When is rush hour exactly?
these cabs aren't just numbers,
nie są jedynie numerami,
driving around in our city streets
jeżdżącymi po ulicach miasta,
and I looked at that data,
taxis in New York City throughout the day.
średniej prędkości nowojorskich taksówek.
to around 5:18 in the morning,
że od północy do 5:18 rano
things turn around,
a następnie zaczyna spadać.
until about 8:35 in the morning,
11 and a half miles per hour.
miles per hour on our city streets,
z prędkością 18,5 km/h.
there's no rush hour in New York City.
nie ma godzin szczytu.
for a couple of reasons.
this might be pretty interesting to know.
4:45 in the morning and you're all set.
na 4:45 rano i gotowe.
just available, it turns out.
a Freedom of Information Law Request,
Ustawy o Wolności Informacji"
Taxi and Limousine Commission website.
Komisji ds. Taksówek i Limuzyn.
należało go pobrać i wypełnić,
you need to go get this form,
did exactly that.
down to our office,
i zostaw go na pięć godzin.
we'll copy the data and you take it back."
who wants to make the data public,
and that's where this graph came from.
dzięki czemu powstały te wykresy.
These GPS recorders -- really cool.
Rejestratory GPS - fajna rzecz.
spacerować z twardymi dyskami
walking around with hard drives
to make it public --
bo dało się je zdobyć,
you could get to it,
krążących z dyskami twardymi.
walking around with hard drives.
is behind a FOIL Request.
jest związany z FOIL.
dangerous intersections in New York City
skrzyżowań w Nowym Yorku
the East side of Manhattan,
że we wschodniej części Manhattanu,
has more cyclist accidents.
coming off the bridges there.
zjeżdżają z mostów.
i aleja Roosvelta w Queens.
There's Roosevelt Avenue in Queens.
we need for Vision Zero.
behind this data as well.
and paste data out of a PDF
skopiować i wkleić dane z PDFa,
than knew the logo. I like that.
that you just saw was actually on a PDF.
były w właśnie w pliku PDF,
and hundreds of pages of PDF
you would either have to copy and paste
trzeba by robić kopuj-wklej
I'm going to write a program.
Stworzę program".
Danych o Wypadkach".
and it would download PDFs.
if it found a PDF, it would download it
i wyodrębnia informacje,
some PDF-scraping program,
and then people could make maps like that.
tworzyć mapy, jak ta.
the fact that we have access to it --
i że mamy do nich dostęp...
is a row in this table.
have access to that is great,
write PDF scrapers.
programów dekodujących PDF-y.
of our citizens' time,
the de Blasio administration
a few months ago,
actually have access to it,
still entombed in PDF.
jest zagrzebanych w PDF-ach.
is still only available in PDF.
our own city budget.
right now in PDF form.
tylko w formacie PDF.
that can't analyze it --
who vote for the budget
the budget that they are voting for.
przeanalizować budżetu, za którym głosują.
a little better than that as well.
that's not hidden in PDFs.
które nie są ukryte w plikach PDF.
in New York City.
cieków wodnych w Nowym Jorku.
of fecal coliform,
in each of our waterways.
the dirtier the water,
the small circles are cleaner.
małe - czystsza.
by the city over the last five years.
in general, dirtier.
And I learned a few things from this.
co ma w nazwie "potok" lub "kanał".
that ends in "creek" or "canal."
the dirtiest waterway in New York City,
cieki w Nowym Jorku
the Coney Island you swim in, luckily.
nie kąpielisko Coney Island.
of samples taken over the last five years
pobranych przez ostatnie 5 lat
to swim in the water.
niezgodne z prawem stanowym.
that you're going to see
the front page on nyc.gov.
na głównej stronie nyc.gov.
to that data is awesome.
on the open data portal.
a year or a few months.
Departamentu Ochrony Środowiska.
of Environmental Protection's website.
i każdy jest inaczej zbudowany.
sheet, and each Excel sheet is different.
trzeba je kopiować, organizować.
you copy, paste, reorganize.
and that's great, but once again,
as a city, we can normalize things.
there's this website that Socrata makes
that don't suffer
and that's great.
w dowolnym formacie, CSV, PDF lub Excel.
be it CSV or PDF or Excel document.
you can download the data that way.
codes their addresses differently.
intersection street,
building address.
budynek, adres budynku.
even when we have this portal,
normalizing our address fields.
ujednolicając pola adresowe.
of our citizens' time.
czasu obywateli.
we can get more maps like this.
in New York City,
hydrants in terms of parking tickets.
z mandatów za złe parkowanie.
and I really like this map.
Naprawdę ją lubię.
on the Upper East Side.
you park, you will get a hydrant ticket.
grossing hydrants in all of New York City,
hydranty w całym Nowym Yorku,
55,000 dollars a year in parking tickets.
z mandatów za parkowanie.
to me when I noticed it,
więc trochę poszperałem.
what you had is a hydrant
a curb extension,
space to walk on,
i dopiero miejsce parkingowe.
and the hydrant --
painted there beautifully for them.
miejsce parkingowe.
disagreed with this designation
z wyborem miejsca
who found a parking ticket.
Street View car driving by
on I Quant NY, and the DOT responded,
w odniesieniu do tego miejsca,
any complaints about this location,
and make any appropriate alterations."
i dokonamy odpowiednich poprawek ".
typical government response,
something incredible happened.
stało się coś niesamowitego.
the future of open data,
że to przyszłość otwartych danych.
ticketed, and it was confusing,
wystawiano mandaty,
they told the city, and within a few weeks
powiedział o tym miastu
problem został rozwiązany.
see open data as being a watchdog.
do danych to nadzór.
to be better partners for government,
lepszymi partnerami dla władz
being FOILed over and over again,
a sign that it should be made public.
wypuszczasz dane w formacie PDF,
releasing a PDF,
to post it with the underlying data,
wraz z danymi źródłowymi,
is coming from somewhere.
coming from somewhere,
some open data standards.
here in New York City.
normalizing our addresses.
a leader in open data,
jesteśmy absolutnym liderem.
dla otwartych danych,
and set an open data standard,
and maybe the federal government,
where you could write one program
żeby za pomocą jednego programu
We're actually quite close.
Jesteśmy naprawdę blisko.
empowering with this?
and it's not just Chris Whong.
going on in New York City right now,
attending these meetups.
and on weekends,
to look at open data
założyła citygram.nyc,
released something called citygram.nyc
to 311 complaints
skargi komunalne
or around your office.
you get local complaints.
i dostajesz listę lokalnych zażaleń.
that are after these things.
techniczna społeczność,
jak studenci, których uczę w Pratt,
the students I teach at Pratt.
set of backgrounds.
and the ability of our citizens
i zdolności naszych obywateli,
and make our city even better,
i usprawniać nasze miasto,
or one parking spot at a time.
czy jednym miejscem parkingowym.
ABOUT THE SPEAKER
Ben Wellington - Data scientistBen Wellington blends his love of statistics, the city, and comedy in his entertaining analysis of the story of New York City, told through data.
Why you should listen
Ben Wellington runs the I Quant NY blog, in which he crunches city-released data to find out what's really going on in the Big Apple. To date he has tackled topics such as measles outbreaks in New York City schools, analyzed how companies like Airbnb are really doing in NYC, and asked questions such as "does gentrification cause a reduction in laundromats?" (Answer: inconclusive.)
Ben is a visiting assistant professor in the City & Regional Planning program at the Pratt Institute in Brooklyn; his day job involves working as a quantitative analyst at the investment management firm, Two Sigma. A budding comedian and performer, he also teaches team building workshops through Cherub Improv, a non-profit that uses improv comedy for social good.
Ben Wellington | Speaker | TED.com