ABOUT THE SPEAKER
Jeff Hawkins - Computer designer, brain researcher
Jeff Hawkins pioneered the development of PDAs such as the Palm and Treo. Now he's trying to understand how the human brain really works, and adapt its method -- which he describes as a deep system for storing memory -- to create new kinds of computers and tools.

Why you should listen

Jeff Hawkins' Palm PDA became such a widely used productivity tool during the 1990s that some fanatical users claimed it replaced their brains. But Hawkins' deepest interest was in the brain itself. So after the success of the Palm and Treo, which he brought to market at Handspring, Hawkins delved into brain research at the Redwood Center for Theoretical Neuroscience in Berkeley, Calif., and a new company called Numenta.

Hawkins' dual goal is to achieve an understanding of how the human brain actually works -- and then develop software to mimic its functionality, delivering true artificial intelligence. In his book On Intelligence (2004) he lays out his compelling, controversial theory: Contrary to popular AI wisdom, the human neocortex doesn't work like a processor; rather, it relies on a memory system that stores and plays back experiences to help us predict, intelligently, what will happen next. He thinks that "hierarchical temporal memory" computer platforms, which mimic this functionality (and which Numenta might pioneer), could enable groundbreaking new applications that could powerfully extend human intelligence.

More profile about the speaker
Jeff Hawkins | Speaker | TED.com
TED2003

Jeff Hawkins: How brain science will change computing

傑夫•霍金斯談大腦科學將如何改變電腦

Filmed:
1,674,773 views

Treo 的發明者傑夫•霍金斯鼓勵我們重新檢視大腦 — 不再只把大腦視為一個快速的處理器,而是將之視為一個儲存與播放經驗的記憶系統,而我們平常就是用這個系統來預測、認知即將會發生的事物。
- Computer designer, brain researcher
Jeff Hawkins pioneered the development of PDAs such as the Palm and Treo. Now he's trying to understand how the human brain really works, and adapt its method -- which he describes as a deep system for storing memory -- to create new kinds of computers and tools. Full bio

Double-click the English transcript below to play the video.

00:25
I do two things: I design設計 mobile移動 computers電腦 and I study研究 brains大腦.
0
0
3000
我有兩個職業。我設計行動電腦,而且我研究大腦。
00:29
And today's今天的 talk is about brains大腦 and,
1
4000
2000
今天的演講與大腦有關,
00:31
yay好極了, somewhere某處 I have a brain fan風扇 out there.
2
6000
2000
耶,看來今天聽眾中有人是大腦迷。
00:33
(Laughter笑聲)
3
8000
2000
(笑聲)
00:35
I'm going to, if I can have my first slide滑動 up here,
4
10000
2000
如果我的投影片已經準備好了,
00:37
and you'll你會 see the title標題 of my talk and my two affiliations隸屬關係.
5
12000
4000
你將會看到今天的演講主題及我的兩個所屬機構,
00:41
So what I'm going to talk about is why we don't have a good brain theory理論,
6
16000
4000
今天我將要談的是 — 為什麼我們沒有一個好的大腦理論,
00:45
why it is important重要 that we should develop發展 one and what we can do about it.
7
20000
3000
為什麼發展大腦理論如此重要,還有,我們能利用這個理論做什麼?
00:48
And I'll try to do all that in 20 minutes分鐘. I have two affiliations隸屬關係.
8
23000
3000
我將會嘗試在廿分鐘內完成全部的主題。我參與兩家公司。
00:51
Most of you know me from my Palm棕櫚 and Handspring翻筋斗 days,
9
26000
3000
你們大多數是因為我在 Palm 及 Handspring 的工作而認識我的,
00:54
but I also run a nonprofit非營利性 scientific科學 research研究 institute研究所
10
29000
3000
但是我同時也經營一個非營利性的科學研究機構
00:57
called the Redwood紅木 Neuroscience神經科學 Institute研究所 in Menlo門羅 Park公園,
11
32000
2000
它位於加州門洛帕克,叫做「紅木神經科學研究所」,
00:59
and we study研究 theoretical理論 neuroscience神經科學,
12
34000
2000
我們專攻理論神經科學相關的研究,
01:01
and we study研究 how the neocortex新皮層 works作品.
13
36000
2000
我們對研究大腦新皮層如何運作有興趣。
01:03
I'm going to talk all about that.
14
38000
2000
我將談談這一方面。
01:05
I have one slide滑動 on my other life, the computer電腦 life, and that's the slide滑動 here.
15
40000
3000
我將我的另一個生活面(電腦生活)做成了一張投影片,你現在可以看到。
01:08
These are some of the products製品 I've worked工作 on over the last 20 years年份,
16
43000
3000
我在過去的廿年間參與了一些產品的開發,
01:11
starting開始 back from the very original原版的 laptop筆記本電腦 to some of the first tablet片劑 computers電腦
17
46000
4000
從第一台筆記型電腦到首批平板電腦等等,
01:15
and so on, and ending結尾 up most recently最近 with the Treo的Treo,
18
50000
2000
最新的一個產品是 Treo,
01:17
and we're continuing繼續 to do this.
19
52000
2000
我們將會繼續電子產品的開發。
01:19
And I've doneDONE this because I really believe that mobile移動 computing計算
20
54000
2000
我之所以會參與這一行主要是因為我相信行動運算
01:21
is the future未來 of personal個人 computing計算, and I'm trying to make the world世界
21
56000
3000
是個人運算產品的未來,而我試著藉由開發這些產品
01:24
a little bit better by working加工 on these things.
22
59000
3000
來讓世界更美好。
01:27
But this was, I have to admit承認, all an accident事故.
23
62000
2000
但是我必須承認,這一切都是個意外。
01:29
I really didn't want to do any of these products製品
24
64000
2000
我其實本來一點都沒有打算要開發這些產品
01:31
and very early in my career事業 I decided決定
25
66000
2000
而且在我事業剛剛開始的時候我還決定
01:33
I was not going to be in the computer電腦 industry行業.
26
68000
3000
我不要從事電腦相關產業。
01:36
And before I tell you about that, I just have to tell you
27
71000
2000
但在我告訴你這個故事之前,我必須告訴你
01:38
this one little picture圖片 of graffiti塗鴉 there I picked採摘的 off the web捲筒紙 the other day.
28
73000
2000
我某天從網路上看到的一張關於 graffiti 輸入法照片的故事。
01:40
I was looking for a picture圖片 of graffiti塗鴉, little text文本 input輸入 language語言,
29
75000
3000
當時我在網上尋找 graffiti 的照片,那是一種輸入法程式語言,
01:43
and I found發現 the website網站 dedicated專用 to teachers教師 who want to make these,
30
78000
3000
然後我發現一個網站,它是為一群老師們所架設的,你知道的,
01:46
you know, the script腳本 writing寫作 things across橫過 the top最佳 of their blackboard黑板,
31
81000
3000
利用 script 來控制黑板上的跑馬燈,
01:49
and they had added添加 graffiti塗鴉 to it, and I'm sorry about that.
32
84000
3000
他們網站內容竟然包含 graffiti,我對此感到很抱歉。
01:52
(Laughter笑聲)
33
87000
2000
(笑聲)
01:54
So what happened發生 was, when I was young年輕 and got out of engineering工程 school學校
34
89000
5000
當我還年輕,剛剛從工學院畢業的時候,
01:59
at Cornell康奈爾 in '79, I decided決定 -- I went to work for Intel英特爾 and
35
94000
4000
我是康乃爾 79 年畢業班,我決定去 Intel 工作。
02:03
I was in the computer電腦 industry行業 -- and three months個月 into that,
36
98000
3000
我在電腦業奮鬥了三個月之後,
02:06
I fell下跌 in love with something else其他, and I said, "I made製作 the wrong錯誤 career事業 choice選擇 here,"
37
101000
4000
我愛上了另一個東西,我說:「我入錯行了」,
02:10
and I fell下跌 in love with brains大腦.
38
105000
3000
因為我愛上了大腦。
02:13
This is not a real真實 brain. This is a picture圖片 of one, a line drawing畫畫.
39
108000
3000
這不是真的大腦。這是大腦的描繪圖。
02:16
But I don't remember記得 exactly究竟 how it happened發生,
40
111000
3000
我已經記不清當初是如何開始的了,
02:19
but I have one recollection回憶, which哪一個 was pretty漂亮 strong強大 in my mind心神.
41
114000
3000
在我腦海中只有一個鮮明的回憶。
02:22
In September九月 1979, Scientific科學 American美國 came來了 out
42
117000
3000
1979 年九月,新一期的科學美國人出刊
02:25
with a single topic話題 issue問題 about the brain. And it was quite相當 good.
43
120000
3000
那是一期談論大腦的特刊。非常的棒。
02:28
It was one of the best最好 issues問題 ever. And they talked about the neuron神經元
44
123000
3000
那是有史以來最棒的一期雜誌之一。那期刊物中談論神經、
02:31
and development發展 and disease疾病 and vision視力 and all the things
45
126000
2000
發育、疾病以及視力等等所有的
02:33
you might威力 want to know about brains大腦. It was really quite相當 impressive有聲有色.
46
128000
3000
跟大腦相關且你會感興趣的主題。真的非常令人印象深刻。
02:36
And one might威力 have the impression印象 that we really knew知道 a lot about brains大腦.
47
131000
3000
而人會得到一種錯誤的印象,那就是我們已經非常了解我們的大腦了。
02:39
But the last article文章 in that issue問題 was written書面 by Francis弗朗西斯 Crick克里克 of DNA脫氧核糖核酸 fame名譽.
48
134000
4000
但是那一期的最後一篇文章是由發現 DNA 結構而成名的法蘭西斯•克里克所撰寫。
02:43
Today今天 is, I think, the 50th anniversary週年 of the discovery發現 of DNA脫氧核糖核酸.
49
138000
3000
今天,如果我沒記錯的話,剛好是發現 DNA 結構五十週年紀念日。
02:46
And he wrote a story故事 basically基本上 saying,
50
141000
2000
他寫了一個故事,主要是告訴我們:
02:48
well, this is all well and good, but you know what,
51
143000
3000
這個嘛~這些研究都很棒,可是你知道嗎?
02:51
we don't know diddleydiddley squat about brains大腦
52
146000
2000
我們對大腦一點都不了解
02:53
and no one has a clue線索 how these things work,
53
148000
2000
沒有人知道大腦是如何運作的,
02:55
so don't believe what anyone任何人 tells告訴 you.
54
150000
2000
所以別相信其他人告訴你的事情。
02:57
This is a quote引用 from that article文章. He said, "What is conspicuously顯著 lacking不足,"
55
152000
3000
這是從文章中摘錄下來的一句話。他說:「這裡顯著缺乏的是,」
03:00
he's a very proper正確 British英國的 gentleman紳士 so, "What is conspicuously顯著 lacking不足
56
155000
4000
他是一個非常有禮的英國紳士,「我們會注意到可以用來解釋這些研究
03:04
is a broad廣闊 framework骨架 of ideas思路 in which哪一個 to interpret these different不同 approaches方法."
57
159000
3000
的廣泛概念架構是明顯地不足的。」
03:07
I thought the word framework骨架 was great.
58
162000
2000
我認為他用「架構」一詞用得非常洽當。
03:09
He didn't say we didn't even have a theory理論. He says,
59
164000
2000
他並沒有說我們連一個理論都沒有。他所說得是,
03:11
we don't even know how to begin開始 to think about it --
60
166000
2000
我們連如何開始建立理論都不知道該如何下手 —
03:13
we don't even have a framework骨架.
61
168000
2000
我們連個架構都沒有。
03:15
We are in the pre-paradigm前範式 days, if you want to use Thomas托馬斯 Kuhn庫恩.
62
170000
3000
如果你想要引用湯瑪斯•孔恩的說法,我們處在一個前典範的時代。
03:18
And so I fell下跌 in love with this, and said look,
63
173000
3000
因此我愛上這個領域了,然後說:看看,
03:21
we have all this knowledge知識 about brains大腦. How hard can it be?
64
176000
3000
我們已經知道這麼多關於腦的知識。這會有多難?
03:24
And this is something we can work on my lifetime一生. I felt I could make a difference區別,
65
179000
3000
而且這是個可以一輩子鑽研的題目。我認為我能對世界做出一點貢獻,
03:27
and so I tried試著 to get out of the computer電腦 business商業, into the brain business商業.
66
182000
4000
因此我嘗試著離開電腦業,轉行到腦科學研究領域。
03:31
First, I went to MITMIT, the AIAI lab實驗室 was there,
67
186000
2000
首先,我跑去麻省理工裡的一間人工智慧實驗室,
03:33
and I said, well, I want to build建立 intelligent智能 machines, too,
68
188000
2000
我說,嘿,我也想要建造智能機器,
03:35
but the way I want to do it is to study研究 how brains大腦 work first.
69
190000
3000
但是我覺得達到這個目標前必須要先能了解大腦是如何運作的。
03:38
And they said, oh, you don't need to do that.
70
193000
3000
然而他們說,喔,你並不需要知道那個。
03:41
We're just going to program程序 computers電腦; that's all we need to do.
71
196000
2000
我們只需要設計電腦程式,不需要做其他不相干的事。
03:43
And I said, no, you really ought應該 to study研究 brains大腦. They said, oh, you know,
72
198000
3000
我再說,不,你們真的應該研究大腦。他們說,喔,你知道嗎?
03:46
you're wrong錯誤. And I said, no, you're wrong錯誤, and I didn't get in.
73
201000
2000
你錯了。然後我說,不,你才錯了,所以當然我沒被錄取。
03:48
(Laughter笑聲)
74
203000
1000
(笑聲)
03:50
But I was a little disappointed失望 -- pretty漂亮 young年輕 -- but I went back again
75
205000
2000
但我有點失望 — 因為我還年輕,但幾年以後我又嘗試了一次
03:52
a few少數 years年份 later後來 and this time was in California加州, and I went to Berkeley伯克利.
76
207000
3000
這次是在加州,我跑去柏克萊。
03:55
And I said, I'll go in from the biological生物 side.
77
210000
4000
然後我說,我要從生物方面開始著手。
03:59
So I got in -- in the Ph博士.D. program程序 in biophysics生物物理學, and I was, all right,
78
214000
3000
所以我被錄取了,進入了生物物理博士班。然後我心想,太棒了,
04:02
I'm studying研究 brains大腦 now, and I said, well, I want to study研究 theory理論.
79
217000
3000
我現在開始研究大腦了,然後我說,好的,我想要鑽研理論。
04:05
And they said, oh no, you can't study研究 theory理論 about brains大腦.
80
220000
2000
但他們告訴我,喔,不,你不能研究關於腦的理論。
04:07
That's not something you do. You can't get funded資助 for that.
81
222000
2000
你不想做那個的。沒有人會給你經費支持你做這種研究。
04:09
And as a graduate畢業 student學生, you can't do that. So I said, oh my gosh天哪.
82
224000
4000
身為一個研究生,你不能這麼做。所以我又說了,我的老天,
04:13
I was very depressed鬱悶. I said, but I can make a difference區別 in this field領域.
83
228000
2000
我非常沮喪。我說,但我能在這方面有所成就。
04:15
So what I did is I went back in the computer電腦 industry行業
84
230000
3000
所以我唯一能做的是,我回到了電腦業
04:18
and said, well, I'll have to work here for a while, do something.
85
233000
2000
然後說,好吧,我將留下來工作一段時間,做出一番成就。
04:20
That's when I designed設計 all those computer電腦 products製品.
86
235000
3000
然後我就開始設計出所有這些電子產品。
04:23
(Laughter笑聲)
87
238000
1000
(笑聲)
04:24
And I said, I want to do this for four years年份, make some money,
88
239000
3000
我告訴自己,我在這邊待四年,賺些錢,
04:27
like I was having a family家庭, and I would mature成熟 a bit,
89
242000
4000
我會成家,變得更成熟些,
04:31
and maybe the business商業 of neuroscience神經科學 would mature成熟 a bit.
90
246000
3000
同時也許神經科學領域也會發展得成熟一點。
04:34
Well, it took longer than four years年份. It's been about 16 years年份.
91
249000
3000
好吧,我花了超過四年的時間。時光飛逝,已經 16 年了。
04:37
But I'm doing it now, and I'm going to tell you about it.
92
252000
2000
但是我終於在研究大腦了,而我將會跟你們談談我的研究。
04:39
So why should we have a good brain theory理論?
93
254000
3000
為什麼我們應該要有一個好的大腦理論?
04:42
Well, there's lots of reasons原因 people do science科學.
94
257000
3000
人們為了千百種不同的理由研究科學。
04:45
One is -- the most basic基本 one is -- people like to know things.
95
260000
3000
其中一個理由 — 最基本的理由 — 是我們想要了解事物。
04:48
We're curious好奇, and we just go out and get knowledge知識, you know?
96
263000
2000
人類是好奇的,我們只是想要獲取新知而已,你了解嗎?
04:50
Why do we study研究 ants螞蟻? Well, it's interesting有趣.
97
265000
2000
為什麼我們要研究螞蟻?不為什麼,只因為它很有趣。
04:52
Maybe we'll learn學習 something really useful有用 about it, but it's interesting有趣 and fascinating迷人.
98
267000
3000
也許我們能從中學到新知,但是研究本身既有趣又吸引人。
04:55
But sometimes有時, a science科學 has some other attributes屬性
99
270000
2000
但有時,科學有一些其他的屬性
04:57
which哪一個 makes品牌 it really, really interesting有趣.
100
272000
2000
而這些屬性會讓它額外的吸引人。
04:59
Sometimes有時 a science科學 will tell something about ourselves我們自己,
101
274000
3000
有時候科學能夠讓我們更加認識自己,
05:02
it'll它會 tell us who we are.
102
277000
1000
它會讓我們知道我們是誰。
05:03
Rarely很少, you know: evolution演化 did this and Copernicus哥白尼 did this,
103
278000
3000
雖然這極少發生,如你所知演化學說是一例,哥白尼也做到了,
05:06
where we have a new understanding理解 of who we are.
104
281000
2000
它們徹底地改變了我們對自己身份地位上的認知。
05:08
And after all, we are our brains大腦. My brain is talking to your brain.
105
283000
4000
但是最基本的,我們代表著我們的大腦。我的大腦正在和你的交談著。
05:12
Our bodies身體 are hanging along沿 for the ride, but my brain is talking to your brain.
106
287000
3000
雖然我們的身體隨時陪伴著我們,但是是我的腦在和你的腦交談。
05:15
And if we want to understand理解 who we are and how we feel and perceive感知,
107
290000
3000
所以如果我們想要了解我們到底是誰,我們是如何感覺、理解事物,
05:18
we really understand理解 what brains大腦 are.
108
293000
2000
我們真的需要了解大腦是什麼。
05:20
Another另一個 thing is sometimes有時 science科學
109
295000
2000
另一方面,有時科學
05:22
leads引線 to really big societal社會的 benefits好處 and technologies技術,
110
297000
2000
能對社會利益、科技、
05:24
or businesses企業, or whatever隨你, that come out of it. And this is one, too,
111
299000
2000
商業,各式各樣領域做出極大的貢獻。這也是其中之一,
05:26
because when we understand理解 how brains大腦 work, we're going to be able能夠
112
301000
3000
因為當我們了解大腦是如何運作之後,我們將能夠
05:29
to build建立 intelligent智能 machines, and I think that's actually其實 a good thing on the whole整個,
113
304000
3000
建造智慧機器,我相信整體來說,這會是件好事,
05:32
and it's going to have tremendous巨大 benefits好處 to society社會,
114
307000
2000
這將會對社會有極大助益
05:34
just like a fundamental基本的 technology技術.
115
309000
2000
就如同基礎科技一般。
05:36
So why don't we have a good theory理論 of brains大腦?
116
311000
2000
所以,為什麼我們沒有一個好的大腦理論?
05:38
And people have been working加工 on it for 100 years年份.
117
313000
3000
而且人們研究大腦的歷史已經有百來年了。
05:41
Well, let's first take a look at what normal正常 science科學 looks容貌 like.
118
316000
2000
那麼,讓我們先來看看普通科學領域的狀況。
05:43
This is normal正常 science科學.
119
318000
2000
這是普通科學領域。
05:45
Normal正常 science科學 is a nice不錯 balance平衡 between之間 theory理論 and experimentalists實驗者.
120
320000
4000
普通科學領域中的理論與實作家呈現一個良好的平衡。
05:49
And so the theorist理論家 guys say, well, I think this is what's going on,
121
324000
2000
因此當理論學者說,嗯,我認為事情是這般這般,
05:51
and the experimentalist實驗者 says, no, you're wrong錯誤.
122
326000
2000
然後實驗科學家說,不,你錯了。
05:53
And it goes back and forth向前, you know?
123
328000
2000
然後就像這樣一直反覆來回,對吧?
05:55
This works作品 in physics物理. This works作品 in geology地質學. But if this is normal正常 science科學,
124
330000
2000
這方法對物理適用。對地理適用。但這些是普通科學領域,
05:57
what does neuroscience神經科學 look like? This is what neuroscience神經科學 looks容貌 like.
125
332000
3000
神經科學看起來是什麼樣子?這就是神經科學的狀況。
06:00
We have this mountain of data數據, which哪一個 is anatomy解剖學, physiology生理 and behavior行為.
126
335000
5000
我們的數據累積得比山還高,解剖學、生理學和行為學的數據。
06:05
You can't imagine想像 how much detail詳情 we know about brains大腦.
127
340000
3000
你無法想像我們對大腦的枝微末節了解得如何透徹。
06:08
There were 28,000 people who went to the neuroscience神經科學 conference會議 this year,
128
343000
4000
今年 (2003) 的神經科學研討會共有 28,000 人參加,
06:12
and every一切 one of them is doing research研究 in brains大腦.
129
347000
2000
每一個都在研究大腦。
06:14
A lot of data數據. But there's no theory理論. There's a little, wimpy懦弱 box on top最佳 there.
130
349000
4000
太多資訊。但沒有理論。在上層的這一塊是如此的微小,搖搖欲墜。
06:18
And theory理論 has not played發揮 a role角色 in any sort分類 of grand盛大 way in the neurosciences神經科學.
131
353000
5000
而且理論在神經科學中尚未扮演任何重要的角色。
06:23
And it's a real真實 shame恥辱. Now why has this come about?
132
358000
3000
這真可恥。為什麼會這樣?
06:26
If you ask neuroscientists神經學家, why is this the state of affair事務,
133
361000
2000
如果你問神經科學家,為什麼會是這種狀況?
06:28
they'll他們會 first of all admit承認 it. But if you ask them, they'll他們會 say,
134
363000
3000
一開始他們都會承認此事。但如果你接著問,他們會說,
06:31
well, there's various各個 reasons原因 we don't have a good brain theory理論.
135
366000
3000
這個嘛,有很多的原因使我們沒有一個好的大腦理論。
06:34
Some people say, well, we don't still have enough足夠 data數據,
136
369000
2000
有些人會說,呃,我們還沒有足夠的數據,
06:36
we need to get more information信息, there's all these things we don't know.
137
371000
3000
我們還需要更多資訊,還有很多我們不知道的事。
06:39
Well, I just told you there's so much data數據 coming未來 out your ears耳朵.
138
374000
3000
我才剛剛告訴你們,我們有的數據多到你們的腦袋都裝不下。
06:42
We have so much information信息, we don't even know how to begin開始 to organize組織 it.
139
377000
3000
我們擁有如此多的資訊;我們不知道如何開始整理這些資訊。
06:45
What good is more going to do?
140
380000
2000
再有更多資訊又能怎樣?
06:47
Maybe we'll be lucky幸運 and discover發現 some magic魔法 thing, but I don't think so.
141
382000
3000
也許我們會幸運的發現某些寶藏,但我不這麼認為。
06:50
This is actually其實 a symptom症狀 of the fact事實 that we just don't have a theory理論.
142
385000
3000
這其實只是因為我們沒有理論這個事實所導致的症狀罷了。
06:53
We don't need more data數據 -- we need a good theory理論 about it.
143
388000
3000
我們不需要更多數據 — 我們需要一個好理論。
06:56
Another另一個 one is sometimes有時 people say, well, brains大腦 are so complex複雜,
144
391000
3000
有時候某些人會回答另一個說法,因為大腦是如此複雜,
06:59
it'll它會 take another另一個 50 years年份.
145
394000
2000
我們還需要 50 年的研究。
07:01
I even think Chris克里斯 said something like this yesterday昨天.
146
396000
2000
我甚至好像聽到 Chris 昨天才說了類似的話。
07:03
I'm not sure what you said, Chris克里斯, but something like,
147
398000
2000
我不確定你說了什麼,Chris,但好像是類似
07:05
well, it's one of the most complicated複雜 things in the universe宇宙. That's not true真正.
148
400000
3000
— 大腦是宇宙中最複雜的事物之一。這不是真的。
07:08
You're more complicated複雜 than your brain. You've got a brain.
149
403000
2000
你比你的大腦還要複雜。腦只是你身體的一部分。
07:10
And it's also, although雖然 the brain looks容貌 very complicated複雜,
150
405000
2000
並且,雖然大腦看起來非常複雜,
07:12
things look complicated複雜 until直到 you understand理解 them.
151
407000
3000
但是我們常認為我們所不了解的事物是複雜的。
07:15
That's always been the case案件. And so all we can say, well,
152
410000
3000
總是這樣子的。我們能夠說的只是,這個嘛,
07:18
my neocortex新皮層, which哪一個 is the part部分 of the brain I'm interested有興趣 in, has 30 billion十億 cells細胞.
153
413000
4000
我的新皮層,大腦中我感興趣的部份,有三百億個細胞。
07:22
But, you know what? It's very, very regular定期.
154
417000
2000
但你知道嗎?它非常、非常的規則。
07:24
In fact事實, it looks容貌 like it's the same相同 thing repeated重複 over and over and over again.
155
419000
3000
事實上,它看起來像是同一個東西不斷的重複、重複再重複。
07:27
It's not as complex複雜 as it looks容貌. That's not the issue問題.
156
422000
3000
它不像看起來般如此複雜。所以這不是問題。
07:30
Some people say, brains大腦 can't understand理解 brains大腦.
157
425000
2000
某些人說,大腦無法了解大腦。
07:32
Very Zen-like禪宗般. Whoo. (Laughter笑聲)
158
427000
3000
非常具有禪意。呼,是吧 —
07:35
You know,
159
430000
1000
(笑聲)
07:36
it sounds聲音 good, but why? I mean, what's the point?
160
431000
3000
聽起來很有道理,但為什麼?我是說,真的有道理嗎?
07:39
It's just a bunch of cells細胞. You understand理解 your liver.
161
434000
3000
大腦只不過是一堆細胞。你能了解你的肝臟呀。
07:42
It's got a lot of cells細胞 in it too, right?
162
437000
2000
肝臟中也有很多細胞,對吧?
07:44
So, you know, I don't think there's anything to that.
163
439000
2000
所以,你知道,我不覺得這有什麼問題。
07:46
And finally最後, some people say, well, you know,
164
441000
2000
最後,某些人會說,那麼,你知道,
07:48
I don't feel like a bunch of cells細胞, you know. I'm conscious意識.
165
443000
4000
我不覺得我是一堆細胞,你能理解嗎?我有意識。
07:52
I've got this experience經驗, I'm in the world世界, you know.
166
447000
2000
我能累積經驗,我生活在世界中,類似這些話。
07:54
I can't be just a bunch of cells細胞. Well, you know,
167
449000
2000
我不可能只是一堆細胞。是的,你知道,
07:56
people used to believe there was a life force to be living活的,
168
451000
3000
人們總是相信生物體內存在某種「生命力」,
07:59
and we now know that's really not true真正 at all.
169
454000
2000
我們現在知道這一點都不是事實。
08:01
And there's really no evidence證據 that says -- well, other than people
170
456000
3000
這一點都沒有事實根據,好吧,除了人們不想相信
08:04
just have disbelief懷疑 that cells細胞 can do what they do.
171
459000
2000
細胞可以做到人們平日在做的事情。
08:06
And so, if some people have fallen墮落 into the pit of metaphysical抽象的 dualism二元論,
172
461000
3000
因此,如果某些人們落入形而上學二元論的泥淖中,
08:09
some really smart聰明 people, too, but we can reject拒絕 all that.
173
464000
3000
一些很聰明的人也不例外,但是我們可以駁斥他們的所有說法。
08:12
(Laughter笑聲)
174
467000
2000
(笑聲)
08:14
No, I'm going to tell you there's something else其他,
175
469000
3000
不,我將要告訴你們還有別的,
08:17
and it's really fundamental基本的, and this is what it is:
176
472000
2000
而且非常基本,就是我下面要說的這句話:
08:19
there's another另一個 reason原因 why we don't have a good brain theory理論,
177
474000
2000
我們沒有一個好的大腦理論的另一個理由是,
08:21
and it's because we have an intuitive直觀的, strongly-held強舉行,
178
476000
3000
我們被一種直觀的、根深蒂固的
08:24
but incorrect不正確 assumption假設 that has prevented防止 us from seeing眼看 the answer回答.
179
479000
5000
但是錯誤的假設所蒙蔽,因此一直無法找到問題的答案。
08:29
There's something we believe that just, it's obvious明顯, but it's wrong錯誤.
180
484000
3000
我們所相信的某些事情,雖然表面上很顯而易見,但是它是錯的。
08:32
Now, there's a history歷史 of this in science科學 and before I tell you what it is,
181
487000
4000
事實上,科學界的歷史中已經發生過同樣的事情,而在我告訴你以前,
08:36
I'm going to tell you a bit about the history歷史 of it in science科學.
182
491000
2000
我要先跟你談談科學界的歷史。
08:38
You look at some other scientific科學 revolutions革命,
183
493000
2000
你們看看其他的科學革命,
08:40
and this case案件, I'm talking about the solar太陽能 system系統, that's Copernicus哥白尼,
184
495000
2000
這邊,我們來談談太陽系,那是哥白尼的貢獻,
08:42
Darwin's達爾文 evolution演化, and tectonic構造 plates, that's Wegener韋格納.
185
497000
3000
達爾文的演化還有魏格納的板塊構造論。
08:45
They all have a lot in common共同 with brain science科學.
186
500000
3000
他們都與大腦科學有很多共通之處。
08:48
First of all, they had a lot of unexplained原因不明 data數據. A lot of it.
187
503000
3000
首先,他們有很多無法解釋的數據,一堆數據。
08:51
But it got more manageable管理 once一旦 they had a theory理論.
188
506000
3000
但是當他們有了理論之後,這些數據變得容易處理的多。
08:54
The best最好 minds頭腦 were stumped難倒 -- really, really smart聰明 people.
189
509000
3000
偉大的心靈總是會遭遇許多困難,那些極端、極端聰明的人們。
08:57
We're not smarter聰明 now than they were then.
190
512000
2000
我們現在並不比他們當時聰明。
08:59
It just turns out it's really hard to think of things,
191
514000
2000
思考問題是極端困難的,
09:01
but once一旦 you've thought of them, it's kind of easy簡單 to understand理解 it.
192
516000
2000
但一旦你想通了,事情就會得容易理解得多。
09:03
My daughters女兒 understood了解 these three theories理論
193
518000
2000
我女兒能夠了解這三個理論
09:05
in their basic基本 framework骨架 by the time they were in kindergarten幼兒園.
194
520000
3000
至少了解他們的基本架構,而那時她只是個幼稚園學童而已。
09:08
And now it's not that hard, you know, here's這裡的 the apple蘋果, here's這裡的 the orange橙子,
195
523000
3000
因此,這並沒有這麼難,就像這樣,這是蘋果,這是柳丁,
09:11
you know, the Earth地球 goes around, that kind of stuff東東.
196
526000
3000
你知道的,地球在公轉,類似的這種東西。
09:14
Finally最後, another另一個 thing is the answer回答 was there all along沿,
197
529000
2000
最後,另一件事是答案始終在那邊,
09:16
but we kind of ignored忽視 it because of this obvious明顯 thing, and that's the thing.
198
531000
3000
但是我們卻因為錯誤而明顯的假設而忽略了它,這就是問題所在。
09:19
It was an intuitive直觀的, strong-held強舉行 belief信仰 that was wrong錯誤.
199
534000
3000
問題就是這個直觀且根深蒂固的認知是錯的。
09:22
In the case案件 of the solar太陽能 system系統, the idea理念 that the Earth地球 is spinning紡織
200
537000
3000
拿太陽系的例子來說,地球自轉的概念
09:25
and the surface表面 of the Earth地球 is going like a thousand miles英里 an hour小時,
201
540000
3000
還有地球表面以每小時幾千英哩的速度在轉動著,
09:28
and the Earth地球 is going through通過 the solar太陽能 system系統 about a million百萬 miles英里 an hour小時.
202
543000
3000
不用說還有地球本身以幾百萬英哩的時速在太陽系中移動著。
09:31
This is lunacy瘋狂行為. We all know the Earth地球 isn't moving移動.
203
546000
2000
這真是瘋了。我們都知道地球並沒有在動。
09:33
Do you feel like you're moving移動 a thousand miles英里 an hour小時?
204
548000
2000
你覺得你有在以千哩的時速移動嗎?
09:35
Of course課程 not. You know, and someone有人 who said,
205
550000
2000
當然沒有。你知道,當有人說,
09:37
well, it was spinning紡織 around in space空間 and it's so huge巨大,
206
552000
2000
地球在太空中自轉,而太空是如此之大,
09:39
they would lock you up, and that's what they did back then.
207
554000
2000
然後他們會把你關起來,這就是當時他們所做的事。
09:41
(Laughter笑聲)
208
556000
1000
(笑聲)
09:42
So it was intuitive直觀的 and obvious明顯. Now what about evolution演化?
209
557000
3000
所以這是直觀且顯而易見的。現在,我們談談演化…
09:45
Evolution's進化的 the same相同 thing. We taught our kids孩子, well, the Bible聖經 says,
210
560000
3000
發生在演化上的情形是一樣的。我們教導孩子,嗯,聖經上說,
09:48
you know, God created創建 all these species種類, cats are cats, dogs小狗 are dogs小狗,
211
563000
2000
你知道的,上帝創造了所有生命,貓是貓,狗是狗,
09:50
people are people, plants植物 are plants植物, they don't change更改.
212
565000
3000
人是人,樹木是樹木,他們是不變的。
09:53
Noah諾亞 put them on the Ark方舟 in that order訂購, blah胡說, blah胡說, blah胡說. And, you know,
213
568000
4000
諾亞奉命將他們放到方舟內,如此這般。而且,你知道,
09:57
the fact事實 is, if you believe in evolution演化, we all have a common共同 ancestor祖先,
214
572000
4000
事實上,如果你相信演化,我們都來自同一個祖先,
10:01
and we all have a common共同 ancestry祖先 with the plant in the lobby前廳.
215
576000
3000
則我們和大廳裡那些植物有共同的祖先。
10:04
This is what evolution演化 tells告訴 us. And, it's true真正. It's kind of unbelievable難以置信的.
216
579000
3000
這是演化告訴我們的。並且它是真的。儘管有點難令人相信。
10:07
And the same相同 thing about tectonic構造 plates, you know?
217
582000
3000
板塊構造論也遭遇類似情形,不是嗎?
10:10
All the mountains and the continents大陸 are kind of floating漂浮的 around
218
585000
2000
所有的山嶽與大陸都飄浮在地球的表面,
10:12
on top最佳 of the Earth地球, you know? It's like, it doesn't make any sense.
219
587000
4000
你相信嗎?這真的一點都不合邏輯。
10:16
So what is the intuitive直觀的, but incorrect不正確 assumption假設,
220
591000
4000
所以什麼是我說的關於大腦直觀但是不正確的假設,
10:20
that's kept不停 us from understanding理解 brains大腦?
221
595000
2000
並使我們不能真正的了解大腦?
10:22
Now I'm going to tell it to you, and it's going to seem似乎 obvious明顯 that that is correct正確,
222
597000
2000
現在我將要告訴你們,而且它將會看起來正確無誤不容懷疑,
10:24
and that's the point, right? Then I'm going to have to make an argument論據
223
599000
2000
但這就是我想要說明的,不是嗎?然後我將會作一番論述
10:26
why you're incorrect不正確 about the other assumption假設.
224
601000
2000
為什麼你們另一個假設也是錯的。
10:28
The intuitive直觀的 but obvious明顯 thing is that somehow不知何故 intelligence情報
225
603000
3000
這個直觀且明顯的事情就是:智能可以藉由
10:31
is defined定義 by behavior行為,
226
606000
2000
行為來界定,
10:33
that we are intelligent智能 because of the way that we do things
227
608000
2000
我們擁有智能乃是因為我們行事的方法
10:35
and the way we behave表現 intelligently智能, and I'm going to tell you that's wrong錯誤.
228
610000
3000
還有我們展現智慧的行為,但是我要告訴你們這是錯的。
10:38
What it is is intelligence情報 is defined定義 by prediction預測.
229
613000
2000
智能其實應該是由預測能力來界定的。
10:40
And I'm going to work you through通過 this in a few少數 slides幻燈片 here,
230
615000
3000
接下來的幾張投影片,我將解釋我的論點,
10:43
give you an example of what this means手段. Here's這裡的 a system系統.
231
618000
4000
給你們一個可以了解它的意義的例子。這裡有一個系統。
10:47
Engineers工程師 like to look at systems系統 like this. Scientists科學家們 like to look at systems系統 like this.
232
622000
3000
工程師喜歡這樣看待系統。科學家也喜歡這樣看待系統。
10:50
They say, well, we have a thing in a box, and we have its inputs輸入 and its outputs輸出.
233
625000
3000
他們說,嗯,這個箱子裡面有某種東西,然後我們有輸入跟輸出。
10:53
The AIAI people said, well, the thing in the box is a programmable可編程的 computer電腦
234
628000
3000
研究人工智慧的人說,我知道,箱子裡的東西是可編程的電腦
10:56
because that's equivalent當量 to a brain, and we'll feed飼料 it some inputs輸入
235
631000
2000
因為它和腦是對等的,我們將會給它一些輸入訊號
10:58
and we'll get it to do something, have some behavior行為.
236
633000
2000
然後我們可以讓它做些事情,產生行為。
11:00
And Alan艾倫 Turing圖靈 defined定義 the Turing圖靈 test測試, which哪一個 is essentially實質上 saying,
237
635000
3000
然後艾倫•涂林訂定了涂林測驗,這個測驗基本上是說,
11:03
we'll know if something's什麼是 intelligent智能 if it behaves的行為 identical相同 to a human人的.
238
638000
3000
如果某物的行為可以表現得跟人一模一樣,我們知道它有智能。
11:06
A behavioral行為的 metric of what intelligence情報 is,
239
641000
3000
對於智能本質上的一個行為標準,
11:09
and this has stuck卡住 in our minds頭腦 for a long period of time.
240
644000
3000
這個假設佔據了我們的想法很長的一段時間。
11:12
Reality現實 though雖然, I call it real真實 intelligence情報.
241
647000
2000
但是事實上,我稱之為真實智慧。
11:14
Real真實 intelligence情報 is built內置 on something else其他.
242
649000
2000
真實智慧是建築在其它東西上。
11:16
We experience經驗 the world世界 through通過 a sequence序列 of patterns模式, and we store商店 them,
243
651000
4000
我們藉由一序列的模式來體驗這個世界,我們儲存這些模式,
11:20
and we recall召回 them. And when we recall召回 them, we match比賽 them up
244
655000
3000
我們也會回憶這些模式。當我們回憶時,我們會將現實與記憶中的
11:23
against反對 reality現實, and we're making製造 predictions預測 all the time.
245
658000
4000
模式對照,並且我們無時無刻不在預測下一刻。
11:27
It's an eternal永恆 metric. There's an eternal永恆 metric about us sort分類 of saying,
246
662000
3000
這是永恆的標準。有一個關於我們的外在標準大概是這樣的,
11:30
do we understand理解 the world世界? Am I making製造 predictions預測? And so on.
247
665000
3000
我們了解這個世界嗎?我正在做預測嗎?等等這些。
11:33
You're all being存在 intelligent智能 right now, but you're not doing anything.
248
668000
2000
你們現在都顯示出智慧,但是你們並沒有在做任何事。
11:35
Maybe you're scratching搔抓 yourself你自己, or picking選擇 your nose鼻子,
249
670000
2000
也許你剛剛正在搔癢,或者挖鼻孔,
11:37
I don't know, but you're not doing anything right now,
250
672000
2000
我不知道,但是你現在並沒有在做任何事,
11:39
but you're being存在 intelligent智能; you're understanding理解 what I'm saying.
251
674000
3000
但是你是有智慧的,你了解我在說什麼。
11:42
Because you're intelligent智能 and you speak說話 English英語,
252
677000
2000
因為你有智慧而且你聽得懂英文,
11:44
you know what word is at the end結束 of this -- (Silence安靜)
253
679000
1000
你知道這句話最後一個 — (沉默)
11:45
sentence句子.
254
680000
2000
字是什麼。
11:47
The word came來了 into you, and you're making製造 these predictions預測 all the time.
255
682000
3000
這個字會自己顯現,你無時無刻不在做類似這種的預測。
11:50
And then, what I'm saying is,
256
685000
2000
所以,我要說的是,
11:52
is that the eternal永恆 prediction預測 is the output產量 in the neocortex新皮層.
257
687000
2000
這個永恆的預測是我們大腦新皮層的訊號輸出。
11:54
And that somehow不知何故, prediction預測 leads引線 to intelligent智能 behavior行為.
258
689000
3000
不知怎麼的,預測最終導致智能行為。
11:57
And here's這裡的 how that happens發生. Let's start開始 with a non-intelligent非智能 brain.
259
692000
3000
這裡我來解釋它是如何發生的。讓我們先從非智能大腦開始看起。
12:00
Well I'll argue爭論 a non-intelligent非智能 brain, we got hold保持 of an old brain,
260
695000
4000
其實我不贊成稱之為非智能大腦,這種原始的大腦也是我們的一部分,
12:04
and we're going to say it's like a non-mammal非哺乳動物, like a reptile爬蟲,
261
699000
3000
所以下面我們稱之為非哺乳動物的腦,例如爬蟲類,
12:07
so I'll say, an alligator鱷魚; we have an alligator鱷魚.
262
702000
2000
所以我說,就鱷魚吧,我們拿鱷魚來當例子。
12:09
And the alligator鱷魚 has some very sophisticated複雜的 senses感官.
263
704000
3000
鱷魚擁有一些非常複雜的感知能力。
12:12
It's got good eyes眼睛 and ears耳朵 and touch觸摸 senses感官 and so on,
264
707000
3000
牠有非常好的視覺、聽覺、觸覺等等。
12:15
a mouth and a nose鼻子. It has very complex複雜 behavior行為.
265
710000
4000
一張嘴一隻鼻子。牠擁有非常複雜的行為。
12:19
It can run and hide隱藏. It has fears恐懼 and emotions情緒. It can eat you, you know.
266
714000
4000
牠可以奔跑、躲藏。牠擁有恐懼與情緒。牠能將你吃了,你知道吧。
12:23
It can attack攻擊. It can do all kinds of stuff東東.
267
718000
4000
牠可以攻擊。牠可以做各種事。
12:27
But we don't consider考慮 the alligator鱷魚 very intelligent智能, not like in a human人的 sort分類 of way.
268
722000
5000
但是我們不認為鱷魚智力很高,跟人類一點都不能相比。
12:32
But it has all this complex複雜 behavior行為 already已經.
269
727000
2000
但是牠已經擁有如此複雜的行為了。
12:34
Now, in evolution演化, what happened發生?
270
729000
2000
在演化過程中,到底發生了什麼事?
12:36
First thing that happened發生 in evolution演化 with mammals哺乳動物,
271
731000
3000
在哺乳類的演化過成中首先,
12:39
we started開始 to develop發展 a thing called the neocortex新皮層.
272
734000
2000
我們開始發展出所謂的新皮層。
12:41
And I'm going to represent代表 the neocortex新皮層 here,
273
736000
2000
我將在這邊用此來表示新皮層,
12:43
by this box that's sticking癥結 on top最佳 of the old brain.
274
738000
2000
用這個建基於原始大腦上方的方塊來表示。
12:45
Neocortex新皮層 means手段 new layer. It is a new layer on top最佳 of your brain.
275
740000
3000
新皮層就是一層新的組織。一層覆蓋在你大腦上方的新組織。
12:48
If you don't know it, it's the wrinkly thing on the top最佳 of your head that,
276
743000
3000
如果你不知道,它就是你頭裡面最外層那個充滿皺摺的東西,
12:51
it's got wrinkly because it got shoved in there and doesn't fit適合.
277
746000
3000
因為它不合身且被胡亂地塞在你的腦袋裡,所以它充滿了皺摺。
12:54
(Laughter笑聲)
278
749000
1000
(笑聲)
12:55
No, really, that's what it is. It's about the size尺寸 of a table napkin餐巾.
279
750000
2000
不,我說真的,真的是這樣。它大約跟張桌巾一般大小。
12:57
And it doesn't fit適合, so it gets得到 all wrinkly. Now look at how I've drawn this here.
280
752000
3000
它並不合身,所以它充滿皺摺。看看在這邊我是怎麼畫它的。
13:00
The old brain is still there. You still have that alligator鱷魚 brain.
281
755000
4000
原始大腦仍然在那邊。你還擁有著與鱷魚相似的腦。
13:04
You do. It's your emotional情緒化 brain.
282
759000
2000
是真的。那是你原始情緒的腦。
13:06
It's all those things, and all those gut腸道 reactions反應 you have.
283
761000
3000
就是那些東西,所有你會有的直覺反應。
13:09
And on top最佳 of it, we have this memory記憶 system系統 called the neocortex新皮層.
284
764000
3000
而在那個上方。我們有一個稱為新皮層的記憶系統。
13:12
And the memory記憶 system系統 is sitting坐在 over the sensory感覺的 part部分 of the brain.
285
767000
4000
而這個記憶系統座落在大腦感知區的上方。
13:16
And so as the sensory感覺的 input輸入 comes in and feeds供稿 from the old brain,
286
771000
3000
所以當感官訊號輸入進來並刺激了原始大腦,
13:19
it also goes up into the neocortex新皮層. And the neocortex新皮層 is just memorizing記憶.
287
774000
4000
它開始往更上層的新皮層傳遞。而新皮層只是將之記憶下來。
13:23
It's sitting坐在 there saying, ah, I'm going to memorize記憶 all the things that are going on:
288
778000
4000
它待在那邊說,呃,我將要把正在發生的事情全部記下來,
13:27
where I've been, people I've seen看到, things I've heard聽說, and so on.
289
782000
2000
我去了哪裡,我見了哪些人,我聽到了什麼東西,如此這般。
13:29
And in the future未來, when it sees看到 something similar類似 to that again,
290
784000
4000
到了未來,當它再次見到類似的東西,
13:33
so in a similar類似 environment環境, or the exact精確 same相同 environment環境,
291
788000
3000
處於類似或者同樣的環境下,
13:36
it'll它會 play it back. It'll它會 start開始 playing播放 it back.
292
791000
2000
它就會重播。它會開始重播。
13:38
Oh, I've been here before. And when you've been here before,
293
793000
2000
喔,我到過這裡。當你上次在這裡的時候,
13:40
this happened發生 next下一個. It allows允許 you to predict預測 the future未來.
294
795000
3000
接下來發生了這件事。它能讓你對未來產生預測。
13:43
It allows允許 you to, literally按照字面 it feeds供稿 back the signals信號 into your brain;
295
798000
4000
它能讓你,就是它提供你腦部信號回饋,
13:47
they'll他們會 let you see what's going to happen發生 next下一個,
296
802000
2000
他們能讓你了解即將會發生的事,
13:49
will let you hear the word "sentence句子" before I said it.
297
804000
3000
能讓你聽到一句話的最後一個「字」,即使我還沒說出口。
13:52
And it's this feeding饋送 back into the old brain
298
807000
3000
就是這種給原始大腦的回饋
13:55
that'll那會 allow允許 you to make very more intelligent智能 decisions決定.
299
810000
3000
能夠讓你做出更多有智慧的決定。
13:58
This is the most important重要 slide滑動 of my talk, so I'll dwell on it a little bit.
300
813000
3000
這是我這次演講中最重要的一張投影片,因此我會再花點時間來解釋。
14:01
And so, all the time you say, oh, I can predict預測 the things.
301
816000
4000
所以,每次當你說,喔,我能預測到這些事情。
14:05
And if you're a rat and you go through通過 a maze迷宮, and then you learn學習 the maze迷宮,
302
820000
3000
就像如果你是一隻迷宮中的老鼠,然後你認識了這個迷宮,
14:08
the next下一個 time you're in a maze迷宮, you have the same相同 behavior行為,
303
823000
2000
下一次當你在迷宮中的時候,你會做一樣的事情,
14:10
but all of a sudden突然, you're smarter聰明
304
825000
2000
但是突然間,你變聰明了
14:12
because you say, oh, I recognize認識 this maze迷宮, I know which哪一個 way to go,
305
827000
3000
因為你會說,喔,我認得這個迷宮,我知道該往哪邊走,
14:15
I've been here before, I can envision預見 the future未來. And that's what it's doing.
306
830000
3000
我曾經到過這裡,我能夠預見未來。這就是智慧在做的事。
14:18
In humans人類 -- by the way, this is true真正 for all mammals哺乳動物;
307
833000
3000
在人身上,換句話說,這適用於所有哺乳動物,
14:21
it's true真正 for other mammals哺乳動物 -- and in humans人類, it got a lot worse更差.
308
836000
2000
同樣適用於其他哺乳動物,但在人類身上,這個額外重要。
14:23
In humans人類, we actually其實 developed發達 the front面前 part部分 of the neocortex新皮層
309
838000
3000
在人身上,我們事實上發展出了新皮層的前段部份
14:26
called the anterior前面的 part部分 of the neocortex新皮層. And nature性質 did a little trick.
310
841000
4000
稱為新皮層前緣。自然界在這邊耍了一個小手段。
14:30
It copied複製 the posterior part部分, the back part部分, which哪一個 is sensory感覺的,
311
845000
2000
它複製了後緣部份,後段的感知部份,
14:32
and put it in the front面前 part部分.
312
847000
2000
然後把它放來前面。
14:34
And humans人類 uniquely獨特地 have the same相同 mechanism機制 on the front面前,
313
849000
2000
因此人類很特殊的在腦前段也有此相同的構造,
14:36
but we use it for motor發動機 control控制.
314
851000
2000
但是我們使用它來控制運動功能。
14:38
So we are now able能夠 to make very sophisticated複雜的 motor發動機 planning規劃, things like that.
315
853000
3000
所以現在我們能夠策劃非常複雜的運動計畫,和類似的事情。
14:41
I don't have time to get into all this, but if you want to understand理解 how a brain works作品,
316
856000
3000
我沒有時間詳細解說所有的這些東西,但是如果你們想要了解大腦是如何運作的,
14:44
you have to understand理解 how the first part部分 of the mammalian哺乳動物 neocortex新皮層 works作品,
317
859000
3000
你們必須了解上一段我所解釋的哺乳動物新皮層運作的原理,
14:47
how it is we store商店 patterns模式 and make predictions預測.
318
862000
2000
它是如何的使我們具有儲存模式和進行預測的能力。
14:49
So let me give you a few少數 examples例子 of predictions預測.
319
864000
3000
現在讓我給你們一些關於預測的實例。
14:52
I already已經 said the word "sentence句子." In music音樂,
320
867000
2000
我已經說過那個關於「字」的例子了。在音樂中,
14:54
if you've heard聽說 a song歌曲 before, if you heard聽說 Jill吉爾 sing those songs歌曲 before,
321
869000
3000
如果你曾經聽過一首歌,如果你之前聽過 Jill 唱這些歌,
14:57
when she sings them, the next下一個 note注意 pops持久性有機污染物 into your head already已經 --
322
872000
3000
當她唱歌時,下一個音符就已經躍進你的耳朵了 —
15:00
you anticipate預料 it as you're going. If it was an album專輯 of music音樂,
323
875000
2000
當你一邊在聽歌的時候,你一邊在預期著。如果是一張音樂專輯,
15:02
the end結束 of one album專輯, the next下一個 song歌曲 pops持久性有機污染物 into your head.
324
877000
3000
當一首歌結束,下一首歌會自動在你腦海中浮現。
15:05
And these things happen發生 all the time. You're making製造 these predictions預測.
325
880000
2000
而且這種事情一直不斷的在發生。你一直在做這些預測。
15:07
I have this thing called the altered改變 door thought experiment實驗.
326
882000
3000
我聽過一個稱作「變更的門」的思想實驗。
15:10
And the altered改變 door thought experiment實驗 says, you have a door at home,
327
885000
3000
這個思想實驗指出,如果你在家裏有一個門,
15:13
and when you're here, I'm changing改變 it, I've got a guy
328
888000
3000
當你在這裡聽演講的時候,我去更動它,我找了一個人
15:16
back at your house right now, moving移動 the door around,
329
891000
2000
在這時候回到你家,任意對那扇門做變更,
15:18
and they're going to take your doorknob門把手 and move移動 it over two inches英寸.
330
893000
2000
他們將把你們的門把移動約兩寸的距離。
15:20
And when you go home tonight今晚, you're going to put your hand out there,
331
895000
2000
然後當你今晚回到家的時候,你將會把你的手伸出,
15:22
and you're going to reach達到 for the doorknob門把手 and you're going to notice注意
332
897000
2000
然後你將會碰到門把,就在這時,你會注意到
15:24
it's in the wrong錯誤 spot, and you'll你會 go, whoa, something happened發生.
333
899000
3000
門把的位置不對了,然後你會驚覺,哇,有事情發生了。
15:27
It may可能 take a second第二 to figure數字 out what it was, but something happened發生.
334
902000
2000
你仍然需要一兩秒來思考到底發生了什麼事,但是一定有什麼不一樣。
15:29
Now I could change更改 your doorknob門把手 in other ways方法.
335
904000
2000
我可以任意更動你的門把。
15:31
I can make it larger or smaller, I can change更改 its brass黃銅 to silver,
336
906000
2000
我可以使它變大或變小,我可以由黃銅改成鍍銀,
15:33
I could make it a lever槓桿. I can change更改 your door, put colors顏色 on;
337
908000
2000
我可以將門把改為門桿。我可以改變你的門本身,為它上色,
15:35
I can put windows視窗 in. I can change更改 a thousand things about your door,
338
910000
3000
或者加上窗戶。我有一千種以上的方法來變更你的門,
15:38
and in the two seconds you take to open打開 your door,
339
913000
2000
然後在你開門的兩秒內,
15:40
you're going to notice注意 that something has changed.
340
915000
3000
你將會注意到某些變更的存在。
15:43
Now, the engineering工程 approach途徑 to this, the AIAI approach途徑 to this,
341
918000
2000
你沒辦法藉由工程學來完成這件事,人工智慧的解決途徑是,
15:45
is to build建立 a door database數據庫. It has all the door attributes屬性.
342
920000
3000
建立一個門的資料庫。它擁有所有這些與門相關的特性表。
15:48
And as you go up to the door, you know, let's check them off one at time.
343
923000
3000
然後當你走到門前時,你知道,讓我們按照表來一個個檢查這些項目。
15:51
Door, door, door, you know, color顏色, you know what I'm saying.
344
926000
2000
門、門、門、你知道的、顏色,你知道我想說什麼嗎?
15:53
We don't do that. Your brain doesn't do that.
345
928000
2000
我們不是這麼做的。你的大腦不是這樣運作的。
15:55
What your brain is doing is making製造 constant不變 predictions預測 all the time
346
930000
2000
你的大腦事實上是一直在做預測
15:57
about what is going to happen發生 in your environment環境.
347
932000
2000
預測在你的環境中將會發生什麼事。
15:59
As I put my hand on this table, I expect期望 to feel it stop.
348
934000
3000
當我把我的手放上這張桌子,我會預期感覺到我的手停止。
16:02
When I walk步行, every一切 step, if I missed錯過 it by an eighth第八 of an inch英寸,
349
937000
3000
當我走路時,每一步,即使只差了 1/8 英吋,
16:05
I'll know something has changed.
350
940000
2000
我也會察覺某些事情不一樣了。
16:07
You're constantly經常 making製造 predictions預測 about your environment環境.
351
942000
2000
你持續的在對周遭的環境做預測。
16:09
I'll talk about vision視力 here briefly簡要地. This is a picture圖片 of a woman女人.
352
944000
3000
我將簡短的談談視覺。這是一張女人的照片。
16:12
And when you look at people, your eyes眼睛 are caught抓住
353
947000
2000
當你看著人時,你的眼睛大約會以
16:14
over at two to three times a second第二.
354
949000
1000
每秒兩至三次的頻率移動。
16:15
You're not aware知道的 of this, but your eyes眼睛 are always moving移動.
355
950000
2000
你不自覺,可是你的眼睛是不停的在移動著。
16:17
And so when you look at someone's誰家 face面對,
356
952000
2000
因此當你在看某人的臉時,
16:19
you'd typically一般 go from eye to eye to eye to nose鼻子 to mouth.
357
954000
2000
一般來說你會從一隻眼睛看到另一隻眼睛,再從眼睛到鼻子到嘴巴。
16:21
Now, when your eye moves移動 from eye to eye,
358
956000
2000
現在,當你的眼睛在對方眼睛間移動的時候,
16:23
if there was something else其他 there like, a nose鼻子,
359
958000
2000
如果一個鼻子出現在那邊,
16:25
you'd see a nose鼻子 where an eye is supposed應該 to be,
360
960000
2000
你會在本來應該出現眼睛的地方看到鼻子,
16:27
and you'd go, oh shit拉屎, you know --
361
962000
3000
然後你會像,喔,天呀,你知道 —
16:30
(Laughter笑聲)
362
965000
1000
(笑聲)
16:31
There's something wrong錯誤 about this person.
363
966000
2000
這個人不太對勁。
16:33
And that's because you're making製造 a prediction預測.
364
968000
2000
而這是因為你一直在做預測。
16:35
It's not like you just look over there and say, what am I seeing眼看 now?
365
970000
2000
你不是只是往那邊看,然後說:我現在看到什麼東西?
16:37
A nose鼻子, that's okay. No, you have an expectation期望 of what you're going to see.
366
972000
3000
一個鼻子,那沒什麼。不,你會預期你將看到的東西。
16:40
(Laughter笑聲)
367
975000
1000
(笑聲)
16:41
Every一切 single moment時刻. And finally最後, let's think about how we test測試 intelligence情報.
368
976000
4000
無時無刻。最後,讓我們來想想我們是如何做智力測驗的。
16:45
We test測試 it by prediction預測. What is the next下一個 word in this, you know?
369
980000
3000
我們用預測能力來測驗它。下一個字是什麼,對吧?
16:48
This is to this as this is to this. What is the next下一個 number in this sentence句子?
370
983000
3000
這個之於這個等於那個之於那個。這個序列的下一個數字是什麼?
16:51
Here's這裡的 three visions願景 of an object目的.
371
986000
2000
這是一個物體的三視圖。
16:53
What's the fourth第四 one? That's how we test測試 it. It's all about prediction預測.
372
988000
4000
第四面可能是什麼?這就是我們測驗智力的方法。全部都跟預測能力有關。
16:57
So what is the recipe食譜 for brain theory理論?
373
992000
3000
那麼大腦理論的配方到底是什麼?
17:00
First of all, we have to have the right framework骨架.
374
995000
3000
首先,我們必須要有正確的架構。
17:03
And the framework骨架 is a memory記憶 framework骨架,
375
998000
2000
而這個架構是記憶架構,
17:05
not a computation計算 or behavior行為 framework骨架. It's a memory記憶 framework骨架.
376
1000000
2000
而不是計算或是行為架構。是一個記憶架構。
17:07
How do you store商店 and recall召回 these sequences序列 or patterns模式? It's spatio-temporal時空 patterns模式.
377
1002000
4000
你如何儲存並回憶這些序列與模式?一個時間與空間的模式。
17:11
Then, if in that framework骨架, you take a bunch of theoreticians理論家.
378
1006000
3000
然後,如果在那個架構中,你有一群好的理論學者。
17:14
Now biologists生物學家 generally通常 are not good theoreticians理論家.
379
1009000
2000
現在的生物學家通常不是好的理論學者。
17:16
It's not always true真正, but in general一般, there's not a good history歷史 of theory理論 in biology生物學.
380
1011000
4000
並不是總是這樣,但是通常是,生物學沒有建夠好理論的歷史習慣。
17:20
So I found發現 the best最好 people to work with are physicists物理學家,
381
1015000
3000
我能找到最好的工作夥伴是物理學家,
17:23
engineers工程師 and mathematicians數學家, who tend趨向 to think algorithmically算法.
382
1018000
3000
工程師和數學家,他們習於演算思維模式。
17:26
Then they have to learn學習 the anatomy解剖學, and they've他們已經 got to learn學習 the physiology生理.
383
1021000
3000
然後他們必須學習解剖學和生理學。
17:29
You have to make these theories理論 very realistic實際 in anatomical解剖 terms條款.
384
1024000
4000
你必須使這些理論在解剖層面上也是非常真實的。
17:33
Anyone任何人 who gets得到 up and tells告訴 you their theory理論 about how the brain works作品
385
1028000
4000
任何人當他跳出來告訴你他們關於大腦運行的理論
17:37
and doesn't tell you exactly究竟 how it's working加工 in the brain
386
1032000
2000
但是不能解釋這些事情如何在腦內發生
17:39
and how the wiring接線 works作品 in the brain, it is not a theory理論.
387
1034000
2000
還有腦內的連結關係是什麼,這就不是一個理論。
17:41
And that's what we're doing at the Redwood紅木 Neuroscience神經科學 Institute研究所.
388
1036000
3000
這就是我們在紅木神經科學研究所進行的研究。
17:44
I would love to have more time to tell you we're making製造 fantastic奇妙 progress進展 in this thing,
389
1039000
4000
我希望我能有更多時間來告訴你們,我們已經在這方面有了驚人的進步,
17:48
and I expect期望 to be back up on this stage階段,
390
1043000
2000
而我預期未來還能再回到這裡演講,
17:50
maybe this will be some other time in the not too distant遙遠 future未來 and tell you about it.
391
1045000
2000
因此也許在不久的將來我將能有機會再次跟你們談談。
17:52
I'm really, really excited興奮. This is not going to take 50 years年份 at all.
392
1047000
3000
我真的非常、非常興奮。這絕對不需要再五十年。
17:55
So what will brain theory理論 look like?
393
1050000
2000
因此大腦理論究竟看起來會是什麼樣子?
17:57
First of all, it's going to be a theory理論 about memory記憶.
394
1052000
2000
首先,它會是一個關於記憶的理論。
17:59
Not like computer電腦 memory記憶. It's not at all like computer電腦 memory記憶.
395
1054000
3000
跟電腦記憶體不一樣。它一點都不會像是電腦記憶體。
18:02
It's very, very different不同. And it's a memory記憶 of these very
396
1057000
2000
會非常、非常的不同。它會是這些非常高維模式
18:04
high-dimensional高維 patterns模式, like the things that come from your eyes眼睛.
397
1059000
3000
的記憶,就跟你從眼睛看到的東西一般。
18:07
It's also memory記憶 of sequences序列.
398
1062000
2000
它會是序列的記憶。
18:09
You cannot不能 learn學習 or recall召回 anything outside of a sequence序列.
399
1064000
2000
你不能學習或是回憶序列外的任何事物。
18:11
A song歌曲 must必須 be heard聽說 in sequence序列 over time,
400
1066000
3000
一首歌必須按照時間的順序來聽,
18:14
and you must必須 play it back in sequence序列 over time.
401
1069000
3000
你也必須按照時間順序來播放。
18:17
And these sequences序列 are auto-associatively自動關聯方式 recalled回顧, so if I see something,
402
1072000
3000
然後這些順序就會自動被相關連在一起重播,因此如果我看到某些東西,
18:20
I hear something, it reminds提醒 me of it, and then it plays播放 back automatically自動.
403
1075000
3000
聽到某些東西,它讓我回一起相關的事物,然後就會自動重播。
18:23
It's an automatic自動 playback回放. And prediction預測 of future未來 inputs輸入 is the desired期望 output產量.
404
1078000
4000
它是自動重播。然後對於未來所將輸入訊息的預測是我們所希望的輸出。
18:27
And as I said, the theory理論 must必須 be biologically生物 accurate準確,
405
1082000
3000
像我提過的,這個理論必須是生物學正確的。
18:30
it must必須 be testable可測試, and you must必須 be able能夠 to build建立 it.
406
1085000
2000
它必須能被測試,然且你必須能夠建造它。
18:32
If you don't build建立 it, you don't understand理解 it. So, one more slide滑動 here.
407
1087000
4000
如果你不能建造它,你就是不了解它。因此,最後一張投影片。
18:36
What is this going to result結果 in? Are we going to really build建立 intelligent智能 machines?
408
1091000
4000
這最終會產生什麼結果?我們能夠真的建造出智能機器嗎?
18:40
Absolutely絕對. And it's going to be different不同 than people think.
409
1095000
4000
絕對可以。而且它會和一般人們所想的不同。
18:44
No doubt懷疑 that it's going to happen發生, in my mind心神.
410
1099000
3000
我認為這無疑的會發生。
18:47
First of all, it's going to be built內置 up, we're going to build建立 the stuff東東 out of silicon.
411
1102000
4000
首先,它會被建造,我們將會用矽建出這個東西。
18:51
The same相同 techniques技術 we use for building建造 silicon computer電腦 memories回憶,
412
1106000
3000
跟我們用來建造以矽為原料的電腦記憶體同樣的技術,
18:54
we can use for here.
413
1109000
1000
我們在這邊也同樣可以使用。
18:55
But they're very different不同 types類型 of memories回憶.
414
1110000
2000
但是它們會是非常不同種類的記憶體。
18:57
And we're going to attach連接 these memories回憶 to sensors傳感器,
415
1112000
2000
然後我們將會將這些記憶體連結上感應器,
18:59
and the sensors傳感器 will experience經驗 real-live實時直播, real-world真實世界 data數據,
416
1114000
3000
這些感應器將會經歷真實世界的即時數據,
19:02
and these things are going to learn學習 about their environment環境.
417
1117000
2000
然後這些東西將會認識它們的環境。
19:04
Now it's very unlikely不會 the first things you're going to see are like robots機器人.
418
1119000
3000
而且你將會看到的第一批成品應該非常不可能會長得像個機器人。
19:07
Not that robots機器人 aren't useful有用 and people can build建立 robots機器人.
419
1122000
3000
不是因為機器人沒有用而且人們可以建造機器人。
19:10
But the robotics機器人 part部分 is the hardest最難 part部分. That's the old brain. That's really hard.
420
1125000
4000
但是機器人的部份是最難的部份。那是原始的大腦。非常的難。
19:14
The new brain is actually其實 kind of easier更輕鬆 than the old brain.
421
1129000
2000
這個新的腦袋要比原始腦袋簡單一些。
19:16
So the first thing we're going to do are the things that don't require要求 a lot of robotics機器人.
422
1131000
3000
所以我們將建造的第一個東西將會是不需要太多機器人特徵的東西。
19:19
So you're not going to see C-C-3POPO.
423
1134000
2000
所以你將不會看到 C-3PO。
19:21
You're going to more see things like, you know, intelligent智能 cars汽車
424
1136000
2000
你可能會比較常看到類似,例如,智慧車
19:23
that really understand理解 what traffic交通 is and what driving主動 is
425
1138000
3000
真的能了解交通狀況和駕駛
19:26
and have learned學到了 that certain某些 types類型 of cars汽車 with the blinkers護目鏡 on for half a minute分鐘
426
1141000
3000
而且能夠解讀某些方向燈在閃的車輛過半分鐘後
19:29
probably大概 aren't going to turn, things like that.
427
1144000
2000
也許即將轉彎,如此這般的事情。
19:31
(Laughter笑聲)
428
1146000
1000
(笑聲)
19:32
We can also do intelligent智能 security安全 systems系統.
429
1147000
2000
我們也可以設計智慧型保全系統。
19:34
Anywhere隨地 where we're basically基本上 using運用 our brain, but not doing a lot of mechanics機械學.
430
1149000
4000
任何我們需要動用到腦力,但是不會執行太多機械動作的場合。
19:38
Those are the things that are going to happen發生 first.
431
1153000
2000
這些將會是首先發生的情況。
19:40
But ultimately最終, the world's世界 the limit限制 here.
432
1155000
2000
但是最終,沒什麼是不可能的。
19:42
I don't know how this is going to turn out.
433
1157000
2000
我不知道這將會發展的如何。
19:44
I know a lot of people who invented發明 the microprocessor微處理器
434
1159000
2000
我知道許多發明微處理器的人
19:46
and if you talk to them, they knew知道 what they were doing was really significant重大,
435
1161000
5000
如果你問他們,他們知道他們是在從事一些非常重要的事情,
19:51
but they didn't really know what was going to happen發生.
436
1166000
3000
但是他們不知道將會發生什麼事。
19:54
They couldn't不能 anticipate預料 cell細胞 phones手機 and the Internet互聯網 and all this kind of stuff東東.
437
1169000
5000
他們不能預測到手機、網路等等這些事情的發生。
19:59
They just knew知道 like, hey, they were going to build建立 calculators計算器
438
1174000
2000
他們只知道像,嘿,他們將要建造計算機
20:01
and traffic交通 light controllers控制器. But it's going to be big.
439
1176000
2000
和交通號誌燈。但是這將會很重要。
20:03
In the same相同 way, this is like brain science科學 and these memories回憶
440
1178000
3000
同樣的道理,大腦理論和這些記憶體
20:06
are going to be a very fundamental基本的 technology技術, and it's going to lead
441
1181000
3000
將會是非常基礎的科技,而且會
20:09
to very unbelievable難以置信的 changes變化 in the next下一個 100 years年份.
442
1184000
3000
在未來的一百年內帶來非常不可思議的改變。
20:12
And I'm most excited興奮 about how we're going to use them in science科學.
443
1187000
4000
我最興奮的是我們將會如何將它們應用到科學研究上。
20:16
So I think that's all my time, I'm over it, and I'm going to end結束 my talk
444
1191000
3000
我想我的時間已經到了,我超時了,所以我將要結束這次演講
20:19
right there.
445
1194000
1000
就在這裡結束。
Translated by Bill Hsiung
Reviewed by Calvin Chun-yu Chan

▲Back to top

ABOUT THE SPEAKER
Jeff Hawkins - Computer designer, brain researcher
Jeff Hawkins pioneered the development of PDAs such as the Palm and Treo. Now he's trying to understand how the human brain really works, and adapt its method -- which he describes as a deep system for storing memory -- to create new kinds of computers and tools.

Why you should listen

Jeff Hawkins' Palm PDA became such a widely used productivity tool during the 1990s that some fanatical users claimed it replaced their brains. But Hawkins' deepest interest was in the brain itself. So after the success of the Palm and Treo, which he brought to market at Handspring, Hawkins delved into brain research at the Redwood Center for Theoretical Neuroscience in Berkeley, Calif., and a new company called Numenta.

Hawkins' dual goal is to achieve an understanding of how the human brain actually works -- and then develop software to mimic its functionality, delivering true artificial intelligence. In his book On Intelligence (2004) he lays out his compelling, controversial theory: Contrary to popular AI wisdom, the human neocortex doesn't work like a processor; rather, it relies on a memory system that stores and plays back experiences to help us predict, intelligently, what will happen next. He thinks that "hierarchical temporal memory" computer platforms, which mimic this functionality (and which Numenta might pioneer), could enable groundbreaking new applications that could powerfully extend human intelligence.

More profile about the speaker
Jeff Hawkins | Speaker | TED.com

Data provided by TED.

This site was created in May 2015 and the last update was on January 12, 2020. It will no longer be updated.

We are currently creating a new site called "eng.lish.video" and would be grateful if you could access it.

If you have any questions or suggestions, please feel free to write comments in your language on the contact form.

Privacy Policy

Developer's Blog

Buy Me A Coffee