Fei-Fei Li: How we're teaching computers to understand pictures
Fei-Fei Li: Hvordan vi lærer computere at forstå billeder
As Director of Stanford’s Artificial Intelligence Lab and Vision Lab, Fei-Fei Li is working to solve AI’s trickiest problems -- including image recognition, learning and language processing. Full bio
Double-click the English transcript below to play the video.
sitting in a bed.
sidder i en seng.
that are going on an airplane.
a three-year-old child
in a series of photos.
række billeder.
to learn about this world,
at one very important task:
meget vigtig ting:
technologically advanced than ever.
avanceret end nogensinde.
we make phones that talk to us
telefoner der taler til os
that can play only music we like.
spille musik som kun vi kan lide.
machines and computers
maskiner og computere
to give you a progress report
en statusrapport
in our research in computer vision,
forskningen af computer vision
and potentially revolutionary
muligvis revolutionære
that can drive by themselves,
der er selvkørende
they cannot really tell the difference
ikke se forskel
on the road, which can be run over,
der kan køres over
which should be avoided.
der skal undgås.
kameraer
sight to the blind.
the changes of the rainforests.
is drowning in a swimming pool.
drukner i en svømmepøl.
an integral part of global life.
del af det globale liv.
that's far beyond what any human,
noget menneske
to that at this TED.
ved denne TED.
is still struggling at understanding
kæmper stadig med at forstå
collectively as a society,
machines are still blind.
stadig blinde.
du måske.
a two-dimensional array of numbers
to-dimensionel række af tal
the same as to listen,
som at lytte
the same as to see,
samme som at se
we really mean understanding.
540 million years of hard work
hårdt arbejde
processing apparatus of our brains,
apparat i vor hjerner
from my Ph.D. at Caltech
Stanford´s Vision Lab,
collaborators and students
kolleger og elever
computer vision and machine learning.
computer vision og maskinlærdom.
of artificial intelligence.
af kunstig intelligens.
the machines to see just like we do:
inferring 3D geometry of things,
udlede 3D geometrien af ting
actions and intentions.
handlinger og intentioner.
of people, places and things
af folk, steder og ting
is to teach a computer to see objects,
lære computere at se objekter,
imagine this teaching process
denne lærdomsproces
some training images
træningsbilleder
from these training images.
af disse træningsbilleder.
a collection of shapes and colors,
former og farver,
in the early days of object modeling.
af objekt modelleringen.
in a mathematical language
matematisk sprog
a chubby body,
en fyldig krop,
and viewpoint to the object model.
form og udsigtspunkt til objektet.
as a household pet
of variations to the object model,
til objekt modelleringen,
changed my thinking.
observering min tænkemåde.
real-world experiences and examples.
erfaringer og eksempler.
about every 200 milliseconds,
200 millisekunder,
i øjnene.
hundreds of millions of pictures
hundrede mio. billeder
on better and better algorithms,
bedre og bedre algoritmer
the kind of training data
den slags træningsdata
than we have ever had before,
end vi før har haft,
Kai Li at Princeton University,
i Princeton University
a camera on our head
kamera på hovedet
that humans have ever created.
mennesket nogensinde har lavet.
like the Amazon Mechanical Turk platform
Amazon Mechanical Turk platformen
the biggest employers
største arbejdsgivere
of the imagery
af alle de billeder
in the early developmental years.
i de første leveår.
massive data
may seem obvious now,
måske indlysende,
for quite a while.
i et godt stykke tid.
to do something more useful for my tenure,
bruge arbejdstiden mere effektivt
for research funding.
forskningsmidler.
kandidatstuderende
my dry cleaner's shop to fund ImageNet.
for at skaffe penge til ImageNet.
my college years.
mine universitetsår.
of objects and things
af objekter og ting
of domestic and wild cats.
og vilde katte.
to have put together ImageNet,
sammensat ImageNet,
to benefit from it,
ville få gavn af dette,
we opened up the entire data set
for hele data-sættet
research community for free.
to nourish our computer brain,
vor computer-hjerne
to the algorithms themselves.
selve algoritmerne.
of information provided by ImageNet
som ImageNet gav
of machine learning algorithms
maskinlærings-algoritmer
Geoff Hinton, and Yann LeCun
Geoff Hinton og Yann LeCun
of billions of highly connected neurons,
sammenkædede neuroner,
neuralt netværk
or even millions of nodes
millioner af noder
to train our object recognition model,
til at træne vor objekt-genkendelsesmodel,
to train such a humongous model,
at træne en så stor model,
in object recognition.
i objekt-genkendelse.
der fortæller
a boy and a teddy bear;
dreng og en bamse;
in the background;
lille drage i baggrunden;
railings, a lampost, and so on.
en lygtepæl, og så videre.
is not so confident about what it sees,
sikker på hvad den ser,
instead of committing too much,
for at være for skråsikker sig,
is remarkable at telling us
utrolig god til at fortælle os
årgangen af bilerne.
of Google Street View images
af Google Street View billeder
really interesting:
interessant:
also correlate well
bilpriser godt
or even surpassed human capabilities?
eller endda overhalet menneskelige evner?
the computer to see objects.
computeren at se objekter.
learning to utter a few nouns.
lærer at udtale nogle få navneord.
milestone will be hit,
milepæl blive nået,
to communicate in sentences.
kommunikere i sætninger.
this is a cat in the picture,
er en kat på billedet,
telling us this is a cat lying on a bed.
er en kat der ligger på en seng.
to see a picture and generate sentences,
og lave sætninger,
and machine learning algorithm
maskinlærings-algoritmer
from both pictures
vision and language,
that connects parts of visual things
sammenfører dele af visuelle ting,
computer vision models
computervision modeller
a human-like sentence
en menneskelignende sætning
what the computer says
hvad computeren siger,
at the beginning of this talk.
i starten af dette foredrag.
next to an elephant.
ved siden af en elefant.
of an airport runway.
i en lufthavn.
to improve our algorithms,
med at forbedre vor algoritmer,
on a bed in a blanket.
på en seng.
too many cats,
for mange katte,
might look like a cat.
is holding a baseball bat.
holder et baseball bat.
it confuses it with a baseball bat.
børste før, tror den at det er et bat.
down a street next to a building.
på en vej ved siden af en bygning.
to the computers.
in a field of grass.
the stunning beauty of nature
naturens utrolige skønhed
from three to 13 and far beyond.
og endnu længere frem.
of the boy and the cake again.
og kagen igen.
the computer to see objects
at se objekter
when seeing a picture.
når den ser et billede.
at a table with a cake.
et bord med en kage.
to this picture
dette billede
is that this is a special Italian cake
er en speciel italiensk kage
after a trip to Sydney,
tur til Sydney,
at that moment.
extra pairs of tireless eyes
ekstra utrættelige øjne
and take care of patients.
og pleje patienter.
and safer on the road.
på vejene.
to save the trapped and wounded.
mennesker på ulykkessteder.
better materials,
bedre materialer,
with the help of the machines.
ved hjælp af maskiner.
to the machines.
won't be the only ones
ikke være de eneste
for their intelligence,
deres intelligens,
in ways that we cannot even imagine.
måder vi end ikke kan forestille os.
for Leo and for the world.
for Leo og for verden.
ABOUT THE SPEAKER
Fei-Fei Li - Computer scientistAs Director of Stanford’s Artificial Intelligence Lab and Vision Lab, Fei-Fei Li is working to solve AI’s trickiest problems -- including image recognition, learning and language processing.
Why you should listen
Using algorithms built on machine learning methods such as neural network models, the Stanford Artificial Intelligence Lab led by Fei-Fei Li has created software capable of recognizing scenes in still photographs -- and accurately describe them using natural language.
Li’s work with neural networks and computer vision (with Stanford’s Vision Lab) marks a significant step forward for AI research, and could lead to applications ranging from more intuitive image searches to robots able to make autonomous decisions in unfamiliar situations.
Fei-Fei was honored as one of Foreign Policy's 2015 Global Thinkers.
Fei-Fei Li | Speaker | TED.com