ABOUT THE SPEAKER
Hod Lipson - Roboticist
Hod Lipson works at the intersection of engineering and biology, studying robots and the way they "behave" and evolve. His work has exciting implications for design and manufacturing -- and serves as a window to understand our own behavior and evolution.

Why you should listen

To say that Hod Lipson and his team at Cornell build robots is not completely accurate: They may simply set out a pile of virtual robot parts, devise some rules for assembly, and see what the parts build themselves into. They've created robots that decide for themselves how they want to walk; robots that develop a sense of what they look like; even robots that can, through trial and error, construct other robots just like themselves.

Working across disciplines -- physics, computer science, math, biology and several flavors of engineer -- the team studies techniques for self-assembly and evolution that have great implications for fields such as micro-manufacturing -- allowing tiny pieces to assemble themselves at scales heretofore impossible -- and extreme custom manufacturing (in other words, 3-D printers for the home).

His lab's Outreach page is a funhouse of tools and instructions, including the amazing Golem@Home -- a self-assembling virtual robot who lives in your screensaver.

More profile about the speaker
Hod Lipson | Speaker | TED.com
TED2007

Hod Lipson: Building "self-aware" robots

Hod Lipson pravi "samosvesne" robote

Filmed:
1,460,460 views

Hod Lipson pokazuje nekoliko svojih sjajnih malih robota, koji imaju sposobnost učenja, razumeju sami sebe i čak mogu i da kopiraju sami sebe.
- Roboticist
Hod Lipson works at the intersection of engineering and biology, studying robots and the way they "behave" and evolve. His work has exciting implications for design and manufacturing -- and serves as a window to understand our own behavior and evolution. Full bio

Double-click the English transcript below to play the video.

00:25
So, where are the robotsроботи?
0
0
2000
Pa, gde su roboti?
00:27
We'veMoramo been told for 40 yearsгодине alreadyвећ that they're comingдолазе soonускоро.
1
2000
3000
Već 40 godina nam govore
da roboti dolaze uskoro.
00:30
Very soonускоро they'llони ће be doing everything for us.
2
5000
3000
Uskoro će raditi sve za nas.
00:33
They'llOni ce be cookingкухање, cleaningчишћење, buyingкупити things, shoppingшопинг, buildingзграде. But they aren'tнису here.
3
8000
5000
Kuvaće, čistiće, ići u kupovinu, gradiće.
Ali nisu ovde.
00:38
MeanwhileU medjuvremenu, we have illegalилегално immigrantsimigranti doing all the work,
4
13000
4000
Sa druge strane, ilegalni imigranti
rade sav posao,
00:42
but we don't have any robotsроботи.
5
17000
2000
ali nemamo robote.
00:44
So what can we do about that? What can we say?
6
19000
4000
Šta možemo uraditi povodom toga?
Šta možemo reći?
00:48
So I want to give a little bitмало of a differentразличит perspectiveперспектива
7
23000
4000
Želim da pružim drugačiju perspektivu
00:52
of how we can perhapsможда look at these things in a little bitмало of a differentразличит way.
8
27000
6000
kako bismo mogli da gledamo na ove stvari
na drugačiji način.
00:58
And this is an x-rayрентген pictureслика
9
33000
2000
Ovo je rendgenski snimak
01:00
of a realправи beetleбуба, and a SwissŠvajcarska watch, back from '88. You look at that --
10
35000
5000
prave bube i švajcarskog sata, iz 1988.
Pogledajte to -
01:05
what was trueистина then is certainlyсигурно trueистина todayданас.
11
40000
2000
ono što je tad bilo istina i danas je.
01:07
We can still make the piecesкомада. We can make the right piecesкомада.
12
42000
3000
Još uvek možemo proizvesti delove.
Prave delove.
01:10
We can make the circuitryколо of the right computationalрачунарски powerмоћ,
13
45000
3000
Možemo napraviti kola prave računarske snage,
01:13
but we can't actuallyзаправо put them togetherзаједно to make something
14
48000
3000
ali ne možemo ih zapravo spojiti
da bismo napravili nešto
01:16
that will actuallyзаправо work and be as adaptiveадаптивно as these systemsсистема.
15
51000
5000
što će zaista raditi
i biti prilagodljivo poput ovih sistema.
01:21
So let's try to look at it from a differentразличит perspectiveперспектива.
16
56000
2000
Hajde da probamo da gledamo
iz drugačije perspektive.
01:23
Let's summonпозове the bestнајбоље designerдизајнер, the motherмајка of all designersдизајнери.
17
58000
4000
Hajde da pozovemo najboljeg dizajnera,
majku svih dizajnera.
01:27
Let's see what evolutionеволуција can do for us.
18
62000
3000
Hajde da vidimo šta evolucija
može da uradi za nas.
01:30
So we threwбацила in -- we createdстворено a primordialпримордијални soupсупа
19
65000
4000
Napravili smo prvobitnu supu
01:34
with lots of piecesкомада of robotsроботи -- with barsбарови, with motorsмотори, with neuronsнеурона.
20
69000
4000
sa puno delova robota -
sa polugama, motorima i neuronima.
01:38
Put them all togetherзаједно, and put all this underиспод kindкинд of naturalприродно selectionизбор,
21
73000
4000
Sastavite ih zajedno i sve ovo prepustite
mutaciji kao prirodnoj selekciji
01:42
underиспод mutationmutacija, and rewardednagrađen things for how well they can moveпотез forwardнапред.
22
77000
4000
i nagradite stvari na osnovu toga
koliko brzo se kreću unapred.
01:46
A very simpleједноставно taskзадатак, and it's interestingзанимљиво to see what kindкинд of things cameДошао out of that.
23
81000
6000
Jednostavan zadatak i zanimljivo je videti
šta je sve nastalo iz toga.
01:52
So if you look, you can see a lot of differentразличит machinesмашине
24
87000
3000
Ako pogledate, možete videti
da je dosta različitih mašina
01:55
come out of this. They all moveпотез around.
25
90000
2000
nastalo iz ovoga.
Sve se kreću.
01:57
They all crawlпузи in differentразличит waysначини, and you can see on the right,
26
92000
4000
Pužu na različite načine
i sa desne strane možete videti
02:01
that we actuallyзаправо madeмаде a coupleпар of these things,
27
96000
2000
da smo zapravo napravili par ovih stvari
02:03
and they work in realityреалност. These are not very fantasticфантастичан robotsроботи,
28
98000
3000
i da rade u stvarnosti.
Ovo nisu naročito fantastični roboti,
02:06
but they evolvedеволуирао to do exactlyбаш тако what we rewardнаграда them for:
29
101000
4000
ali su se razvili da rade
tačno onako kako ih nagrađujemo:
02:10
for movingкретање forwardнапред. So that was all doneГотово in simulationсимулација,
30
105000
3000
za kretanje unapred.
To je urađeno u simulaciji,
02:13
but we can alsoтакође do that on a realправи machineмашина.
31
108000
2000
ali možemo to uraditi i na pravoj mašini.
02:15
Here'sEvo a physicalфизички robotробот that we actuallyзаправо
32
110000
5000
Ovo je fizički robot kod kog zapravo
02:20
have a populationпопулација of brainsмозга,
33
115000
3000
imamo populaciju mozgova,
02:23
competingтакмичење, or evolvingеволуира on the machineмашина.
34
118000
2000
koji se takmiče
ili se razvijaju na mašini.
02:25
It's like a rodeoродео showсхов. They all get a rideвози on the machineмашина,
35
120000
3000
To je kao rodeo šou.
Svi mogu da jašu na mašini
02:28
and they get rewardednagrađen for how fastбрзо or how farдалеко
36
123000
3000
i nagrađuju se za to
koliko brzo ili daleko
02:31
they can make the machineмашина moveпотез forwardнапред.
37
126000
2000
mogu da pomere mašinu unapred.
02:33
And you can see these robotsроботи are not readyспреман
38
128000
2000
Vidite da ovi roboti
02:35
to take over the worldсвет yetјош увек, but
39
130000
3000
još uvek nisu spremni da preuzmu svet,
02:38
they graduallyпостепено learnучи how to moveпотез forwardнапред,
40
133000
2000
ali postepeno uče kako da se kreću unapred
02:40
and they do this autonomouslyаутономно.
41
135000
3000
i ovo rade samostalno.
02:43
So in these two examplesпримери, we had basicallyу основи
42
138000
4000
Na ova dva primera, u principu smo imali
02:47
machinesмашине that learnedнаучио how to walkходати in simulationсимулација,
43
142000
3000
mašine koje su u simulaciji naučile da hodaju
02:50
and alsoтакође machinesмашине that learnedнаучио how to walkходати in realityреалност.
44
145000
2000
i mašine koje su naučile da hodaju u stvarnosti.
02:52
But I want to showсхов you a differentразличит approachприступ,
45
147000
2000
Ali želim da vam pokažem drugačiji pristup,
02:54
and this is this robotробот over here, whichкоја has fourчетири legsноге.
46
149000
6000
na ovom robotu, koji ima četiri noge.
03:00
It has eightосам motorsмотори, fourчетири on the kneesколена and fourчетири on the hipхип.
47
155000
2000
Ima osam motora,
četiri na kolenima i četiri na kukovima.
03:02
It has alsoтакође two tiltнагиб sensorsсензори that tell the machineмашина
48
157000
3000
Takođe ima dva senzora za nakretanje
koji mu govore
03:05
whichкоја way it's tiltingpomera.
49
160000
3000
na koju stranu se nakreće.
03:08
But this machineмашина doesn't know what it looksизглед like.
50
163000
2000
Ali ova mašina ne zna kako to izgleda.
03:10
You look at it and you see it has fourчетири legsноге,
51
165000
2000
Vi je gledate i vidite da ima četiri noge,
03:12
the machineмашина doesn't know if it's a snakezmija, if it's a treeдрво,
52
167000
2000
mašina ne zna da li je zmija ili drvo,
03:14
it doesn't have any ideaидеја what it looksизглед like,
53
169000
3000
nema predstavu kako izgleda,
03:17
but it's going to try to find that out.
54
172000
2000
ali pokušaće da to sazna.
03:19
InitiallyU početku, it does some randomслучајно motionкретање,
55
174000
2000
Isprva napravi nasumični pokret
03:21
and then it triesпокушава to figureфигура out what it mightМожда look like.
56
176000
3000
i onda pokušava da shvati
kako bi mogao da izgleda.
03:24
And you're seeingвиди a lot of things passingпролаз throughкроз its mindsумови,
57
179000
2000
Vidite puno stvari koje im proleću kroz um,
03:26
a lot of self-modelsSamo-modeli that try to explainобјасни the relationshipоднос
58
181000
4000
puno samostalnih modela
koji pokušavaju da objasne vezu
03:30
betweenизмеђу actuationDatinim and sensingсенсинг. It then triesпокушава to do
59
185000
3000
između aktiviranja i detekcije.
Onda pokušava da uradi
03:33
a secondдруго actionпоступак that createsствара the mostнајвише disagreementneslaganje
60
188000
4000
drugu radnju koja stvara
najviše nesporazuma
03:37
amongмеђу predictionsprognoze of these alternativeалтернатива modelsмодели,
61
192000
2000
između predviđanja
ovih alternativnih modela,
03:39
like a scientistнаучник in a labлаб. Then it does that
62
194000
2000
poput naučnika u laboratoriji.
Onda uradi to
03:41
and triesпокушава to explainобјасни that, and prunesljiva out its self-modelsSamo-modeli.
63
196000
4000
i pokušava da objasni tu radnju
i izdvoji model samog sebe.
03:45
This is the last cycleциклус, and you can see it's prettyприлично much
64
200000
3000
Ovo je poslednji ciklus
i kao što možete videti
03:48
figuredфигуред out what its selfселф looksизглед like. And onceједном it has a self-modelSamo-model,
65
203000
4000
otprilike je shvatila kako izgleda.
A kada ima model samog sebe,
03:52
it can use that to deriveизводити a patternобразац of locomotionsubstitucija.
66
207000
4000
može da ga iskoristi
da smisli šablon kretanja.
03:56
So what you're seeingвиди here are a coupleпар of machinesмашине --
67
211000
2000
Ovde vidite nekoliko mašina -
03:58
a patternобразац of locomotionsubstitucija.
68
213000
2000
šablon kretanja.
04:00
We were hopingнадати се that it wassWass going to have a kindкинд of evilзло, spideryOvaaj walkходати,
69
215000
4000
Nadali smo se da će imati nekakav zloban hod,
poput pauka,
04:04
but insteadуместо тога it createdстворено this prettyприлично lameхром way of movingкретање forwardнапред.
70
219000
4000
ali je umesto toga smislila
ovaj prilično dosadan način kretanja unapred.
04:08
But when you look at that, you have to rememberзапамтити
71
223000
3000
Ali kad to pogledate, morate se setiti
04:11
that this machineмашина did not do any physicalфизички trialsсуђења on how to moveпотез forwardнапред,
72
226000
6000
da ova mašina nije fizički pokušala
da se kreće unapred
04:17
norнити did it have a modelмодел of itselfсам.
73
232000
2000
i nije imala model svog izgleda.
04:19
It kindкинд of figuredфигуред out what it looksизглед like, and how to moveпотез forwardнапред,
74
234000
3000
Otprilike je shvatila kako izgleda
i kako da se kreće
04:22
and then actuallyзаправо triedПокушали that out.
75
237000
4000
i onda je to zapravo isprobala.
04:26
(ApplauseAplauz)
76
241000
5000
(Aplauz)
04:31
So, we'llдобро moveпотез forwardнапред to a differentразличит ideaидеја.
77
246000
4000
Krenućemo ka drugačijoj ideji.
04:35
So that was what happenedдесило when we had a coupleпар of --
78
250000
5000
To se desilo kada smo imali par -
04:40
that's what happenedдесило when you had a coupleпар of -- OK, OK, OK --
79
255000
4000
to se desilo kada ste imali par -
OK, OK, OK -
04:44
(LaughterSmeh)
80
259000
2000
(Smeh)
04:46
-- they don't like eachсваки other. So
81
261000
2000
- ne vole jedan drugog.
04:48
there's a differentразличит robotробот.
82
263000
3000
Dakle, to je drugačiji robot.
04:51
That's what happenedдесило when the robotsроботи actuallyзаправо
83
266000
2000
To se desi kada robote zaista nagradite
04:53
are rewardednagrađen for doing something.
84
268000
2000
za nešto što rade.
04:55
What happensсе дешава if you don't rewardнаграда them for anything, you just throwбацање them in?
85
270000
3000
Šta se desi kada ih ne nagradite
i samo ubacite unutra?
04:58
So we have these cubeskocke, like the diagramдијаграм showedпоказао here.
86
273000
3000
Imamo ove kocke,
kao što vidite na dijagramu.
05:01
The cubeкоцка can swivelpokretna, or flipфлип on its sideстрана,
87
276000
2000
Kocka može da se rotira ili okrene na stranu,
05:04
and we just throwбацање 1,000 of these cubeskocke into a soupсупа --
88
279000
4000
samo smo ubacili 1 000 ovih kocki u supu -
05:08
this is in simulationсимулација --and--i don't rewardнаграда them for anything,
89
283000
2000
ovo je u simulaciji -
i nismo ih nagradili ni za šta,
05:10
we just let them flipфлип. We pumpпумпа energyенергија into this
90
285000
3000
samo smo ih pustili da se okreću.
U ovo pumpamo energiju
05:13
and see what happensсе дешава in a coupleпар of mutationsмутације.
91
288000
3000
i gledamo šta će se desiti
kroz nekoliko mutacija.
05:16
So, initiallyна почетку nothing happensсе дешава, they're just flippingokretanje around there.
92
291000
3000
U početku se ne dešava ništa,
samo se okreću u krug.
05:19
But after a very shortкратак while, you can see these blueПлави things
93
294000
4000
Ali nakon kratkog vremena,
možete videti
05:23
on the right there beginзапочети to take over.
94
298000
2000
da ove plave stvari sa desne strane
počinju da preuzimaju vođstvo.
05:25
They beginзапочети to self-replicateSamo-replicirati. So in absenceодсуство of any rewardнаграда,
95
300000
4000
Počinju da se međusobno kopiraju.
U nedostatku nagrade,
05:29
the intrinsicunutrašnje rewardнаграда is self-replicationсамо-репликација.
96
304000
3000
suštinska korist je kopiranje samog sebe.
05:32
And we'veми смо actuallyзаправо builtизграђен a coupleпар of these,
97
307000
1000
Zapravo smo napravili par ovih robota
05:33
and this is partдео of a largerвеће robotробот madeмаде out of these cubeskocke.
98
308000
4000
i ovo je deo većeg robota
napravljenog od ovih kocki.
05:37
It's an acceleratedубрзано viewпоглед, where you can see the robotробот actuallyзаправо
99
312000
3000
Ovo je ubrzan snimak gde možete videti da robot
05:40
carryingношење out some of its replicationрепликација processпроцес.
100
315000
2000
izvršava deo procesa kopiranja.
05:42
So you're feedinghranjenje it with more materialматеријал -- cubeskocke in this caseслучај --
101
317000
4000
Ako ih hranite sa više materijala -
u ovom slučaju kockama -
05:46
and more energyенергија, and it can make anotherдруги robotробот.
102
321000
3000
i sa više energije,
mogu da naprave još jednog robota.
05:49
So of courseкурс, this is a very crudeсирово machineмашина,
103
324000
3000
Naravno ovo je veoma sirova mašina,
05:52
but we're workingрад on a micro-scalemikro-skali versionверзија of these,
104
327000
2000
ali radimo na verziji mikroskopskih dimenzija,
05:54
and hopefullyНадајмо се the cubeskocke will be like a powderпрах that you pourпоур in.
105
329000
3000
s nadom da će kocke biti
poput praška koji se može usuti
05:57
OK, so what can we learnучи? These robotsроботи are of courseкурс
106
332000
5000
Ok, šta možemo naučiti?
Naravno, ovi roboti
06:02
not very usefulкорисно in themselvesсами, but they mightМожда teachнаучити us something
107
337000
3000
sami po sebi nisu veoma korisni,
ali mogu nas naučiti nešto
06:05
about how we can buildизградити better robotsроботи,
108
340000
3000
o tome kako napraviti bolje robote
06:08
and perhapsможда how humansљуди, animalsЖивотиње, createстворити self-modelsSamo-modeli and learnучи.
109
343000
5000
i možda o tome kako ljudi i životinje
prave modele sami sebe i uče.
06:13
And one of the things that I think is importantважно
110
348000
2000
Jedna od bitnih stvari je
06:15
is that we have to get away from this ideaидеја
111
350000
2000
da moramo da zaboravimo na to
06:17
of designingдизајнирање the machinesмашине manuallyручно,
112
352000
2000
da dizajniramo mašine ručno
06:19
but actuallyзаправо let them evolveеволуирати and learnучи, like childrenдеца,
113
354000
3000
i da ih pustimo da se same razvijaju i uče,
poput dece,
06:22
and perhapsможда that's the way we'llдобро get there. Thank you.
114
357000
2000
i možda ćemo na taj način doći do toga.
Hvala vam.
06:24
(ApplauseAplauz)
115
359000
2000
(Aplauz)
Translated by Mile Živković
Reviewed by Tatjana Jevdjic

▲Back to top

ABOUT THE SPEAKER
Hod Lipson - Roboticist
Hod Lipson works at the intersection of engineering and biology, studying robots and the way they "behave" and evolve. His work has exciting implications for design and manufacturing -- and serves as a window to understand our own behavior and evolution.

Why you should listen

To say that Hod Lipson and his team at Cornell build robots is not completely accurate: They may simply set out a pile of virtual robot parts, devise some rules for assembly, and see what the parts build themselves into. They've created robots that decide for themselves how they want to walk; robots that develop a sense of what they look like; even robots that can, through trial and error, construct other robots just like themselves.

Working across disciplines -- physics, computer science, math, biology and several flavors of engineer -- the team studies techniques for self-assembly and evolution that have great implications for fields such as micro-manufacturing -- allowing tiny pieces to assemble themselves at scales heretofore impossible -- and extreme custom manufacturing (in other words, 3-D printers for the home).

His lab's Outreach page is a funhouse of tools and instructions, including the amazing Golem@Home -- a self-assembling virtual robot who lives in your screensaver.

More profile about the speaker
Hod Lipson | Speaker | TED.com

Data provided by TED.

This site was created in May 2015 and the last update was on January 12, 2020. It will no longer be updated.

We are currently creating a new site called "eng.lish.video" and would be grateful if you could access it.

If you have any questions or suggestions, please feel free to write comments in your language on the contact form.

Privacy Policy

Developer's Blog

Buy Me A Coffee