ABOUT THE SPEAKER
Tricia Wang - Technology ethnographer
With astronaut eyes and ethnographer curiosity, Tricia Wang helps corporations grow by discovering the unknown about their customers.

Why you should listen

For Tricia Wang, human behavior generates some of the most perplexing questions of our times. She has taught global organizations how to identify new customers and markets hidden behind their data, amplified IDEO's design thinking practice as an expert-in-residence, researched the social evolution of the Chinese internet, and written about the "elastic self," an emergent form of interaction in a virtual world. Wang is the co-founder of Sudden Compass, a consulting firm that helps companies unlock new growth opportunities by putting customer obsession into practice.

Wang's work has been featured in The Atlantic, Al Jazeera, and The Guardian. Fast Company spotlighted her work in China: "What Twitter Can Learn From Weibo: Field Notes From Global Tech Ethnographer Tricia Wang." In her latest op-ed on Slate, she discusses how attempts to stop terrorists on social media can harm our privacy and anonymity. Her Medium post, "Why Big Data Needs Thick Data," is a frequently cited industry piece on the importance of an integrated data approach. One of her favorite essays documents her day in the life of working as a street vendor in China.

Known for her lively presentations that are grounded in her research and observations about human behavior and data, Wang has spoken at organizations such as Proctor & Gamble, Nike, Wrigley, 21st Century Fox and Tumblr. Her most recent talk at Enterprise UX delved into why corporate innovation usually doesn’t work and what to do about it. She delivered the opening keynote at The Conference to a crowd of marketers and creatives, delving into the wild history of linear perspective and its influence on how we think and form organizations.

Wang holds affiliate positions at Data & Society, Harvard University's Berkman Klein Center for Internet Studies and New York University's Interactive Telecommunication Program. She oversees Ethnography Matters, a site that publishes articles about applied ethnography and technology. She co-started a Slack community for anyone who uses ethnographic methods in industry.

Wang began her career as a documentary filmmaker at NASA, an HIV/AIDS activist, and an educator specializing in culturally responsive pedagogy. She is also proud to have co-founded the first national hip-hop education initiative, which turned into the Hip Hop Education Center at New York University, and to have built after-school technology and arts programs for low-income youth at New York City public schools and the Queens Museum of Arts. Her life philosophy is that you have to go to the edge to discover what’s really happening. She's the proud companion of her internet famous dog, #ellethedog.

More profile about the speaker
Tricia Wang | Speaker | TED.com
TEDxCambridge

Tricia Wang: The human insights missing from big data

翠西娅·王: 大数据掩盖下的人性

Filmed:
1,688,539 views

为何有了大数据的支持,如此多的企业还是做出了错误的决策?通过诺基亚、Netflix和古希腊先知的故事,翠西娅·王深入浅出地解释了大数据,指出了它的隐患,并建议我们应该更多地关注“厚数据”——珍贵的、不可量化的思想和情感,来源于有血有肉的人——才能做出正确的商业决策,并在新领域取得成功。
- Technology ethnographer
With astronaut eyes and ethnographer curiosity, Tricia Wang helps corporations grow by discovering the unknown about their customers. Full bio

Double-click the English transcript below to play the video.

在古希腊,
00:12
In ancient Greece希腊,
0
885
1545
从奴隶到士兵,从诗人到政治家,
00:15
when anyone任何人 from slaves奴隶 to soldiers士兵,
poets诗人 and politicians政治家,
1
3436
3943
00:19
needed需要 to make a big decision决定
on life's人生 most important重要 questions问题,
2
7403
4004
都需要对人生中最重要的问题做决定,
00:23
like, "Should I get married已婚?"
3
11431
1391
比如,我该结婚吗?
这次出海我该不该去?
00:24
or "Should we embark从事 on this voyage航程?"
4
12846
1857
00:26
or "Should our army军队
advance提前 into this territory领土?"
5
14727
2928
我们该不该向那片区域进军?
他们纷纷去请教先知。
00:29
they all consulted咨询 the oracle神谕.
6
17679
2579
00:33
So this is how it worked工作:
7
21020
1440
过程是这样的:
你问她一个问题,然后跪在她面前,
00:34
you would bring带来 her a question
and you would get on your knees膝盖,
8
22484
3112
之后她会进入一种恍惚的状态。
00:37
and then she would go into this trance发呆.
9
25620
1871
也许持续几天,
00:39
It would take a couple一对 of days,
10
27515
1549
最终她会恢复清醒状态,
00:41
and then eventually终于
she would come out of it,
11
29088
2163
给出她的预测,回答你的问题。
00:43
giving you her predictions预测 as your answer回答.
12
31275
2536
00:46
From the oracle神谕 bones骨头 of ancient China中国
13
34910
2566
从古代中国用骨头占卜,
到古希腊,再到玛雅历法,
00:49
to ancient Greece希腊 to Mayan玛雅 calendars日历,
14
37500
2345
00:51
people have craved渴望 for prophecy预言
15
39869
2296
人们祈求能得到预言,
从而知道未来会发生什么。
00:54
in order订购 to find out
what's going to happen发生 next下一个.
16
42189
3137
00:58
And that's because we all want
to make the right decision决定.
17
46516
3239
因为我们都想做出正确的决定。
01:01
We don't want to miss小姐 something.
18
49779
1545
我们不想忽略什么。
未来是可怕的,
01:03
The future未来 is scary害怕,
19
51892
1743
因此若我们
在做决定时多多少少
01:05
so it's much nicer更好
knowing会心 that we can make a decision决定
20
53659
2717
能预知结果,会更好。
01:08
with some assurance保证 of the outcome结果.
21
56400
1982
01:11
Well, we have a new oracle神谕,
22
59079
1611
如今我们有了新的先知,
01:12
and it's name名称 is big data数据,
23
60714
2145
它的名字叫大数据,
01:14
or we call it "Watson沃森"
or "deep learning学习" or "neural神经 net."
24
62883
3939
或者叫它“沃森”或者
“深度学习”或者“神经网络”。
01:19
And these are the kinds of questions问题
we ask of our oracle神谕 now,
25
67340
4012
以下就是我们问这位先知的问题。
01:23
like, "What's the most efficient高效 way
to ship these phones手机
26
71376
3922
“要把这些手机从中国运到瑞典,
01:27
from China中国 to Sweden瑞典?"
27
75322
1823
怎么做最高效?”
01:29
Or, "What are the odds可能性
28
77169
1800
或者“我的孩子出生时
01:30
of my child儿童 being存在 born天生
with a genetic遗传 disorder紊乱?"
29
78993
3363
患遗传病的几率是多少?”
01:34
Or, "What are the sales销售 volume
we can predict预测 for this product产品?"
30
82952
3244
或者“这件产品的预计销量是多少?”
01:40
I have a dog. Her name名称 is Elle艾丽,
and she hates the rain.
31
88108
4047
我养了一只狗,名叫艾尔,
她讨厌下雨。
01:44
And I have tried试着 everything
to untrainuntrain her.
32
92179
3306
我想了很多办法来帮她。
01:47
But because I have failed失败 at this,
33
95509
2771
但是因为我失败了,
01:50
I also have to consult请教
an oracle神谕, called Dark黑暗 Sky天空,
34
98304
3286
因此每次准备遛狗时,
我都会求助一位先知,叫Dark Sky,
01:53
every一切 time before we go on a walk步行,
35
101614
1635
来获得未来10分钟精准的天气预报。
01:55
for very accurate准确 weather天气 predictions预测
in the next下一个 10 minutes分钟.
36
103273
3577
02:01
She's so sweet.
37
109535
1303
小狗真可爱。
因此,“先知”大数据是
一项价值1220亿美元的产业。
02:03
So because of all of this,
our oracle神谕 is a $122 billion十亿 industry行业.
38
111827
5707
02:10
Now, despite尽管 the size尺寸 of this industry行业,
39
118006
3376
但尽管产业规模大,
02:13
the returns回报 are surprisingly出奇 low.
40
121406
2456
投资回报却出奇地低。
02:16
Investing投资 in big data数据 is easy简单,
41
124342
2494
投资大数据很简单,
02:18
but using运用 it is hard.
42
126860
1933
但利用它却很难。
02:21
Over 73 percent百分 of big data数据 projects项目
aren't even profitable有利可图,
43
129981
4040
超过73%的大数据项目都不赚钱,
02:26
and I have executives高管
coming未来 up to me saying,
44
134045
2431
有经理来找我说,
02:28
"We're experiencing经历 the same相同 thing.
45
136500
1789
“我们的情况也是如此。
我们投资了一些大数据系统,
02:30
We invested投资 in some big data数据 system系统,
46
138313
1753
但雇员们并未因此做出更好的决策。
02:32
and our employees雇员 aren't making制造
better decisions决定.
47
140090
2968
02:35
And they're certainly当然 not coming未来 up
with more breakthrough突破 ideas思路."
48
143082
3162
更别说提出突破性的想法了。”
02:38
So this is all really interesting有趣 to me,
49
146914
3184
我觉得这个现象很有意思,
02:42
because I'm a technology技术 ethnographer人种.
50
150122
2010
因为我是一名技术人类学家。
02:44
I study研究 and I advise劝告 companies公司
51
152630
2564
我研究人们使用技术的模式,
02:47
on the patterns模式
of how people use technology技术,
52
155218
2483
并据此为企业提供建议,
02:49
and one of my interest利益 areas is data数据.
53
157725
2678
数据是我感兴趣的领域之一。
02:52
So why is having more data数据
not helping帮助 us make better decisions决定,
54
160427
5193
为什么更多的数据不能
帮我们更好的决策呢?
02:57
especially特别 for companies公司
who have all these resources资源
55
165644
2783
尤其是那些资源丰富,
能投资大数据系统的公司。
03:00
to invest投资 in these big data数据 systems系统?
56
168451
1736
为什么对他们而言,
事情并未变得简单?
03:02
Why isn't it getting得到 any easier更轻松 for them?
57
170211
2398
03:05
So, I've witnessed目击 the struggle斗争 firsthand第一手.
58
173990
2634
我亲眼见过这种困境。
03:09
In 2009, I started开始
a research研究 position位置 with Nokia诺基亚.
59
177374
3484
2009年,我跟诺基亚
开始进行一项研究。
03:13
And at the time,
60
181232
1158
在当时,
诺基亚是全球最大的
手机生产商之一,
03:14
Nokia诺基亚 was one of the largest最大
cell细胞 phone电话 companies公司 in the world世界,
61
182414
3158
03:17
dominating主导 emerging新兴 markets市场
like China中国, Mexico墨西哥 and India印度 --
62
185596
3202
在中国、墨西哥和印度等
新兴市场占有巨大份额,
03:20
all places地方 where I had doneDONE
a lot of research研究
63
188822
2502
我在上述国家进行了大量的研究,
看低收入人群是如何使用技术的。
03:23
on how low-income低收入 people use technology技术.
64
191348
2676
03:26
And I spent花费 a lot of extra额外 time in China中国
65
194048
2330
我在中国花了大量时间
03:28
getting得到 to know the informal非正式的 economy经济.
66
196402
2592
去了解当地的街头经济。
03:31
So I did things like working加工
as a street vendor供应商
67
199018
2401
我当过街边小贩,
卖饺子给建筑工人。
03:33
selling销售 dumplings水饺 to construction施工 workers工人.
68
201443
2574
03:36
Or I did fieldwork实习,
69
204041
1358
我还泡过网吧,
03:37
spending开支 nights and days
in internet互联网 cafCAFés,
70
205423
2958
在那里连续待上几天,
03:40
hanging out with Chinese中文 youth青年,
so I could understand理解
71
208405
2546
跟中国年轻人
混在一起,来了解
他们如何玩游戏和使用手机,
03:42
how they were using运用
games游戏 and mobile移动 phones手机
72
210975
2284
03:45
and using运用 it between之间 moving移动
from the rural乡村 areas to the cities城市.
73
213283
3370
如何在从农村来到城市时使用。
03:50
Through通过 all of this qualitative定性 evidence证据
that I was gathering搜集,
74
218335
3927
通过搜集到的这些
高质量的例证,
03:54
I was starting开始 to see so clearly明确地
75
222286
2824
我开始清晰地看到
03:57
that a big change更改 was about to happen发生
among其中 low-income低收入 Chinese中文 people.
76
225134
4472
在中国低收入人群中
将发生巨大的变革。
04:03
Even though虽然 they were surrounded包围
by advertisements广告 for luxury豪华 products制品
77
231020
4367
尽管奢华产品的广告随处可见,
比如高级马桶——谁不想要?
04:07
like fancy幻想 toilets洗手间 --
who wouldn't不会 want one? --
78
235411
3495
04:10
and apartments公寓 and cars汽车,
79
238930
2890
还有房子和车子,
04:13
through通过 my conversations对话 with them,
80
241844
1820
聊天过程中,
04:15
I found发现 out that the ads广告
the actually其实 enticed诱惑 them the most
81
243688
3841
我发现最吸引他们的广告,
04:19
were the ones那些 for iPhonesiPhone手机,
82
247553
1996
是iPhone的广告,
04:21
promising有希望 them this entry条目
into this high-tech高科技 life.
83
249573
3052
因为感觉可以将他们
带入高科技生活。
04:25
And even when I was living活的 with them
in urban城市的 slums贫民窟 like this one,
84
253469
3163
跟他们一起住在
这样的城中村里,
04:28
I saw people investing投资
over half of their monthly每月一次 income收入
85
256656
2996
我看到有人花掉超过
半个月的收入
04:31
into buying购买 a phone电话,
86
259676
1623
去买一部手机,
04:33
and increasingly日益, they were "shanzhai山寨,"
87
261323
2302
“山寨”越来越多,
就是苹果和其他品牌的
廉价仿冒品。
04:35
which哪一个 are affordable实惠 knock-offs翻版
of iPhonesiPhone手机 and other brands品牌.
88
263649
3388
04:40
They're very usable可用.
89
268303
1625
它们也能用。
04:42
Does the job工作.
90
270890
1322
基本功能都有。
04:44
And after years年份 of living活的
with migrants移民 and working加工 with them
91
272750
5789
多年来,我跟这些外地人
一起工作和生活,
04:50
and just really doing everything
that they were doing,
92
278563
3434
跟他们做着同样的事情,
04:54
I started开始 piecing接头
all these data数据 points together一起 --
93
282021
3597
我开始把很多数据联系起来,
04:57
from the things that seem似乎 random随机,
like me selling销售 dumplings水饺,
94
285642
3123
从随机事件,比如卖饺子,
到比较直观的东西,
05:00
to the things that were more obvious明显,
95
288789
1804
比如看他们会花多少钱买手机。
05:02
like tracking追踪 how much they were spending开支
on their cell细胞 phone电话 bills票据.
96
290617
3232
我更全面地了解了
05:05
And I was able能够 to create创建
this much more holistic整体 picture图片
97
293873
2639
发生的事。
05:08
of what was happening事件.
98
296536
1156
此时我开始意识到,
05:09
And that's when I started开始 to realize实现
99
297716
1722
即使是中国最穷的人,
也会想拥有一部智能手机,
05:11
that even the poorest最穷 in China中国
would want a smartphone手机,
100
299462
3509
05:14
and that they would do almost几乎 anything
to get their hands on one.
101
302995
4985
而为此他们几乎愿意付出一切。
别忘了,
05:21
You have to keep in mind心神,
102
309073
2404
05:23
iPhonesiPhone手机 had just come out, it was 2009,
103
311501
3084
那是2009年,
iPhone才刚刚出现,
差不多是8年前,
05:26
so this was, like, eight years年份 ago,
104
314609
1885
05:28
and Androids机器人 had just started开始
looking like iPhonesiPhone手机.
105
316518
2437
而安卓手机刚开始
长得像iPhone。
很多聪明而务实的人断言,
05:30
And a lot of very smart聪明
and realistic实际 people said,
106
318979
2507
05:33
"Those smartphones智能手机 -- that's just a fad时尚.
107
321510
2207
“这些智能手机,只会昙花一现。
05:36
Who wants to carry携带 around
these heavy things
108
324243
2996
谁会愿意拿着这么重的手机,
05:39
where batteries电池 drain排水 quickly很快
and they break打破 every一切 time you drop下降 them?"
109
327263
3487
电量掉得那么快,一摔就坏。”
但我有数据,
05:44
But I had a lot of data数据,
110
332793
1201
我对自己的见解很自信,
05:46
and I was very confident信心
about my insights见解,
111
334018
2260
05:48
so I was very excited兴奋
to share分享 them with Nokia诺基亚.
112
336302
2829
于是我非常兴奋地告诉诺基亚。
05:53
But Nokia诺基亚 was not convinced相信,
113
341332
2517
但是诺基亚不为所动,
05:55
because it wasn't big data数据.
114
343873
2335
因为我给的不是大数据。
05:59
They said, "We have
millions百万 of data数据 points,
115
347022
2404
他们说,“我们有几百万的数据,
06:01
and we don't see any indicators指标
of anyone任何人 wanting希望 to buy购买 a smartphone手机,
116
349450
4247
没有数据显示会
有人愿意买智能手机,
而你的数据量只有几百,
还如此分散,毫无说服力,
06:05
and your data数据 set of 100,
as diverse多种 as it is, is too weak
117
353721
4388
06:10
for us to even take seriously认真地."
118
358133
1714
根本不值一提。”
06:12
And I said, "Nokia诺基亚, you're right.
119
360908
1605
我说,“诺基亚,你是对的。
你当然看不到这些,
06:14
Of course课程 you wouldn't不会 see this,
120
362537
1560
因为你在调查时就假定
06:16
because you're sending发出 out surveys调查
assuming假设 that people don't know
121
364121
3371
人们不了解智能手机,
06:19
what a smartphone手机 is,
122
367516
1159
因此当然得不到数据来了解
06:20
so of course课程 you're not going
to get any data数据 back
123
368699
2366
2年之内想买智能手机的人。
06:23
about people wanting希望 to buy购买
a smartphone手机 in two years年份.
124
371089
2572
因为你们的调查和方法,
06:25
Your surveys调查, your methods方法
have been designed设计
125
373685
2118
目的都是优化现有的商业模式,
06:27
to optimize优化 an existing现有 business商业 model模型,
126
375827
2022
而我看到的,是前所未有的
06:29
and I'm looking
at these emergent应急 human人的 dynamics动力学
127
377873
2608
人类新动向。
06:32
that haven't没有 happened发生 yet然而.
128
380505
1354
06:33
We're looking outside of market市场 dynamics动力学
129
381883
2438
我们看的是市场动态之外的东西,
06:36
so that we can get ahead of it."
130
384345
1631
因此可以领先一步。”
06:39
Well, you know what happened发生 to Nokia诺基亚?
131
387373
2244
都知道诺基亚的结局吧?
06:41
Their business商业 fell下跌 off a cliff悬崖.
132
389641
2365
他们的生意一落千丈。
06:44
This -- this is the cost成本
of missing失踪 something.
133
392791
3727
这就是忽略某些事情的代价。
06:49
It was unfathomable叵测.
134
397163
1999
就是那么难以想象。
06:52
But Nokia's诺基亚的 not alone单独.
135
400003
1651
而诺基亚并非个案。
06:54
I see organizations组织
throwing投掷 out data数据 all the time
136
402258
2581
我看到许多组织总是
对数据视而不见,
因为这些数据并非
来自某种数据模型,
06:56
because it didn't come from a quant定量 model模型
137
404863
2561
或跟模型不符。
06:59
or it doesn't fit适合 in one.
138
407448
1768
07:02
But it's not big data's数据的 fault故障.
139
410219
2048
大数据本身并没有错。
07:04
It's the way we use big data数据;
it's our responsibility责任.
140
412942
3907
是我们使用不当,错在我们。
07:09
Big data's数据的 reputation声誉 for success成功
141
417730
1911
大数据的声名鹊起
07:11
comes from quantifying量化
very specific具体 environments环境,
142
419665
3759
是因为它能量化特定环境,
07:15
like electricity电力 power功率 grids网格
or delivery交货 logistics后勤 or genetic遗传 code,
143
423448
4913
比如电网、物流或者基因编码,
07:20
when we're quantifying量化 in systems系统
that are more or less contained.
144
428385
4318
帮我们量化一定程度上
可控的体系。
07:24
But not all systems系统
are as neatly整洁 contained.
145
432727
2969
然而并非所有的体系
都有很好的可控性。
07:27
When you're quantifying量化
and systems系统 are more dynamic动态,
146
435720
3258
对一个动态的体系进行量化,
07:31
especially特别 systems系统
that involve涉及 human人的 beings众生,
147
439002
3799
尤其是牵涉到人时,
各种因素复杂多变,
07:34
forces军队 are complex复杂 and unpredictable不可预料的,
148
442825
2426
07:37
and these are things
that we don't know how to model模型 so well.
149
445275
3486
有些因素并没有很好的模型。
07:41
Once一旦 you predict预测 something
about human人的 behavior行为,
150
449204
2813
对人的行为进行预测时,
07:44
new factors因素 emerge出现,
151
452041
1855
会出现新的因素,
07:45
because conditions条件
are constantly经常 changing改变.
152
453920
2365
因为条件是在不断变化的。
因此这是个永远的循环。
07:48
That's why it's a never-ending没完没了 cycle周期.
153
456309
1803
你以为已经懂了,
07:50
You think you know something,
154
458136
1464
结果新的未知情况又出现了。
07:51
and then something unknown未知
enters进入 the picture图片.
155
459624
2242
07:53
And that's why just relying依托
on big data数据 alone单独
156
461890
3322
因此,仅仅依靠大数据,
反而会使我们更容易
忽略一些事实,
07:57
increases增加 the chance机会
that we'll miss小姐 something,
157
465236
2849
08:00
while giving us this illusion错觉
that we already已经 know everything.
158
468109
3777
却给了我们已经掌握一切的错觉。
08:04
And what makes品牌 it really hard
to see this paradox悖论
159
472406
3856
要看清这样一个矛盾,
08:08
and even wrap our brains大脑 around it
160
476286
2659
哪怕仅仅去认真思考它,
08:10
is that we have this thing
that I call the quantification量化 bias偏压,
161
478969
3691
也是困难重重,
原因在于我们偏爱量化,
08:14
which哪一个 is the unconscious无意识 belief信仰
of valuing价值评估 the measurable可测量
162
482684
3922
比起不能量化的,
总是不自觉地相信
能够量化的。
08:18
over the immeasurable不可计量的.
163
486630
1594
08:21
And we often经常 experience经验 this at our work.
164
489222
3284
这在工作中很常见。
08:24
Maybe we work alongside并肩
colleagues同事 who are like this,
165
492530
2650
也许我们的同事是这样,
甚至整个公司都是这样,
08:27
or even our whole整个 entire整个
company公司 may可能 be like this,
166
495204
2428
08:29
where people become成为
so fixated迷恋 on that number,
167
497656
2546
大家都盯着数字,
而忽略了其他东西,
08:32
that they can't see anything
outside of it,
168
500226
2067
即便你将证据摆在他们面前。
08:34
even when you present当下 them evidence证据
right in front面前 of their face面对.
169
502317
3948
08:39
And this is a very appealing吸引人的 message信息,
170
507123
3371
这一点很有意思,
08:42
because there's nothing
wrong错误 with quantifying量化;
171
510518
2343
因为量化本身并没有什么错,
甚至会让人愉悦。
08:44
it's actually其实 very satisfying满意的.
172
512885
1430
08:46
I get a great sense of comfort安慰
from looking at an Excel高强 spreadsheet电子表格,
173
514339
4362
看Excel表格时我就感觉挺好的,
08:50
even very simple简单 ones那些.
174
518725
1401
哪怕表格很简单。
08:52
(Laughter笑声)
175
520150
1014
(笑声)
那感觉就是,
08:53
It's just kind of like,
176
521188
1152
“好!这个公式能用。
都没问题,一切尽在掌握!”
08:54
"Yes! The formula worked工作. It's all OK.
Everything is under control控制."
177
522364
3504
08:58
But the problem问题 is
178
526792
2390
但问题在于,
09:01
that quantifying量化 is addictive上瘾.
179
529206
2661
量化会让人上瘾。
09:03
And when we forget忘记 that
180
531891
1382
一旦忘记这点,
09:05
and when we don't have something
to kind of keep that in check,
181
533297
3038
又没有什么纠错的机制,
就很容易舍弃
09:08
it's very easy简单 to just throw out data数据
182
536359
2118
09:10
because it can't be expressed表达
as a numerical数字的 value.
183
538501
2718
无法变成数值的信息。
09:13
It's very easy简单 just to slip
into silver-bullet银子弹 thinking思维,
184
541243
2921
人们很容易执迷于一招鲜,
好像总有简单的解决方法。
09:16
as if some simple简单 solution existed存在.
185
544188
2579
对任何组织来说这都很要命,
09:19
Because this is a great moment时刻 of danger危险
for any organization组织,
186
547600
4062
09:23
because oftentimes通常情况下,
the future未来 we need to predict预测 --
187
551686
2634
因为通常我们需要预测的未来,
09:26
it isn't in that haystack草垛,
188
554344
2166
不是这干草垛,
09:28
but it's that tornado龙卷风
that's bearing轴承 down on us
189
556534
2538
而是谷仓外向我们袭来的
09:31
outside of the barn谷仓.
190
559096
1488
龙卷风。
09:34
There is no greater更大 risk风险
191
562960
2326
最危险的莫过于
忽略未知事物。
09:37
than being存在 blind to the unknown未知.
192
565310
1666
09:39
It can cause原因 you to make
the wrong错误 decisions决定.
193
567000
2149
这会让你做出错误的决定,
忽略重要的事情。
09:41
It can cause原因 you to miss小姐 something big.
194
569173
1974
09:43
But we don't have to go down this path路径.
195
571734
3101
但我们并非别无选择。
09:47
It turns out that the oracle神谕
of ancient Greece希腊
196
575453
3195
其实古希腊的先知们
已经掌握了解决问题的关键。
09:50
holds持有 the secret秘密 key
that shows节目 us the path路径 forward前锋.
197
578672
3966
09:55
Now, recent最近 geological地质 research研究 has shown显示
198
583654
2595
最近的地质研究表明,
09:58
that the Temple寺庙 of Apollo阿波罗,
where the most famous著名 oracle神谕 satSAT,
199
586273
3564
最著名的先知
所在的阿波罗神庙
正建在两个地震断层之间。
10:01
was actually其实 built内置
over two earthquake地震 faults故障.
200
589861
3084
10:04
And these faults故障 would release发布
these petrochemical石化 fumes油烟
201
592969
2886
断层不断从地下释放出
石油化学气体。
10:07
from underneath the Earth's地球 crust脆皮,
202
595879
1685
先知们恰好坐在这些断层上,
10:09
and the oracle神谕 literally按照字面 satSAT
right above以上 these faults故障,
203
597588
3866
10:13
inhaling吸入 enormous巨大 amounts
of ethylene乙烯 gas加油站, these fissures裂缝.
204
601478
3588
吸入了从断层中
逸出的大量乙烯,
10:17
(Laughter笑声)
205
605090
1008
(笑声)
是真的。
10:18
It's true真正.
206
606122
1173
(笑声)
10:19
(Laughter笑声)
207
607319
1017
没骗你们,因此她才会
产生幻觉,开始呢喃,
10:20
It's all true真正, and that's what made制作 her
babble潺潺 and hallucinate产生幻觉
208
608360
3509
10:23
and go into this trance-like恍惚 state.
209
611893
1724
变得神情恍惚,
她正“飘”着呢!
10:25
She was high as a kite风筝!
210
613641
1770
10:27
(Laughter笑声)
211
615435
4461
(笑声)
10:31
So how did anyone任何人 --
212
619920
2779
所以怎么可能——
10:34
How did anyone任何人 get
any useful有用 advice忠告 out of her
213
622723
3030
这种情况下,怎么可能
从先知那里得到有用的建议?
10:37
in this state?
214
625777
1190
10:39
Well, you see those people
surrounding周围 the oracle神谕?
215
627497
2381
看到先知身旁的人了吗?
10:41
You see those people holding保持 her up,
216
629902
1879
他们扶着她,
因为她已经有点晕了。
10:43
because she's, like, a little woozy喝醉的?
217
631805
1717
你看左手边那位老兄,
10:45
And you see that guy
on your left-hand左手 side
218
633546
2308
10:47
holding保持 the orange橙子 notebook笔记本?
219
635878
1598
手里拿着橙色的本子。
他们是神庙向导,
10:50
Well, those were the temple寺庙 guides导游,
220
638105
1730
10:51
and they worked工作 hand in hand
with the oracle神谕.
221
639859
3016
跟先知一起合作的。
10:56
When inquisitors监狱 would come
and get on their knees膝盖,
222
644084
2516
当求问者跪在先知面前时,
10:58
that's when the temple寺庙 guides导游
would get to work,
223
646624
2340
神庙向导就要开始介入了,
求问者提问后,
11:00
because after they asked her questions问题,
224
648988
1864
向导开始观察他们的精神状态,
11:02
they would observe their emotional情绪化 state,
225
650876
2001
并且问进一步的问题,
11:04
and then they would ask them
follow-up跟进 questions问题,
226
652901
2324
比如,“你为什么想问这个?你是谁?
11:07
like, "Why do you want to know
this prophecy预言? Who are you?
227
655249
2834
你要用这个答案来做什么?”
11:10
What are you going to do
with this information信息?"
228
658107
2264
神庙向导利用这些与人更相关的
11:12
And then the temple寺庙 guides导游 would take
this more ethnographic人种学,
229
660395
3182
11:15
this more qualitative定性 information信息,
230
663601
2156
更有实质意义的信息,
11:17
and interpret the oracle's甲骨文公司 babblings唠叨.
231
665781
2075
来对先知的呢喃进行解释。
11:21
So the oracle神谕 didn't stand alone单独,
232
669428
2292
所以先知并不是孤立的,
大数据也不应如此。
11:23
and neither也不 should our big data数据 systems系统.
233
671744
2148
别误会,
11:26
Now to be clear明确,
234
674630
1161
我不是说大数据吸了乙烯,
11:27
I'm not saying that big data数据 systems系统
are huffing吹气 ethylene乙烯 gas加油站,
235
675815
3459
11:31
or that they're even giving
invalid无效 predictions预测.
236
679298
2353
或者大数据的预测没有用。
完全不是。
11:33
The total opposite对面.
237
681675
1161
我想说的是,
11:34
But what I am saying
238
682860
2068
11:36
is that in the same相同 way
that the oracle神谕 needed需要 her temple寺庙 guides导游,
239
684952
3832
正如先知需要神庙向导们一样,
11:40
our big data数据 systems系统 need them, too.
240
688808
2288
大数据系统也需要协助。
11:43
They need people like ethnographers人种学家
and user用户 researchers研究人员
241
691120
4109
需要人类学家和用户研究人员,
11:47
who can gather收集 what I call thick data数据.
242
695253
2506
搜集所谓的“厚数据”。
11:50
This is precious珍贵 data数据 from humans人类,
243
698502
2991
这是来源于人类的宝贵信息,
比如故事、情感和交流
等不能被量化的东西。
11:53
like stories故事, emotions情绪 and interactions互动
that cannot不能 be quantified量化.
244
701517
4102
11:57
It's the kind of data数据
that I collected for Nokia诺基亚
245
705643
2322
像我曾为诺基亚搜集的,
它们来自很小的样本量,
11:59
that comes in in the form形成
of a very small sample样品 size尺寸,
246
707989
2669
12:02
but delivers提供 incredible难以置信 depth深度 of meaning含义.
247
710682
2955
却能传达意义重大的信息。
12:05
And what makes品牌 it so thick and meaty肉香
248
713661
3680
而“厚数据”内涵丰富是因为
12:10
is the experience经验 of understanding理解
the human人的 narrative叙述.
249
718445
4029
其中包含了理解人类生活的过程。
12:14
And that's what helps帮助 to see
what's missing失踪 in our models楷模.
250
722498
3639
这能帮助我们看清
模型中缺失的东西。
12:18
Thick data数据 grounds理由 our business商业 questions问题
in human人的 questions问题,
251
726851
4045
“厚数据”将商业问题
落实到人类生活,
12:22
and that's why integrating整合
big and thick data数据
252
730920
3562
因此将大数据和厚数据相结合
能得到更全面的认识。
12:26
forms形式 a more complete完成 picture图片.
253
734506
1689
12:28
Big data数据 is able能够 to offer提供
insights见解 at scale规模
254
736772
2881
大数据能在数量级上提供视角,
12:31
and leverage杠杆作用 the best最好
of machine intelligence情报,
255
739677
2647
最大限度利用机器智能,
12:34
whereas thick data数据 can help us
rescue拯救 the context上下文 loss失利
256
742348
3572
而厚数据能补充
在利用大数据时
12:37
that comes from making制造 big data数据 usable可用,
257
745944
2098
缺失的情境信息,
充分利用人类智慧。
12:40
and leverage杠杆作用 the best最好
of human人的 intelligence情报.
258
748066
2181
12:42
And when you actually其实 integrate整合 the two,
that's when things get really fun开玩笑,
259
750271
3552
两者结合起来时就很有意思了,
因为这样你不只是在使用
12:45
because then you're no longer
just working加工 with data数据
260
753847
2436
搜集到的数据。
12:48
you've already已经 collected.
261
756307
1196
你还能利用尚未搜集到的数据。
12:49
You get to also work with data数据
that hasn't有没有 been collected.
262
757527
2737
你可能会问:
12:52
You get to ask questions问题 about why:
263
760288
1719
为什么会这样?
12:54
Why is this happening事件?
264
762031
1317
12:55
Now, when NetflixNetflix公司 did this,
265
763778
1379
Netflix这么做之后,
他们找到了全新的方式
来进行商业转型。
12:57
they unlocked解锁 a whole整个 new way
to transform转变 their business商业.
266
765181
3035
13:01
NetflixNetflix公司 is known已知 for their really great
recommendation建议 algorithm算法,
267
769406
3956
Netflix以出色的
推荐算法而闻名,
13:05
and they had this $1 million百万 prize
for anyone任何人 who could improve提高 it.
268
773386
4797
他们设立了100万美元的奖金,
寻找可以改进它的人。
13:10
And there were winners获奖者.
269
778207
1314
有人获奖了。
13:12
But NetflixNetflix公司 discovered发现
the improvements改进 were only incremental增加的.
270
780255
4323
但Netflix发现改进太慢。
13:17
So to really find out what was going on,
271
785404
1964
为了彻底弄清原因,
他们雇了一位人类学家:
格兰特·麦克拉肯,
13:19
they hired雇用 an ethnographer人种,
Grant格兰特 McCracken麦克拉肯,
272
787392
3741
13:23
to gather收集 thick data数据 insights见解.
273
791157
1546
来搜集分析厚数据。
13:24
And what he discovered发现 was something
that they hadn't有没有 seen看到 initially原来
274
792727
3924
他发现了在一开始的数据分析中
没发现的东西。
13:28
in the quantitative data数据.
275
796675
1355
13:31
He discovered发现 that people loved喜爱
to binge-watch狂欢手表.
276
799072
2728
他发现人们喜欢连续看片。
13:33
In fact事实, people didn't even
feel guilty有罪 about it.
277
801824
2353
事实上人们才不会内疚。
大家乐在其中。
13:36
They enjoyed享受 it.
278
804201
1255
13:37
(Laughter笑声)
279
805480
1026
(笑声)
于是Netflix觉得,
“噢,这是个新见解。”
13:38
So NetflixNetflix公司 was like,
"Oh. This is a new insight眼光."
280
806530
2356
于是他们找来数据科学团队,
13:40
So they went to their data数据 science科学 team球队,
281
808910
1938
将基于厚数据的观点
13:42
and they were able能够 to scale规模
this big data数据 insight眼光
282
810872
2318
13:45
in with their quantitative data数据.
283
813214
2587
跟量化数据进行对比。
13:47
And once一旦 they verified验证 it
and validated验证 it,
284
815825
3170
这一观点得到验证后,
13:51
NetflixNetflix公司 decided决定 to do something
very simple简单 but impactful影响力.
285
819019
4761
Netflix决定采取
简单却有效的措施。
13:56
They said, instead代替 of offering
the same相同 show显示 from different不同 genres流派
286
824834
6492
他们不再把同一节目
做成不同体裁,
14:03
or more of the different不同 shows节目
from similar类似 users用户,
287
831350
3888
也不再给同一类用户
推荐不同节目,
14:07
we'll just offer提供 more of the same相同 show显示.
288
835262
2554
而是提供同一节目,
14:09
We'll make it easier更轻松
for you to binge-watch狂欢手表.
289
837840
2105
便于连续观看。
14:11
And they didn't stop there.
290
839969
1486
不仅如此,
他们还想尽一切办法
14:13
They did all these things
291
841479
1474
14:14
to redesign重新设计 their entire整个
viewer观众 experience经验,
292
842977
2959
重新规划用户体验,
引导用户连续观看。
14:17
to really encourage鼓励 binge-watching长时间观看.
293
845960
1758
14:20
It's why people and friends朋友 disappear消失
for whole整个 weekends周末 at a time,
294
848230
3241
于是大家在周末集体消失,
14:23
catching up on shows节目
like "Master of None没有."
295
851495
2343
都在追《无为大师》这样的剧。
14:25
By integrating整合 big data数据 and thick data数据,
they not only improved改善 their business商业,
296
853862
4173
通过结合大数据和厚数据,
他们不仅发展了业务,
14:30
but they transformed改造 how we consume消耗 media媒体.
297
858059
2812
还转变了人们消费媒体的方式。
14:32
And now their stocks个股 are projected预计
to double in the next下一个 few少数 years年份.
298
860895
4552
他们的股价预计会在
未来几年内翻番。
14:38
But this isn't just about
watching观看 more videos视频
299
866280
3830
但这不只是关于看更多的视频,
14:42
or selling销售 more smartphones智能手机.
300
870134
1620
或者卖更多的智能手机。
14:44
For some, integrating整合 thick data数据
insights见解 into the algorithm算法
301
872143
4050
对某些人而言,将厚数据的观点
整合到算法中,
14:48
could mean life or death死亡,
302
876217
2263
关乎生死,
14:50
especially特别 for the marginalized边缘化.
303
878504
2146
尤其是被边缘化的人群。
14:53
All around the country国家,
police警察 departments部门 are using运用 big data数据
304
881738
3434
全国各地的警察部门都在将大数据
用于预防性警务,
14:57
for predictive预测 policing治安,
305
885196
1963
规划牢房数量,
提供量刑建议,
14:59
to set bond amounts
and sentencing宣判 recommendations建议
306
887183
3084
这种的方法更是强化了已有偏见。
15:02
in ways方法 that reinforce加强 existing现有 biases偏见.
307
890291
3147
15:06
NSA'sNSA的 Skynet天网 machine learning学习 algorithm算法
308
894296
2423
国安局的天网机器学习算法
15:08
has possibly或者 aided辅助 in the deaths死亡
of thousands数千 of civilians老百姓 in Pakistan巴基斯坦
309
896743
5444
可能间接导致了几千
巴基斯坦平民丧生,
因为误读了他们的
蜂窝移动设备的元数据。
15:14
from misreading误读 cellular细胞的 device设备 metadata元数据.
310
902211
2721
15:19
As all of our lives生活 become成为 more automated自动化,
311
907131
3403
随着我们的生活变得更加自动化,
15:22
from automobiles汽车 to health健康 insurance保险
or to employment雇用,
312
910558
3080
从汽车到健康保险到就业,
15:25
it is likely容易 that all of us
313
913662
2350
所有人都可能
15:28
will be impacted影响
by the quantification量化 bias偏压.
314
916036
2989
会受量化偏见的负面影响。
15:32
Now, the good news新闻
is that we've我们已经 come a long way
315
920972
2621
不过好消息是,我们已经
有了很大进步,
15:35
from huffing吹气 ethylene乙烯 gas加油站
to make predictions预测.
316
923617
2450
不再吸入乙烯气体,
而是真正做出预测。
15:38
We have better tools工具,
so let's just use them better.
317
926091
3070
我们有了更好的工具,
那就让我们用好它。
15:41
Let's integrate整合 the big data数据
with the thick data数据.
318
929185
2323
让我们将大数据和
厚数据结合起来,
为先知配上神庙向导,
15:43
Let's bring带来 our temple寺庙 guides导游
with the oracles神谕,
319
931532
2261
无论是在公司、非营利性机构,
15:45
and whether是否 this work happens发生
in companies公司 or nonprofits非营利组织
320
933817
3376
还是在政府或者软件公司,
15:49
or government政府 or even in the software软件,
321
937217
2469
都很重要,
15:51
all of it matters事项,
322
939710
1792
15:53
because that means手段
we're collectively committed提交
323
941526
3023
因为这意味着我们共同承诺
提供更好的数据,
15:56
to making制造 better data数据,
324
944573
2191
15:58
better algorithms算法, better outputs输出
325
946788
1836
更好的算法,更好的结果,
并做出更好的决定。
16:00
and better decisions决定.
326
948648
1643
16:02
This is how we'll avoid避免
missing失踪 that something.
327
950315
3558
这样我们才不会忽略重要信息。
16:07
(Applause掌声)
328
955222
3948
(掌声)
Translated by Alvin Lee
Reviewed by Siman Mo

▲Back to top

ABOUT THE SPEAKER
Tricia Wang - Technology ethnographer
With astronaut eyes and ethnographer curiosity, Tricia Wang helps corporations grow by discovering the unknown about their customers.

Why you should listen

For Tricia Wang, human behavior generates some of the most perplexing questions of our times. She has taught global organizations how to identify new customers and markets hidden behind their data, amplified IDEO's design thinking practice as an expert-in-residence, researched the social evolution of the Chinese internet, and written about the "elastic self," an emergent form of interaction in a virtual world. Wang is the co-founder of Sudden Compass, a consulting firm that helps companies unlock new growth opportunities by putting customer obsession into practice.

Wang's work has been featured in The Atlantic, Al Jazeera, and The Guardian. Fast Company spotlighted her work in China: "What Twitter Can Learn From Weibo: Field Notes From Global Tech Ethnographer Tricia Wang." In her latest op-ed on Slate, she discusses how attempts to stop terrorists on social media can harm our privacy and anonymity. Her Medium post, "Why Big Data Needs Thick Data," is a frequently cited industry piece on the importance of an integrated data approach. One of her favorite essays documents her day in the life of working as a street vendor in China.

Known for her lively presentations that are grounded in her research and observations about human behavior and data, Wang has spoken at organizations such as Proctor & Gamble, Nike, Wrigley, 21st Century Fox and Tumblr. Her most recent talk at Enterprise UX delved into why corporate innovation usually doesn’t work and what to do about it. She delivered the opening keynote at The Conference to a crowd of marketers and creatives, delving into the wild history of linear perspective and its influence on how we think and form organizations.

Wang holds affiliate positions at Data & Society, Harvard University's Berkman Klein Center for Internet Studies and New York University's Interactive Telecommunication Program. She oversees Ethnography Matters, a site that publishes articles about applied ethnography and technology. She co-started a Slack community for anyone who uses ethnographic methods in industry.

Wang began her career as a documentary filmmaker at NASA, an HIV/AIDS activist, and an educator specializing in culturally responsive pedagogy. She is also proud to have co-founded the first national hip-hop education initiative, which turned into the Hip Hop Education Center at New York University, and to have built after-school technology and arts programs for low-income youth at New York City public schools and the Queens Museum of Arts. Her life philosophy is that you have to go to the edge to discover what’s really happening. She's the proud companion of her internet famous dog, #ellethedog.

More profile about the speaker
Tricia Wang | Speaker | TED.com

Data provided by TED.

This site was created in May 2015 and the last update was on January 12, 2020. It will no longer be updated.

We are currently creating a new site called "eng.lish.video" and would be grateful if you could access it.

If you have any questions or suggestions, please feel free to write comments in your language on the contact form.

Privacy Policy

Developer's Blog

Buy Me A Coffee