ABOUT THE SPEAKER
Susan Etlinger - Data analyst
Susan Etlinger promotes the smart, well-considered and ethical use of data.

Why you should listen

Susan Etlinger is an industry analyst with Altimeter Group, where she focuses on data and analytics. She conducts independent research and has authored two intriguing reports: “The Social Media ROI Cookbook” and “A Framework for Social Analytics.” She also advises global clients on how to work measurement into their organizational structure and how to extract insights from the social web which can lead to tangible actions. In addition, she works with technology innovators to help them refine their roadmaps and strategies. 

Etlinger is on the board of The Big Boulder Initiative, an industry organization dedicated to promoting the successful and ethical use of social data. She is regularly interviewed and asked to speak on data strategy and best practices, and has been quoted in media outlets like The Wall Street Journal, The New York Times, and the BBC.

More profile about the speaker
Susan Etlinger | Speaker | TED.com
TED@IBM

Susan Etlinger: What do we do with all this big data?

苏珊•埃特林格: 如何应对大数据?| 苏珊•埃特林格|TED@IBM

Filmed:
1,344,301 views

一组数据让你感觉更舒服了?感觉更成功了?那很有可能是你解读错了。在这个发人深省的演讲中,苏珊•埃特林格解释了为何我们在面对越来越多的数据时,应锻炼批判性思维能力。否则,我们很难从统计数据的层面上更进一步,真正地理解数据。
- Data analyst
Susan Etlinger promotes the smart, well-considered and ethical use of data. Full bio

Double-click the English transcript below to play the video.

00:13
Technology技术 has brought us so much:
0
1354
3135
科技极大程度上改变了世界:
00:16
the moon月亮 landing降落, the Internet互联网,
1
4489
2019
登月计划,互联网,基因组测序。
00:18
the ability能力 to sequence序列 the human人的 genome基因组.
2
6508
2625
00:21
But it also taps水龙头 into a lot of our deepest最深 fears恐惧,
3
9133
3724
但随之而来的是我们内心深处的忧虑,
00:24
and about 30 years年份 ago,
4
12857
1856
大约30年前,
00:26
the culture文化 critic评论家 Neil尼尔 Postman邮差 wrote a book
5
14713
2553
文学评论家尼尔•波兹曼出了一本书,
00:29
called "Amusing有趣 Ourselves我们自己 to Death死亡,"
6
17266
2115
名为《娱乐至死》,
00:31
which哪一个 lays乐事 this out really brilliantly出色.
7
19381
2759
将这个问题展现得淋漓尽致。
00:34
And here's这里的 what he said,
8
22140
1650
他这样写道,
00:35
comparing比较 the dystopian反乌托邦 visions愿景
9
23790
2263
将乔治•奥威尔和阿道司•赫胥黎
00:38
of George乔治 Orwell奥威尔 and Aldous奥尔德斯 Huxley赫胥黎.
10
26053
3573
两人的反乌托邦观点做比较,
00:41
He said, Orwell奥威尔 feared害怕 we would become成为
11
29626
3126
奥威尔害怕我们的文化成为「受制文化」。
00:44
a captive俘虏 culture文化.
12
32752
2248
00:47
Huxley赫胥黎 feared害怕 we would become成为 a trivial不重要的 culture文化.
13
35000
3752
赫胥黎担心的是我们的文化成为「琐碎文化」
00:50
Orwell奥威尔 feared害怕 the truth真相 would be
14
38752
2145
奥威尔害怕的是真理被隐瞒,
00:52
concealed from us,
15
40897
1923
00:54
and Huxley赫胥黎 feared害怕 we would be drowned淹死的
16
42820
2190
赫胥黎担心的是我们被淹没在
00:57
in a sea of irrelevance无关.
17
45010
2693
无聊烦琐的世事中。
00:59
In a nutshell简而言之, it's a choice选择 between之间
18
47703
2170
简言之,这是「老大哥」看你
01:01
Big Brother哥哥 watching观看 you
19
49873
2600
01:04
and you watching观看 Big Brother哥哥.
20
52473
2496
还是你看「老大哥」的选择。
(译者注:「老大哥」典出奥威尔名著《1984》)
01:06
(Laughter笑声)
21
54969
1931
(笑声)
01:08
But it doesn't have to be this way.
22
56900
1734
但事实不尽然,
01:10
We are not passive被动 consumers消费者
of data数据 and technology技术.
23
58634
3336
我们不是只能被动地接受数据和科技。
01:13
We shape形状 the role角色 it plays播放 in our lives生活
24
61970
2403
我们能改变科技在我们生活中扮演的角色,
01:16
and the way we make meaning含义 from it,
25
64373
2130
也能改变享受数据带来的恩惠的方式,
01:18
but to do that,
26
66503
1603
但要实现这一目的,
01:20
we have to pay工资 as much attention注意 to how we think
27
68106
3513
思考方式固然重要, 我们也要对如何解读数据
01:23
as how we code.
28
71619
2030
投以同样高的关注度。
01:25
We have to ask questions问题, and hard questions问题,
29
73649
3098
我们需要问问题,要问深刻的问题,
01:28
to move移动 past过去 counting数数 things
30
76747
1869
不再单纯地统计数据,
01:30
to understanding理解 them.
31
78616
2602
而是要进一步理解数据。
01:33
We're constantly经常 bombarded炮轰 with stories故事
32
81218
2446
我们身边充斥着那些
01:35
about how much data数据 there is in the world世界,
33
83664
2476
讲述世界上有海量数据的故事,
01:38
but when it comes to big data数据
34
86140
1580
但当我们面临大数据,
01:39
and the challenges挑战 of interpreting解读 it,
35
87720
2596
面临理解大数据所的挑战,
01:42
size尺寸 isn't everything.
36
90316
2088
数据量的大小不代表一切。
01:44
There's also the speed速度 at which哪一个 it moves移动,
37
92404
2903
还有数据传播的速度,
01:47
and the many许多 varieties品种 of data数据 types类型,
38
95307
1696
数据的类型,
01:49
and here are just a few少数 examples例子:
39
97003
2498
举几个例子:
01:51
images图片,
40
99501
2198
图像,
01:53
text文本,
41
101699
4007
文字,
01:57
video视频,
42
105706
2095
视频,
01:59
audio音频.
43
107801
1830
音频。
02:01
And what unites联信 this disparate不同 types类型 of data数据
44
109631
3042
不同类型的数据能有机地结合在一起,
02:04
is that they're created创建 by people
45
112673
2221
因为正是人类创造了这些数据,
02:06
and they require要求 context上下文.
46
114894
2775
而且要在一定背景前提下理解特定数据。
02:09
Now, there's a group of data数据 scientists科学家们
47
117669
2445
目前,一个来自伊利诺大学
芝加哥分校的数据科学家团队,
02:12
out of the University大学 of Illinois-Chicago伊利诺伊州芝加哥,
48
120114
2305
02:14
and they're called the Health健康 Media媒体 Collaboratory合作实验室,
49
122419
2554
自称「健康媒体合作实验室」,
02:16
and they've他们已经 been working加工 with
the Centers中心 for Disease疾病 Control控制
50
124973
2587
正与疾控中心合作,
02:19
to better understand理解
51
127560
1505
试图进一步了解
02:21
how people talk about quitting戒烟 smoking抽烟,
52
129065
2848
人们谈论戒烟的方式,
02:23
how they talk about electronic电子 cigarettes香烟,
53
131913
2680
谈论电子烟的方式,
02:26
and what they can do collectively
54
134593
1985
以及他们如何协作
02:28
to help them quit放弃.
55
136578
1984
来帮助人们戒烟。
02:30
The interesting有趣 thing is, if you want to understand理解
56
138562
2013
有趣的是,如果你想了解
02:32
how people talk about smoking抽烟,
57
140575
2216
人们谈论吸烟的方式,
02:34
first you have to understand理解
58
142791
1901
首先需要了解
02:36
what they mean when they say "smoking抽烟."
59
144692
2565
「烟」在他们口中的含义。
02:39
And on Twitter推特, there are four main主要 categories类别:
60
147257
3926
在Twitter上,「烟」的含义通常有四类:
02:43
number one, smoking抽烟 cigarettes香烟;
61
151183
2997
第一,吸烟;
02:46
number two, smoking抽烟 marijuana大麻;
62
154180
2807
第二,抽大麻;
02:48
number three, smoking抽烟 ribs肋骨;
63
156987
2643
第三,烟熏肋排;
02:51
and number four, smoking抽烟 hot women妇女.
64
159630
3553
第四,闻香识女。
02:55
(Laughter笑声)
65
163183
2993
(笑声)
02:58
So then you have to think about, well,
66
166176
2426
然后你就会想,
03:00
how do people talk about electronic电子 cigarettes香烟?
67
168602
2140
人们是如何谈论电子烟的呢?
03:02
And there are so many许多 different不同 ways方法
68
170742
2025
人们谈论电子烟的方式非常多,
03:04
that people do this, and you can see from the slide滑动
69
172767
2599
从屏幕上你们可以看到谈论的方式是如此繁多。
03:07
it's a complex复杂 kind of a query询问.
70
175366
2610
03:09
And what it reminds提醒 us is that
71
177976
3224
这就让我们想到,
03:13
language语言 is created创建 by people,
72
181200
2411
语言是人类创造的,
03:15
and people are messy and we're complex复杂
73
183611
2340
人类的语言是复杂混乱的,
03:17
and we use metaphors隐喻 and slang俚语 and jargon行话
74
185951
2767
我们用各种语言,无时无刻不在讲着比喻,
说着俚语和术语,
03:20
and we do this 24/7 in many许多, many许多 languages语言,
75
188718
3279
03:23
and then as soon不久 as we figure数字 it out, we change更改 it up.
76
191997
3224
好不容易弄清了,立马就又变掉了。
03:27
So did these ads广告 that the CDCCDC put on,
77
195221
5118
那么,疾控中心投放的广告,
03:32
these television电视 ads广告 that featured精选 a woman女人
78
200339
2430
以及电视上那种看起来让人非常不安的
03:34
with a hole in her throat and that were very graphic图像
79
202769
2021
形象地画了一个喉咙烧出来洞的女性的广告,
03:36
and very disturbing烦扰的,
80
204790
1904
03:38
did they actually其实 have an impact碰撞
81
206694
1885
这些广告会影响人们戒烟吗?
03:40
on whether是否 people quit放弃?
82
208579
2671
03:43
And the Health健康 Media媒体 Collaboratory合作实验室
respected尊敬 the limits范围 of their data数据,
83
211250
3307
健康媒体合作实验室承认其数据的有限性,
03:46
but they were able能够 to conclude得出结论
84
214557
2005
但他们还是做了这样的结论,
03:48
that those advertisements广告
and you may可能 have seen看到 them —
85
216562
3312
那些广告——或许你们都见到过——
03:51
that they had the effect影响 of jolting颠簸 people
86
219874
2591
确实会震颤人的内心,
03:54
into a thought process处理
87
222465
1822
让他们有所思考,
03:56
that may可能 have an impact碰撞 on future未来 behavior行为.
88
224287
3667
这样或许会影响他们未来的行为。
03:59
And what I admire欣赏 and
appreciate欣赏 about this project项目,
89
227954
3891
这个项目让我尊重和欣赏的地方,
04:03
aside在旁边 from the fact事实, including包含 the fact事实
90
231845
1489
不仅在于该项目基于人们的真实需求,
04:05
that it's based基于 on real真实 human人的 need,
91
233334
4057
04:09
is that it's a fantastic奇妙 example of courage勇气
92
237391
2846
还在于它充分诠释了面对「无聊烦琐的世事」
04:12
in the face面对 of a sea of irrelevance无关.
93
240237
4443
展现出来的勇气。
04:16
And so it's not just big data数据 that causes原因
94
244680
3305
因此,并不只是大数据在挑战我们对事物的理解,
04:19
challenges挑战 of interpretation解释, because let's face面对 it,
95
247985
2601
让我们直面这一事实吧,
04:22
we human人的 beings众生 have a very rich丰富 history历史
96
250586
2594
不管处理多少数据,哪怕再少的数据,
04:25
of taking服用 any amount of data数据, no matter how small,
97
253180
2693
人们也能把它搞得一团糟,
04:27
and screwing拧紧 it up.
98
255873
1617
「见多不怪」了。
04:29
So many许多 years年份 ago, you may可能 remember记得
99
257490
3737
你或许会记得,几年前,
04:33
that former前任的 President主席 Ronald罗纳德 Reagan里根
100
261227
2273
前总统罗纳德•里根
04:35
was very criticized批评 for making制造 a statement声明
101
263500
1991
在声称「事实是愚蠢的」后
04:37
that facts事实 are stupid things.
102
265491
3010
被严厉指责。
04:40
And it was a slip of the tongue, let's be fair公平.
103
268501
2794
平心而论,这是一个口误。
04:43
He actually其实 meant意味着 to quote引用 John约翰 Adams'亚当斯 defense防御
104
271295
2430
他原本是想引用约翰•亚当斯
04:45
of British英国的 soldiers士兵 in the Boston波士顿 Massacre屠杀 trials试验
105
273725
2751
在波士顿惨案审判为英军士兵的辩言
04:48
that facts事实 are stubborn倔强 things.
106
276476
3150
「事实是顽固不化的。」
04:51
But I actually其实 think there's
107
279626
2624
但事实上,我认为
04:54
a bit of accidental偶然 wisdom智慧 in what he said,
108
282250
3418
里根总统那句话蕴含着些许智慧,
04:57
because facts事实 are stubborn倔强 things,
109
285668
2776
事实固然顽固不化,
05:00
but sometimes有时 they're stupid, too.
110
288444
2923
有时确实是愚蠢的。
05:03
I want to tell you a personal个人 story故事
111
291367
1888
这对我意义深远,
05:05
about why this matters事项 a lot to me.
112
293255
3548
我讲一个私人故事来告诉你们为什么。
05:08
I need to take a breath呼吸.
113
296803
2437
我要深吸一口气。
05:11
My son儿子 Isaac艾萨克, when he was two,
114
299240
2754
我的儿子艾萨克,在他两岁的时候,
05:13
was diagnosed确诊 with autism自闭症,
115
301994
2417
被诊断出患有自闭症,
05:16
and he was this happy快乐, hilarious欢闹的,
116
304411
2161
在我们眼里,他是个幸福、欢快、
05:18
loving爱心, affectionate亲热 little guy,
117
306572
2035
充满爱意、惹人喜欢的小孩,
05:20
but the metrics指标 on his developmental发展的 evaluations评估,
118
308607
2902
但该发展水平评估
05:23
which哪一个 looked看着 at things like
the number of words
119
311509
2070
关注的指标是诸如言多言寡——
05:25
at that point, none没有
120
313579
3657
当时,是零——
05:29
communicative交际 gestures手势 and minimal最小 eye contact联系,
121
317236
3940
互动性姿势和最少目光接触,
05:33
put his developmental发展的 level水平
122
321176
2003
根据这套评估标准的结果,
05:35
at that of a nine-month-old九个月大的 baby宝宝.
123
323179
3961
他的发展水平相当于9月大的婴儿。
05:39
And the diagnosis诊断 was factually事实 correct正确,
124
327140
2960
按照这套标准,结果无可厚非,
05:42
but it didn't tell the whole整个 story故事.
125
330100
3209
但这不是全部。
05:45
And about a year and a half later后来,
126
333309
1401
一年半之后,
05:46
when he was almost几乎 four,
127
334710
2102
在他快要四岁的时候,
05:48
I found发现 him in front面前 of the computer电脑 one day
128
336812
2363
有一天我发现他坐在电脑前,
05:51
running赛跑 a Google谷歌 image图片 search搜索 on women妇女,
129
339175
5453
在Google图片搜索中搜索「women」
05:56
spelled拼写 "w-i-m-e-nwimen."
130
344628
3616
拼成了「wimen」
06:00
And I did what any obsessed痴迷 parent would do,
131
348244
2740
接下来我做了任何有心的父母都会做的事,
06:02
which哪一个 is immediately立即 started开始
hitting the "back" button按键
132
350984
1901
我立马就按了后退按钮,
06:04
to see what else其他 he'd他会 been searching搜索 for.
133
352885
3363
看看他还搜索了什么。
06:08
And they were, in order订购: men男人,
134
356248
2171
查到了,按顺序来:男人,
06:10
school学校, bus总线 and computer电脑.
135
358419
7267
学校,汽车和电脑。
06:17
And I was stunned目瞪口呆,
136
365686
2070
我目瞪口呆,
06:19
because we didn't know that he could spell拼写,
137
367756
2002
因为我们还不知道他会拼单词,
06:21
much less read, and so I asked him,
138
369758
1766
更别说读写了,因此我问他,
06:23
"Isaac艾萨克, how did you do this?"
139
371524
2193
「艾萨克,你是如何做到的?」
06:25
And he looked看着 at me very seriously认真地 and said,
140
373717
2678
他很严肃地看着我说,
06:28
"Typed类型化 in the box."
141
376395
3352
「在搜索框里输入。」
06:31
He was teaching教学 himself他自己 to communicate通信,
142
379747
3734
他一直在自我学习如何去沟通,
06:35
but we were looking in the wrong错误 place地点,
143
383481
3004
但我们将注意力投在了别处,
06:38
and this is what happens发生 when assessments评估
144
386485
2295
很显然,那些发展水平评估
06:40
and analytics分析 overvalue过份尊重 one metric
145
388780
2396
过分注重了一个指标——
06:43
in this case案件, verbal口头 communication通讯
146
391176
2609
言语沟通——
06:45
and undervalue低估 others其他, such这样
as creative创作的 problem-solving解决问题.
147
393785
5703
而忽视了其他指标,如问题解决能力。
06:51
Communication通讯 was hard for Isaac艾萨克,
148
399488
2307
沟通对于艾萨克而言很难,
06:53
and so he found发现 a workaround解决方法
149
401795
1912
所以他找到了一个变通方法,
06:55
to find out what he needed需要 to know.
150
403707
2857
自己去探索想要知道的信息。
06:58
And when you think about it, it makes品牌 a lot of sense,
151
406564
1890
你考虑一下,这确实很有道理,
07:00
because forming成型 a question
152
408454
2081
因为提出一个问题
07:02
is a really complex复杂 process处理,
153
410535
2565
是复杂的过程,
07:05
but he could get himself他自己 a lot of the way there
154
413100
2522
但他能通过在搜索框中输入单词来达到同样目的。
07:07
by putting a word in a search搜索 box.
155
415622
4092
07:11
And so this little moment时刻
156
419714
2936
因此,这一个小插曲
07:14
had a really profound深刻 impact碰撞 on me
157
422650
2836
深深影响了我和我的家庭,
07:17
and our family家庭
158
425486
1309
07:18
because it helped帮助 us change更改 our frame of reference参考
159
426795
3141
因为它让我们对发生在他身上的一切
有了全新的认识,
07:21
for what was going on with him,
160
429936
2208
07:24
and worry担心 a little bit less and appreciate欣赏
161
432144
2976
也不那么担心他了,
而且更加欣赏他的「人小鬼大」。
07:27
his resourcefulness足智多谋 more.
162
435120
2182
07:29
Facts事实 are stupid things.
163
437302
2861
事实是愚蠢的,
07:32
And they're vulnerable弱势 to misuse滥用,
164
440163
2397
极容易被误用,
07:34
willful恣意 or otherwise除此以外.
165
442560
1653
有意或无意地。
07:36
I have a friend朋友, Emily艾米莉 Willingham威林厄姆, who's谁是 a scientist科学家,
166
444213
3026
我有一个叫Emily Willingham的朋友,是科学家,
07:39
and she wrote a piece for Forbes福布斯 not long ago
167
447239
2801
不久前他为福布斯杂志写过一篇文章,
07:42
entitled标题 "The 10 Weirdest最古怪的 Things
168
450040
1980
名为《十个最奇怪的跟自闭症相关的事情》
07:44
Ever Linked关联 to Autism自闭症."
169
452020
1810
07:45
It's quite相当 a list名单.
170
453830
3005
此文深得我心。
07:48
The Internet互联网, blamed指责 for everything, right?
171
456835
3532
「互联网」,一切罪恶的源头,对吧?
07:52
And of course课程 mothers母亲, because.
172
460367
3757
当然,「母亲」也是其中一条。
07:56
And actually其实, wait, there's more,
173
464124
1587
事实上,没这么简单,
07:57
there's a whole整个 bunch in
the "mother母亲" category类别 here.
174
465711
3430
「母亲」还进一步细分为多条。
08:01
And you can see it's a pretty漂亮
rich丰富 and interesting有趣 list名单.
175
469141
4815
你们可以看到这个清单真的内涵丰富又有趣。
08:05
I'm a big fan风扇 of
176
473956
2193
我很「欣赏」那些在在高速路旁怀孕的人。
08:08
being存在 pregnant near freeways高速公路, personally亲自.
177
476149
3704
08:11
The final最后 one is interesting有趣,
178
479853
1539
最后一条很有趣,
08:13
because the term术语 "refrigerator冰箱 mother母亲"
179
481392
3003
因为「冰箱母亲」在最初被认为是
08:16
was actually其实 the original原版的 hypothesis假设
180
484395
2605
孩童自闭症的原因,
08:19
for the cause原因 of autism自闭症,
181
487000
1431
08:20
and that meant意味着 somebody
who was cold and unloving没有爱心.
182
488431
2735
这个词表示那些冰冷的、没有爱心的人。
08:23
And at this point, you might威力 be thinking思维,
183
491166
1562
话已至此,你们也许会问,
08:24
"Okay, Susan苏珊, we get it,
184
492728
1657
「好吧,苏珊,我们明白了,
08:26
you can take data数据, you can
make it mean anything."
185
494385
1782
你能理解数据,你可以决定数据的意义。」
08:28
And this is true真正, it's absolutely绝对 true真正,
186
496167
4703
这是对的,这绝对是没问题的,
08:32
but the challenge挑战 is that
187
500870
5610
但挑战在于,
08:38
we have this opportunity机会
188
506480
2448
你们自己也有机会明白数据的意义,
08:40
to try to make meaning含义 out of it ourselves我们自己,
189
508928
2284
08:43
because frankly坦率地说, data数据 doesn't
create创建 meaning含义. We do.
190
511212
5352
因为,坦白地讲,数据自己不会创造意义,
是我们创造数据的意义。
08:48
So as businesspeople生意人, as consumers消费者,
191
516564
3256
因此,作为商人,作为消费者,
08:51
as patients耐心, as citizens公民,
192
519820
2539
作为病人,作为公民,
08:54
we have a responsibility责任, I think,
193
522359
2396
我认为我们都有责任
花更多时间来锻炼批判性思维能力。
08:56
to spend more time
194
524755
2194
08:58
focusing调焦 on our critical危急 thinking思维 skills技能.
195
526949
2870
09:01
Why?
196
529819
1078
为什么?
09:02
Because at this point in our history历史, as we've我们已经 heard听说
197
530897
3178
因为历史发展到今天,
09:06
many许多 times over,
198
534075
1706
我们总是听到这样的说法,
09:07
we can process处理 exabytes艾字节 of data数据
199
535781
1981
我们能以闪电般速度
09:09
at lightning闪电 speed速度,
200
537762
2153
处理海量数据,
09:11
and we have the potential潜在 to make bad decisions决定
201
539915
3515
这就意味着我们能以更快地速度做出错误的决策,
09:15
far more quickly很快, efficiently有效率的,
202
543430
1834
09:17
and with far greater更大 impact碰撞 than we did in the past过去.
203
545264
5028
带给我们史无前例的巨大影响。
09:22
Great, right?
204
550292
1388
没错吧?
09:23
And so what we need to do instead代替
205
551680
3030
因此,我们需要做的就是
09:26
is spend a little bit more time
206
554710
2330
多花一点时间在
09:29
on things like the humanities人文
207
557040
2746
人文学,
09:31
and sociology社会学, and the social社会 sciences科学,
208
559786
3464
社会学,社会科学,
09:35
rhetoric修辞, philosophy哲学, ethics伦理,
209
563250
2308
修辞学,哲学,伦理学,
09:37
because they give us context上下文 that is so important重要
210
565558
2856
因为这些知识非常有助于帮助我们理解大数据,
09:40
for big data数据, and because
211
568414
2576
09:42
they help us become成为 better critical危急 thinkers思想家.
212
570990
2418
而且也能锻炼我们的批判性思维。
09:45
Because after all, if I can spot
213
573408
4207
毕竟,如果我能在一个论断中发现问题,
09:49
a problem问题 in an argument论据, it doesn't much matter
214
577615
2486
这个问题是以文字还是数字的形式呈现并不那么重要。
09:52
whether是否 it's expressed表达 in words or in numbers数字.
215
580101
2759
09:54
And this means手段
216
582860
2719
而且,这些知识会
09:57
teaching教学 ourselves我们自己 to find
those confirmation确认 biases偏见
217
585579
4421
让我们有能力辨识出事实与偏见,
10:02
and false correlations相关
218
590000
1822
错误的关联信息,
10:03
and being存在 able能够 to spot a naked emotional情绪化 appeal上诉
219
591822
2138
有能力在30码开外就看透赤裸裸的情感诉求,
10:05
from 30 yards,
220
593960
1662
10:07
because something that happens发生 after something
221
595622
2522
因为,乙事件发生在甲事件之后,
10:10
doesn't mean it happened发生
because of it, necessarily一定,
222
598144
3082
并不意味着是甲导致乙的发生,
10:13
and if you'll你会 let me geek极客 out on you for a second第二,
223
601226
2119
允许我耍一下酷,
10:15
the Romans罗马书 called this
"post岗位 hoc特别 ergoERGO propterpropter hoc特别,"
224
603345
4297
罗马人称之为
「post hoc ergo propter hoc」
10:19
after which哪一个 therefore因此 because of which哪一个.
225
607642
3296
即「后此谬误」。
10:22
And it means手段 questioning疑问
disciplines学科 like demographics人口统计学.
226
610938
3757
这意味着我们要对人口统计学
这样的学科打个问号。
10:26
Why? Because they're based基于 on assumptions假设
227
614695
2520
为什么?因为这样的学科基于的假设是
10:29
about who we all are based基于 on our gender性别
228
617215
2306
性别、年龄和住址等数据
10:31
and our age年龄 and where we live生活
229
619521
1462
决定我们的身份,
10:32
as opposed反对 to data数据 on what
we actually其实 think and do.
230
620983
3478
而不是基于我们的思想和行为。
10:36
And since以来 we have this data数据,
231
624461
1663
我们获取了这些数据,
10:38
we need to treat对待 it with appropriate适当 privacy隐私 controls控制
232
626124
3139
我们需要做好隐私控制,
10:41
and consumer消费者 opt-in选择参加,
233
629263
3576
并保证民众的选择权,
10:44
and beyond that, we need to be clear明确
234
632839
2993
除此之外,我们需要弄清楚所做的假设,
10:47
about our hypotheses假设,
235
635832
2103
10:49
the methodologies方法 that we use,
236
637935
2596
采用的研究方法,
10:52
and our confidence置信度 in the result结果.
237
640531
2804
以及对结果的信任。
10:55
As my high school学校 algebra代数 teacher老师 used to say,
238
643335
2474
就像高中代数老师曾对我说的,
10:57
show显示 your math数学,
239
645809
1531
给我看看你的解题步骤,
10:59
because if I don't know what steps脚步 you took,
240
647340
3441
因为如果我不知道你的步骤,
11:02
I don't know what steps脚步 you didn't take,
241
650781
1991
我就不知道你落下了哪些步骤,
11:04
and if I don't know what questions问题 you asked,
242
652772
2438
如果我不知道你问了些什么,
11:07
I don't know what questions问题 you didn't ask.
243
655210
3197
我就不知道哪些问题你没有问。
11:10
And it means手段 asking ourselves我们自己, really,
244
658407
1523
我们应该问自己这个最难回答的问题,
11:11
the hardest最难 question of all:
245
659930
1479
这真是值得的:
11:13
Did the data数据 really show显示 us this,
246
661409
3500
数据真的显示出了这个结果,
11:16
or does the result结果 make us feel
247
664909
2311
还是这样的结果让我们感觉更成功、更舒服?
11:19
more successful成功 and more comfortable自在?
248
667220
3878
11:23
So the Health健康 Media媒体 Collaboratory合作实验室,
249
671098
2584
因此,健康媒体合作实验室
11:25
at the end结束 of their project项目, they were able能够
250
673682
1699
在该项目结束时发现,
11:27
to find that 87 percent百分 of tweets微博
251
675381
3408
谈论那些很形象、令人不安的广告的推特中,
11:30
about those very graphic图像 and disturbing烦扰的
252
678789
2144
11:32
anti-smoking反吸烟 ads广告 expressed表达 fear恐惧,
253
680933
4038
有87%的表达出了恐惧,
11:36
but did they conclude得出结论
254
684971
1856
但他们做出这些广告让人戒烟的结论了吗?
11:38
that they actually其实 made制作 people stop smoking抽烟?
255
686827
3161
11:41
No. It's science科学, not magic魔法.
256
689988
2542
没有。这是科学,但不是魔法。
11:44
So if we are to unlock开锁
257
692530
3190
因此,如果我们想要激发
11:47
the power功率 of data数据,
258
695720
2862
数据中潜在的能量,
11:50
we don't have to go blindly盲目地 into
259
698582
3448
我们没必要盲目地
11:54
Orwell's奥威尔 vision视力 of a totalitarian极权主义 future未来,
260
702030
3436
游走于奥威尔所谓的极端未来,
11:57
or Huxley's赫胥黎 vision视力 of a trivial不重要的 one,
261
705466
3117
或赫胥黎所谓的琐碎的未来,
12:00
or some horrible可怕 cocktail鸡尾酒 of both.
262
708583
3020
或两种思想的杂糅。
12:03
What we have to do
263
711603
2379
我们需要做的就是,
12:05
is treat对待 critical危急 thinking思维 with respect尊重
264
713982
2718
积极进行批判性思维,
12:08
and be inspired启发 by examples例子
265
716700
2029
并学习健康媒体合作实验室的做法,
12:10
like the Health健康 Media媒体 Collaboratory合作实验室,
266
718729
2610
12:13
and as they say in the superhero超级英雄 movies电影,
267
721339
2328
就像超级英雄电影里说的那样,
12:15
let's use our powers权力 for good.
268
723667
1822
力量用在行善上。
12:17
Thank you.
269
725489
2351
谢谢。
12:19
(Applause掌声)
270
727840
2334
(掌声)
Translated by Yumeng Guo
Reviewed by Michael Ge 葛叔

▲Back to top

ABOUT THE SPEAKER
Susan Etlinger - Data analyst
Susan Etlinger promotes the smart, well-considered and ethical use of data.

Why you should listen

Susan Etlinger is an industry analyst with Altimeter Group, where she focuses on data and analytics. She conducts independent research and has authored two intriguing reports: “The Social Media ROI Cookbook” and “A Framework for Social Analytics.” She also advises global clients on how to work measurement into their organizational structure and how to extract insights from the social web which can lead to tangible actions. In addition, she works with technology innovators to help them refine their roadmaps and strategies. 

Etlinger is on the board of The Big Boulder Initiative, an industry organization dedicated to promoting the successful and ethical use of social data. She is regularly interviewed and asked to speak on data strategy and best practices, and has been quoted in media outlets like The Wall Street Journal, The New York Times, and the BBC.

More profile about the speaker
Susan Etlinger | Speaker | TED.com

Data provided by TED.

This site was created in May 2015 and the last update was on January 12, 2020. It will no longer be updated.

We are currently creating a new site called "eng.lish.video" and would be grateful if you could access it.

If you have any questions or suggestions, please feel free to write comments in your language on the contact form.

Privacy Policy

Developer's Blog

Buy Me A Coffee