ABOUT THE SPEAKER
Blaise Agüera y Arcas - Software architect
Blaise Agüera y Arcas works on machine learning at Google. Previously a Distinguished Engineer at Microsoft, he has worked on augmented reality, mapping, wearable computing and natural user interfaces.

Why you should listen

Blaise Agüera y Arcas is principal scientist at Google, where he leads a team working on machine intelligence for mobile devices. His group works extensively with deep neural nets for machine perception and distributed learning, and it also investigates so-called "connectomics" research, assessing maps of connections within the brain.

Agüera y Arcas' background is as multidimensional as the visions he helps create. In the 1990s, he authored patents on both video compression and 3D visualization techniques, and in 2001, he made an influential computational discovery that cast doubt on Gutenberg's role as the father of movable type.

He also created Seadragon (acquired by Microsoft in 2006), the visualization technology that gives Photosynth its amazingly smooth digital rendering and zoom capabilities. Photosynth itself is a vastly powerful piece of software capable of taking a wide variety of images, analyzing them for similarities, and grafting them together into an interactive three-dimensional space. This seamless patchwork of images can be viewed via multiple angles and magnifications, allowing us to look around corners or “fly” in for a (much) closer look. Simply put, it could utterly transform the way we experience digital images.

He joined Microsoft when Seadragon was acquired by Live Labs in 2006. Shortly after the acquisition of Seadragon, Agüera y Arcas directed his team in a collaboration with Microsoft Research and the University of Washington, leading to the first public previews of Photosynth several months later. His TED Talk on Seadragon and Photosynth in 2007 is rated one of TED's "most jaw-dropping." He returned to TED in 2010 to demo Bing’s augmented reality maps.

Fun fact: According to the author, Agüera y Arcas is the inspiration for the character Elgin in the 2012 best-selling novel Where'd You Go, Bernadette?

More profile about the speaker
Blaise Agüera y Arcas | Speaker | TED.com
TED2007

Blaise Agüera y Arcas: How PhotoSynth can connect the world's images

Blaise Aguera y Arcas anaonyesha Photosynth

Filmed:
5,831,957 views

Blaise Aguera y Arcas anaonyesha Photosynth, mfumo wa kompyuta wa kusanii picha ambao utabadili namna tuonavyo picha za dijito. Kwa kutumia picha zilizokusanywa kwenye Mtandao wa Intaneti, Photosynth inajenga taswira murua na kutuwezesha kuzitembelea.
- Software architect
Blaise Agüera y Arcas works on machine learning at Google. Previously a Distinguished Engineer at Microsoft, he has worked on augmented reality, mapping, wearable computing and natural user interfaces. Full bio

Double-click the English transcript below to play the video.

00:25
What I'm going to showonyesha you first, as quicklyharaka as I can,
0
0
2000
Nitakachowaonyesha kwanza, haraka niwezavyo,
00:27
is some foundationalmsingi work, some newmpya technologyteknolojia
1
2000
4000
ni kazi ya msingi, katika teknolojia mpya
00:31
that we broughtkuletwa to MicrosoftMicrosoft as partsehemu of an acquisitionupataji
2
6000
3000
ambayo tuliingiza Microsoft kama sehemu ya ununuzi wa kampuni
00:34
almostkaribu exactlyhasa a yearmwaka agoiliyopita. This is SeadragonSeadragon,
3
9000
3000
takriban mwaka mmoja uliopita. Hii ni Seadragon.
00:37
and it's an environmentmazingira in whichambayo you can eitherama locallyndani ya nchi or remotelymbali
4
12000
3000
Na ni mfumo ambao unaweza, kwa karibu au mbali,
00:40
interactkuingiliana with vastkubwa amountskiasi of visualVisual datadata.
5
15000
3000
kujiunganisha na kufanyia kazi takwimu mbalimbali za picha.
00:43
We're looking at manywengi, manywengi gigabytesgigabytes of digitaldigital photospicha here
6
18000
3000
Hapa tunaziangalia nyingi, katika kipimo cha picha cha gigabyte
00:46
and kindaina of seamlesslyseamlessly and continuouslykuendelea zoomingzooming in,
7
21000
3000
na bila kukatika na kwa kuendelea kukuza mfululizo,
00:50
panningkusubiri throughkupitia the thing, rearrangingrearranging it in any way we want.
8
25000
2000
kulengesha kwenye kitu, kuirekebisha vile tutakavyo.
00:52
And it doesn't matterjambo how much informationhabari we're looking at,
9
27000
4000
Bila kujali taarifa ngapi tunaziangalia,
00:56
how bigkubwa these collectionsmakusanyo are or how bigkubwa the imagesPicha are.
10
31000
3000
zina ukubwa gani au nyingi kiasi gani.
00:59
MostWengi of them are ordinarykawaida digitaldigital camerakamera photospicha,
11
34000
2000
Nyingi kati yake ni picha za kawaida zilizopigwa na kamera za dijito,
01:01
but this one, for examplemfano, is a scansoma from the LibraryMaktaba of CongressCongress,
12
36000
3000
hii hapa, kwa mfano, ni kivuli cha picha kutoka Maktaba ya Bunge,
01:05
and it's in the 300 megapixelmegapixel rangembalimbali.
13
40000
2000
na iko katika kipimo cha vipandepicha 300.
01:08
It doesn't make any differencetofauti
14
43000
1000
Haileti tofauti yeyote
01:09
because the only thing that oughtlazima to limitkikomo the performanceutendaji
15
44000
3000
kwasababu kitu pekee kitakachoweza kuzuia ufanisi
01:12
of a systemmfumo like this one is the numbernambari of pixelspikseli on your screenskrini
16
47000
3000
wa mfumo kama huu ni idadi ya vipandepicha kwenye skrini yako
01:15
at any givenalipewa momentwakati. It's alsopia very flexiblerahisi architectureusanifu.
17
50000
3000
wakati wowote. Huu ni usanifu huria.
01:18
This is an entirenzima bookkitabu, so this is an examplemfano of non-imageyasiyo na taswira datadata.
18
53000
3000
Hiki ni kitabu kizima, mfano wa takwimu ambazo si picha.
01:22
This is "BleakChungu nzima HouseNyumba" by DickensDickens. EveryKila columnsafu is a chaptersura.
19
57000
5000
Hiki ni Bleak House kilichoandikwa na Dickens. Kila safu ni sura.
01:27
To provekuthibitisha to you that it's really textmaandishi, and not an imagepicha,
20
62000
4000
Kuwathibitishia kwamba haya ni maandishi, na siyo picha,
01:31
we can do something like so, to really showonyesha
21
66000
2000
tunaweza kufanya kama hivi, ili kuweza kuonyesha
01:33
that this is a realhalisi representationuwakilishi of the textmaandishi; it's not a picturepicha.
22
68000
3000
kuwa hiki ni kielelezo cha maandishi: na siyo picha.
01:37
Maybe this is a kindaina of an artificialbandia way to readsoma an e-booke-Kitabu.
23
72000
2000
Labda hii ni njia nyingine ya kusoma kitabu cha nakala za elektroniki.
01:39
I wouldn'thakutaka recommendkupendekeza it.
24
74000
1000
Siwezi kuipendekeza.
01:40
This is a more realistickweli casekesi. This is an issuesuala of The GuardianMlezi.
25
75000
3000
Huu ni mfano wa ukweli. Hili ni toleo la The Guardian.
01:43
EveryKila largekubwa imagepicha is the beginningmwanzo of a sectionsehemu.
26
78000
2000
Kila picha kubwa ni mwanzo wa sura.
01:45
And this really givesanatoa you the joyfuraha and the good experienceuzoefu
27
80000
3000
Hii inakupa raha na uzoefu mzuri
01:48
of readingkusoma the realhalisi paperkaratasi versiontoleo of a magazinegazeti or a newspapergazeti,
28
83000
5000
wa kusoma tolea halisi la jarida au gazeti,
01:54
whichambayo is an inherentlykwa asili multi-scaleRekebisha mbalimbali kindaina of mediumkati.
29
89000
1000
ambalo mara nyingi chombo cha habari chenye kina na mapana.
01:56
We'veTumekuwa alsopia donekufanyika a little something
30
91000
1000
Pia tumefanya kitu kidogo
01:57
with the cornerkona of this particularhasa issuesuala of The GuardianMlezi.
31
92000
3000
kwenye kona ya toleo hili la The Guardian.
02:00
We'veTumekuwa madealifanya up a fakebandia adtangazo that's very highjuu resolutionazimio --
32
95000
3000
Tumetengeneza tangazo la uongo na ambalo liko katika kiwango cha juu sana --
02:03
much higherjuu than you'dungependa be ableinaweza to get in an ordinarykawaida adtangazo --
33
98000
2000
kuliko ambavyo ungeweza kuona kwenye tangazo la kawaida --
02:05
and we'vetumekuwa embeddediliyoingia extraziada contentmaudhui.
34
100000
2000
na tumeongezea vitu vya ziada.
02:07
If you want to see the featuresvipengele of this cargari, you can see it here.
35
102000
2000
Kama unataka kujua taarifa za undani wa gari hili, unaweza kuziona hapa.
02:10
Or other modelsmifano, or even technicalkiufundi specificationsspecifikationer.
36
105000
4000
Au miundo mingine, au hata maelezo ya kina ya kiufundi.
02:15
And this really getshupata at some of these ideasmawazo
37
110000
2000
Hii inaingia katika baadhi ya haya mawazo
02:18
about really doing away with those limitsmipaka on screenskrini realhalisi estatemali.
38
113000
4000
katika kuondokana na vikwazo vya ufanisi wa skrini
02:22
We hopetumaini that this meansina maana no more pop-upsIbukizi
39
117000
2000
Tunatumaini kwamba hii ina maana kwamba hakutakuwa na vipeperushitovuti tena
02:24
and other kindaina of rubbishtakataka like that -- shouldn'thaipaswi be necessarymuhimu.
40
119000
2000
na taka nyingine kama hizo -- hazitakuwa muhimu.
02:27
Of coursebila shaka, mappingramani is one of those really obviousdhahiri applicationsmaombi
41
122000
2000
hakika, ramani zitakuwa moja ya matumizi muhimu ya
02:29
for a technologyteknolojia like this.
42
124000
2000
teknolojia kama hii
02:31
And this one I really won'thaitakuwa spendtumia any time on,
43
126000
2000
Na sitapoteza muda kwenye hili,
02:33
exceptisipokuwa to say that we have things to contributekuchangia to this fieldshamba as well.
44
128000
2000
isipokuwa kwamba tuna vitu vya kuchangia katika eneo hili pia.
02:37
But those are all the roadsbarabara in the U.S.
45
132000
2000
Lakini hizi zote ni barabara za Marekani
02:39
superimposedsuperimposed on topjuu of a NASANASA geospatialgeospatial imagepicha.
46
134000
4000
zilizowekwa juu ya picha za kijiografia za NASA
02:44
So let's pullkuvuta up, now, something elsemwingine.
47
139000
2000
Sasa hebu tuangalie kitu kingine.
02:46
This is actuallykwa kweli livekuishi on the WebWavuti now; you can go checkangalia it out.
48
141000
3000
Hii ipo hewani kwenye mtando kwa sasa; unaweza kwenda na kuiangalia.
02:49
This is a projectmradi calledaitwaye PhotosynthPhotosynth,
49
144000
1000
Huu ni mradi unaoitwa Photosynth,
02:51
whichambayo really marrieskuoa two differenttofauti technologiesteknolojia.
50
146000
1000
ambao unajumuisha teknolojia mbili tofauti.
02:52
One of them is SeadragonSeadragon
51
147000
1000
Mojawapo ni Seadragon
02:54
and the other is some very beautifulnzuri computerkompyuta visionmaono researchutafiti
52
149000
2000
na nyingine ni ya utafiti wa kuona katika kompyuta
02:57
donekufanyika by NoahNuhu SnavelySnavely, a graduateHitimu studentmwanafunzi at the UniversityChuo Kikuu cha of WashingtonWashington,
53
152000
2000
uliofanywa na Noah Snavely, mwanafunzi wa chuo kikuu cha Washington,
03:00
co-advisedushirikiano wanashauriwa by SteveSteve SeitzSeitz at U.W.
54
155000
2000
na kushauriwa na Steve Seitz hapo UW
03:02
and RickRick SzeliskiSzeliski at MicrosoftMicrosoft ResearchUtafiti. A very nicenzuri collaborationushirikiano.
55
157000
4000
na Rick Szeliski katika kitengo cha utafiti cha Microsoft. Ushirikiano mzuri sana.
03:07
And so this is livekuishi on the WebWavuti. It's poweredinatumiwa by SeadragonSeadragon.
56
162000
2000
Kwa hiyo hii iko hewani kwenye mtandao. Na imewezeshwa na Seadragon.
03:09
You can see that when we kindaina of do these sortsaina of viewsmaoni,
57
164000
2000
Unaweza kuona wakati tukifanya vielelezo hivi,
03:12
where we can divekupiga mbizi throughkupitia imagesPicha
58
167000
1000
ambapo tunaweza kuzamia kwenye picha
03:14
and have this kindaina of multi-resolutionMwonekano mbalimbali experienceuzoefu.
59
169000
1000
na kuwa na aina hii ya kuweza kuona taswira mbalimbali.
03:16
But the spatialnafasi arrangementMpangilio of the imagesPicha here is actuallykwa kweli meaningfulmaana.
60
171000
4000
Lakini hapa mpangalio wa mahusiano ya picha unaleta maana zaidi.
03:20
The computerkompyuta visionmaono algorithmsalgorithms have registeredkusajiliwa these imagesPicha togetherpamoja
61
175000
3000
Miundonamba ya picha za kompyuta imezisajiri hizi picha pamoja,
03:23
so that they correspondyanalingana na to the realhalisi spacenafasi in whichambayo these shotsshots --
62
178000
4000
ili ziendane na sehemu halisi ambako picha hizi zilipigwa --
03:27
all takenkuchukuliwa nearkaribu GrassiGrassi LakesMaziwa in the CanadianKanada RockiesRockies --
63
182000
2000
zote zilipigwa karibu na Ziwa Grassi huko Canadian Rockies --
03:31
all these shotsshots were takenkuchukuliwa. So you see elementsvipengele here
64
186000
2000
zilichukuliwa. Kwa hiyo unaona vipengee hapa
03:33
of stabilizedimetulia slide-showonyesho la Slaidi or panoramicpanoramic imagingTaswira,
65
188000
4000
za vielelezopicha vilivyokamilika au picha za kupita.
03:40
and these things have all been relatedkuhusiana spatiallyspatially.
66
195000
2000
na vitu hivi vyote vimehusianishwa pamoja.
03:42
I'm not sure if I have time to showonyesha you any other environmentsmazingira.
67
197000
3000
Sina uhakika kama nina muda wa kuwaonyesha taswira nyingine.
03:45
There are some that are much more spatialnafasi.
68
200000
1000
Kunamengine ambayo yanahusiana zaidi.
03:47
I would like to jumpkuruka straightsawa to one of Noah'sWa Nuhu originalawali data-setsSeti za data --
69
202000
3000
Nitaenda moja kwa moja kwenye moja ya seti za takwimu halisi za Noah --
03:50
and this is from an earlymapema prototypemfano of PhotosynthPhotosynth
70
205000
2000
na hii inatoka kwenye toleo la mfano la Photosynth ya awali
03:52
that we first got workingkufanya kazi in the summermajira ya joto --
71
207000
2000
ambayo tuliipata wakati tukifanya kazi majira ya joto --
03:54
to showonyesha you what I think
72
209000
1000
kukuonyesha ninachokifikiria
03:55
is really the punchPunch linemstari behindnyuma this technologyteknolojia,
73
210000
3000
ni mzaha tu wa teknolojia hii,
03:59
the PhotosynthPhotosynth technologyteknolojia. And it's not necessarilylazima so apparentdhahiri
74
214000
2000
teknolojia ya Photosynth. Na si dhahiri sana
04:01
from looking at the environmentsmazingira that we'vetumekuwa put up on the websitetovuti.
75
216000
3000
kwa kuangalia katika mfumo tuliouweka kwenye tovuti.
04:04
We had to worrywasiwasi about the lawyerswanasheria and so on.
76
219000
2000
Ilibidi tuanze kuhofia juu ya wanasheria na mengineyo.
04:07
This is a reconstructionujenzi of NotreNotre DameDame CathedralKanisa kuu
77
222000
1000
Huu ni ujengwaji tena wa kanisa kuu la dayosisi ya Notre Dame
04:09
that was donekufanyika entirelykabisa computationallycomputationally
78
224000
2000
ambao ulifanywa kwa kwakutumia kompyuta peke yake
04:11
from imagesPicha scrapedscraped from FlickrFlickr. You just typeaina NotreNotre DameDame into FlickrFlickr,
79
226000
3000
kutoka kwenye picha zilizopatikana kwenye Flickr. Unaandika Notre Dame kwenye Flickr,
04:14
and you get some picturespicha of guys in t-shirtsmashati, and of the campuschuo
80
229000
3000
na unapata picha za watu waliovaa T-shirts, na za eneo la chuo
04:17
and so on. And eachkila mmoja of these orangemachungwa conesmbegu representsinawakilisha an imagepicha
81
232000
4000
na mengineyo. Na kati ya kila hizi pia za rangi ya chungwa zinawakilisha taswira
04:22
that was discoveredaligundua to belongni to this modelmfano.
82
237000
2000
ambazo ziligunduliwa zinauhusiano na muundo huu.
04:26
And so these are all FlickrFlickr imagesPicha,
83
241000
2000
Na hizi zote ni picha za Flickr,
04:28
and they'vewameweza all been relatedkuhusiana spatiallyspatially in this way.
84
243000
3000
na zote zimehusishwa kwa njia hii.
04:31
And we can just navigatesafari in this very simplerahisi way.
85
246000
2000
Na tunaweza kutembelea kwa njia hii rahisi.
04:35
(ApplauseMakofi)
86
250000
9000
(Makofi).
04:44
You know, I never thought that I'd endmwisho up workingkufanya kazi at MicrosoftMicrosoft.
87
259000
2000
Unajua, sikufikiria kuwa nitakuja kufanya kazi Microsoft.
04:46
It's very gratifyingkuvutia to have this kindaina of receptionmapokezi here.
88
261000
4000
Ni faraja kubwa sana kupata mapokezi kama haya hapa.
04:50
(LaughterKicheko)
89
265000
3000
(Kicheko).
04:53
I guessnadhani you can see
90
268000
3000
Natumaini mnaweza kuona
04:56
this is lots of differenttofauti typesaina of cameraskamera:
91
271000
2000
hizi ni kamera nyingi tofauti:
04:58
it's everything from cellkiini phonesimu cameraskamera to professionalmtaalamu SLRsSLRs,
92
273000
3000
ni kila kitu kutoka kwenye kamera za simu za mkononi mpaka kamera za kitaalam za SLRs,
05:02
quitekabisa a largekubwa numbernambari of them, stitchedstitched
93
277000
1000
ni nyingi, zikiwa pamoja
05:03
togetherpamoja in this environmentmazingira.
94
278000
1000
katika mfumo huu.
05:04
And if I can, I'll find some of the sortfanya of weirdweird oneswale.
95
279000
2000
Na kama nitaweza, nitatafuta zile za ajabu.
05:08
So manywengi of them are occludedoccluded by facesinakabiliwa, and so on.
96
283000
3000
Nyingi zao zimezibwa kwa sura za watu, na mengineyo
05:13
SomewhereMahali fulani in here there are actuallykwa kweli
97
288000
1000
Kati ya hapo kuna
05:15
a seriesmfululizo of photographspicha -- here we go.
98
290000
1000
mlolongo wa picha -- naam hapa.
05:17
This is actuallykwa kweli a posterbango of NotreNotre DameDame that registeredkusajiliwa correctlykwa usahihi.
99
292000
3000
Hii hakika ni picha ya Notre Dame ambayo imesajiliwa kwa usahihi.
05:21
We can divekupiga mbizi in from the posterbango
100
296000
2000
Tunaweza kuingia ndani ya picha
05:24
to a physicalkimwili viewmtazamo of this environmentmazingira.
101
299000
3000
katika mazingira ya maumbile yake.
05:31
What the pointuhakika here really is is that we can do things
102
306000
3000
Cha muhimu hapa ni nini tunaweza kufanya
05:34
with the socialkijamii environmentmazingira. This is now takingkuchukua datadata from everybodykila mtu --
103
309000
5000
na mfumo huu. Hii ni kuchukua takwimu kutoka kwa kila mtu --
05:39
from the entirenzima collectivepamoja memorykumbukumbu
104
314000
1000
kutoka katika mkusanyiko wa kumbukumbu
05:40
of, visuallykuibua, of what the EarthDunia looksinaonekana like --
105
315000
2000
za taswira, namna dunia ilivyo --
05:43
and linkkiungo all of that togetherpamoja.
106
318000
1000
na kuzijumuisha zote.
05:44
All of those photospicha becomekuwa linkedimeunganishwa togetherpamoja,
107
319000
2000
Picha zote zinaunganishwa pamoja,
05:46
and they make something emergentyanayoibuka
108
321000
1000
na zinafanya kitu kutokea
05:47
that's greaterzaidi than the sumjumla of the partssehemu.
109
322000
2000
ambacho ni kubwa zaidi ya jumla ya sehemu ndogondogo.
05:49
You have a modelmfano that emergesinatokea of the entirenzima EarthDunia.
110
324000
2000
Una mfano ambao unatokea katika dunia nzima.
05:51
Think of this as the long tailmkia to StephenStefano Lawler'sYa Lawler VirtualPepe EarthDunia work.
111
326000
5000
Fikiria hii ni kama mkia mrefu wa kazi za picha za dunia za Stephen Lawler.
05:56
And this is something that growsinakua in complexityutata
112
331000
2000
Na hiki kitu ambacho kinakua na kuongeza mchangamano
05:58
as people use it, and whoseambaye benefitsfaida becomekuwa greaterzaidi
113
333000
3000
jinsi watu wanavyotumia, na faida yake inakuwa kubwa
06:01
to the userswatumiaji as they use it.
114
336000
2000
kwa watumiaji jinsi wanavyotumia.
06:03
TheirYao ownmwenyewe photospicha are gettingkupata taggedLebo with meta-dataMeta-data
115
338000
2000
Picha zao zinaunganishwa na meta-data
06:05
that somebodymtu elsemwingine enteredimeingia.
116
340000
1000
ambavyo mtu mwingine ameviingiza.
06:07
If somebodymtu botheredwasiwasi to tagLebo all of these saintsWatakatifu
117
342000
3000
Kama kuna mtu angewaunganisha watakatifu hawa wote
06:10
and say who they all are, then my photopicha of NotreNotre DameDame CathedralKanisa kuu
118
345000
3000
na kusema wao ni akina nani, kwa hiyo picha yangu ya kanisa kuu la Notre Dame
06:13
suddenlyghafla getshupata enrichedmfano with all of that datadata,
119
348000
2000
ingeboreshwa na vielelezo hivyo vyote,
06:15
and I can use it as an entrykuingia pointuhakika to divekupiga mbizi into that spacenafasi,
120
350000
3000
na ninaweza kuitumia kama njia ya kuingia katika sehemu hiyo,
06:18
into that meta-versemstari wa Meta, usingkutumia everybodykila mtu else'smwingine photospicha,
121
353000
2000
katika takwimumaneno, kwa kutumia picha za watu wengine,
06:21
and do a kindaina of a cross-modalmsalaba modal
122
356000
2000
na kufanya mwingiliano
06:25
and cross-usermsalaba-mtumiaji socialkijamii experienceuzoefu that way.
123
360000
3000
na mwingiliano wa watumiaji kwa njia hiyo.
06:28
And of coursebila shaka, a by-productkuiteketeza of all of that
124
363000
1000
Na kwa hakika, matokeo ya yote hayo
06:30
is immenselykubwa sana richtajiri virtualvirtual modelsmifano
125
365000
2000
ni mifumo thabiti ya picha
06:32
of everykila interestingkuvutia partsehemu of the EarthDunia, collectedzilizokusanywa
126
367000
2000
wa kila sehemu ya dunia, iliyokusanywa
06:35
not just from overheadvitu vilivyoning'inia au vilivyo flightsndege and from satellitesatellite imagesPicha
127
370000
3000
siyo tu kwa angani na kutoka kwenye picha za setilaiti
06:38
and so on, but from the collectivepamoja memorykumbukumbu.
128
373000
2000
na mengineyo, bali kutoka kwenye majumuisho ya kumbukumbu.
06:40
Thank you so much.
129
375000
2000
Asanteni sana.
06:42
(ApplauseMakofi)
130
377000
11000
(Makofi).
06:53
ChrisChris AndersonAnderson: Do I understandkuelewa this right? That what your softwareprogramu is going to allowkuruhusu,
131
388000
4000
Chris Anderson: Nimekuelewa? Kuwa programu yako itaruhusu,
06:58
is that at some pointuhakika, really withinndani the nextijayo fewwachache yearsmiaka,
132
393000
2000
kuwa, wakati fulani, katika kipindi cha miaka michache ijayo,
07:01
all the picturespicha that are sharedimeshirikiwa by anyoneyeyote acrosskote the worldulimwengu
133
396000
4000
picha zote zitakazokuwa zikigawanwa na mtu yeyote duniani
07:05
are going to basicallykimsingi linkkiungo togetherpamoja?
134
400000
2000
zitaunganishwa pamoja?
07:07
BAAGUTA: Yes. What this is really doing is discoveringkugundua.
135
402000
2000
BAA: Ndiyo. Kinachotokea hapa ni uvumbuzi.
07:09
It's creatingkujenga hyperlinksviungo-wavuti, if you will, betweenkati imagesPicha.
136
404000
3000
Inatengeneza viuongotovuti, kati ya picha.
07:12
And it's doing that
137
407000
1000
Na inafanya hivyo
07:13
basedmsingi on the contentmaudhui insidendani the imagesPicha.
138
408000
1000
ikitegemea yaliyomo ndani ya picha.
07:14
And that getshupata really excitingkusisimua when you think about the richnessutajiri
139
409000
3000
Hii inaleta msisimko zaidi ukifikiria kuhusu ubora
07:17
of the semanticsemantic informationhabari that a lot of those imagesPicha have.
140
412000
2000
wa taarifa zilizomo kwenye picha hizo.
07:19
Like when you do a webmtandao searchtafuta for imagesPicha,
141
414000
2000
Kwa mfano ukiwa unatafuta picha kwenye mtandao,
07:22
you typeaina in phrasesvishazi, and the textmaandishi on the webmtandao pageukurasa
142
417000
2000
unaandika vifungu vya maneno na maandishi katika ukurasa wa tovuti
07:24
is carryingkubeba a lot of informationhabari about what that picturepicha is of.
143
419000
3000
inabeba taarifa kuhusu picha hiyo ni ya nini.
07:27
Now, what if that picturepicha linksviungo to all of your picturespicha?
144
422000
2000
Sasa, itakuwaje kama picha hiyo inaunganisha picha zako zote?
07:29
Then the amountkiasi of semanticsemantic interconnectiontofauti
145
424000
2000
Hapo idadi ya miunganiko ya taarifa
07:31
and the amountkiasi of richnessutajiri that comesinakuja out of that
146
426000
1000
na idadi ya ubora ambao unakuja pamoja nayo
07:32
is really hugekubwa. It's a classicclassic networkmtandao effectathari.
147
427000
3000
ni kubwa sana. Ni matokeo ya kiwango cha juu cha muungano wa mtandao.
07:35
CACA: BlaiseBlaise, that is trulykweli incredibleajabu. CongratulationsHongera.
148
430000
2000
CA: Blaise, hii ni nzuri sana. Hongera.
07:37
BAAGUTA: ThanksShukrani so much.
149
432000
1000
BAA: Asante sana

▲Back to top

ABOUT THE SPEAKER
Blaise Agüera y Arcas - Software architect
Blaise Agüera y Arcas works on machine learning at Google. Previously a Distinguished Engineer at Microsoft, he has worked on augmented reality, mapping, wearable computing and natural user interfaces.

Why you should listen

Blaise Agüera y Arcas is principal scientist at Google, where he leads a team working on machine intelligence for mobile devices. His group works extensively with deep neural nets for machine perception and distributed learning, and it also investigates so-called "connectomics" research, assessing maps of connections within the brain.

Agüera y Arcas' background is as multidimensional as the visions he helps create. In the 1990s, he authored patents on both video compression and 3D visualization techniques, and in 2001, he made an influential computational discovery that cast doubt on Gutenberg's role as the father of movable type.

He also created Seadragon (acquired by Microsoft in 2006), the visualization technology that gives Photosynth its amazingly smooth digital rendering and zoom capabilities. Photosynth itself is a vastly powerful piece of software capable of taking a wide variety of images, analyzing them for similarities, and grafting them together into an interactive three-dimensional space. This seamless patchwork of images can be viewed via multiple angles and magnifications, allowing us to look around corners or “fly” in for a (much) closer look. Simply put, it could utterly transform the way we experience digital images.

He joined Microsoft when Seadragon was acquired by Live Labs in 2006. Shortly after the acquisition of Seadragon, Agüera y Arcas directed his team in a collaboration with Microsoft Research and the University of Washington, leading to the first public previews of Photosynth several months later. His TED Talk on Seadragon and Photosynth in 2007 is rated one of TED's "most jaw-dropping." He returned to TED in 2010 to demo Bing’s augmented reality maps.

Fun fact: According to the author, Agüera y Arcas is the inspiration for the character Elgin in the 2012 best-selling novel Where'd You Go, Bernadette?

More profile about the speaker
Blaise Agüera y Arcas | Speaker | TED.com

Data provided by TED.

This site was created in May 2015 and the last update was on January 12, 2020. It will no longer be updated.

We are currently creating a new site called "eng.lish.video" and would be grateful if you could access it.

If you have any questions or suggestions, please feel free to write comments in your language on the contact form.

Privacy Policy

Developer's Blog

Buy Me A Coffee