ABOUT THE SPEAKER
Janelle Shane - AI researcher
While moonlighting as a research scientist, Janelle Shane found fame documenting the often hilarious antics of AI algorithms.

Why you should listen

Janelle Shane's humor blog, AIweirdness.com, looks at, as she tells it, "the strange side of artificial intelligence." Her upcoming book, You Look Like a Thing and I Love You: How AI Works and Why It's Making the World a Weirder Place, uses cartoons and humorous pop-culture experiments to look inside the minds of the algorithms that run our world, making artificial intelligence and machine learning both accessible and entertaining.

According to Shane, she has only made a neural network-written recipe once -- and discovered that horseradish brownies are about as terrible as you might imagine.

More profile about the speaker
Janelle Shane | Speaker | TED.com
TED2019

Janelle Shane: The danger of AI is weirder than you think

珍妮尔 · 尚恩: 人工智能的危险比你想象中更奇怪

Filmed:
376,501 views

人工智能研究者珍妮尔 · 尚恩(Janelle Shane)认为,人工智能的危险不在于它会反抗我们,而是会严格按照我们的要求去做。在尝试解决人类提出的问题,如创造新的冰淇淋或者识别路上的车辆的时候,人工智能所做出的行为时而滑稽可笑,时而令人恐慌。通过这些分享,尚恩说明了为什么人工智能远未能媲美真正的大脑。
- AI researcher
While moonlighting as a research scientist, Janelle Shane found fame documenting the often hilarious antics of AI algorithms. Full bio

Double-click the English transcript below to play the video.

00:13
So, artificial人造 intelligence情报
0
1765
3000
人工智能,
00:16
is known已知 for disrupting妨害
all kinds of industries行业.
1
4789
3529
以能颠覆所有行业广为人知。
00:20
What about ice cream奶油?
2
8961
2043
那冰淇淋呢?
00:23
What kind of mind-blowing令人兴奋
new flavors口味 could we generate生成
3
11879
3639
我们是否能利用先进的人工智能
00:27
with the power功率 of an advanced高级
artificial人造 intelligence情报?
4
15542
2976
生成令人震惊的新口味呢?
00:31
So I teamed联手 up with a group of coders编码器
from Kealing基林 Middle中间 School学校
5
19011
4161
我和 Kealing 中学的程序员组了个队
00:35
to find out the answer回答 to this question.
6
23196
2241
想要找到答案。
00:37
They collected over 1,600
existing现有 ice cream奶油 flavors口味,
7
25461
5081
他们收集了超过 1600 种
现有的冰淇淋口味,
00:42
and together一起, we fed美联储 them to an algorithm算法
to see what it would generate生成.
8
30566
5522
接着我们一起把这些口味输入
到算法中看看会有什么结果。
00:48
And here are some of the flavors口味
that the AIAI came来了 up with.
9
36112
3753
接下来给大家展示一些
人工智能所想到的口味。
00:52
[Pumpkin南瓜 Trash垃圾 Break打破]
10
40444
1471
【南瓜垃圾破裂】
00:53
(Laughter笑声)
11
41939
1402
(笑声)
00:55
[Peanut花生 Butter黄油 Slime粘液]
12
43365
2469
【花生酱稀泥】
00:58
[Strawberry草莓 Cream奶油 Disease疾病]
13
46822
1343
【草莓奶油病】
01:00
(Laughter笑声)
14
48189
2126
(笑声)
01:02
These flavors口味 are not delicious美味的,
as we might威力 have hoped希望 they would be.
15
50339
4597
这些口味听起来并没有
我们想象中美味。
01:06
So the question is: What happened发生?
16
54960
1864
所以问题来了:怎么回事?
01:08
What went wrong错误?
17
56848
1394
到底哪里出问题了?
01:10
Is the AIAI trying to kill us?
18
58266
1959
人工智能是想要干掉我们?
01:13
Or is it trying to do what we asked,
and there was a problem问题?
19
61027
4310
还是说它努力想要回应
我们的要求,但是却出问题了?
01:18
In movies电影, when something
goes wrong错误 with AIAI,
20
66567
2464
在电影中,当人工智能出了错,
01:21
it's usually平时 because the AIAI has decided决定
21
69055
2712
通常是因为它们决定
01:23
that it doesn't want to obey遵守
the humans人类 anymore,
22
71791
2272
再也不要听从人类的指令,
01:26
and it's got its own拥有 goals目标,
thank you very much.
23
74087
2623
它开始有了自己的目标,
不劳驾人类了。
01:29
In real真实 life, though虽然,
the AIAI that we actually其实 have
24
77266
3216
然而现实生活中,
我们现有的人工智能
01:32
is not nearly几乎 smart聪明 enough足够 for that.
25
80506
1863
还没达到那样的水平。
01:34
It has the approximate近似 computing计算 power功率
26
82781
2982
它的计算能力大概跟
01:37
of an earthworm蚯蚓,
27
85787
1276
一条小虫子差不多,
01:39
or maybe at most a single honeybee蜜蜂,
28
87087
3403
又或者顶多只是一只小蜜蜂,
01:42
and actually其实, probably大概 maybe less.
29
90514
2215
实际上可能更弱。
01:44
Like, we're constantly经常 learning学习
new things about brains大脑
30
92753
2594
我们持续从大脑学习到新事物,
01:47
that make it clear明确 how much our AIs认可
don't measure测量 up to real真实 brains大脑.
31
95371
4360
使我们越来越清楚人工智能
与真正的大脑之间的距离。
01:51
So today's今天的 AIAI can do a task任务
like identify鉴定 a pedestrian行人 in a picture图片,
32
99755
5663
现在人工智能所达到的大体就是
在图片中识别出行人的程度,
01:57
but it doesn't have a concept概念
of what the pedestrian行人 is
33
105442
2983
但是它并没有
对于行人的概念,
02:00
beyond that it's a collection采集
of lines线 and textures纹理 and things.
34
108449
4824
除此之外它所做的只是
收集线条,质地之类的信息。
02:05
It doesn't know what a human人的 actually其实 is.
35
113792
2521
但是它并不知道人类到底是什么。
02:08
So will today's今天的 AIAI
do what we ask it to do?
36
116822
3282
那么现在的人工智能
能否达到我们的要求?
02:12
It will if it can,
37
120128
1594
能力允许的情况下它会,
02:13
but it might威力 not do what we actually其实 want.
38
121746
2726
但是它所做的可能
并不是我们真正想要的。
02:16
So let's say that you
were trying to get an AIAI
39
124496
2415
假设你想要用人工智能
02:18
to take this collection采集 of robot机器人 parts部分
40
126935
2619
利用一堆机器人的零件
02:21
and assemble集合 them into some kind of robot机器人
to get from Point A to Point B.
41
129578
4197
组装成一个机器人
从 A 点移动到 B 点。
02:25
Now, if you were going to try
and solve解决 this problem问题
42
133799
2481
如果你想要通过编写
一个传统的计算机程序
02:28
by writing写作 a traditional-style传统风格
computer电脑 program程序,
43
136304
2351
来解决这个问题,
02:30
you would give the program程序
step-by-step一步步 instructions说明
44
138679
3417
你需要输入一步步的指令,
02:34
on how to take these parts部分,
45
142120
1329
指示它怎样拿起零件,
02:35
how to assemble集合 them
into a robot机器人 with legs
46
143473
2407
怎样把这些零件安装成
一个带脚的机器人,
02:37
and then how to use those legs
to walk步行 to Point B.
47
145904
2942
以及如何用脚走到 B 点。
02:41
But when you're using运用 AIAI
to solve解决 the problem问题,
48
149441
2340
但是当你利用人工智能
来解决这个问题的时候,
02:43
it goes differently不同.
49
151805
1174
情况不太一样。
02:45
You don't tell it
how to solve解决 the problem问题,
50
153003
2382
你不用告诉它
要怎样解决问题,
02:47
you just give it the goal目标,
51
155409
1479
你只需要给它一个目标,
02:48
and it has to figure数字 out for itself本身
via通过 trial审讯 and error错误
52
156912
3262
它会通过试错
来解决这个问题,
02:52
how to reach达到 that goal目标.
53
160198
1484
来实现目标。
02:54
And it turns out that the way AIAI tends趋向
to solve解决 this particular特定 problem问题
54
162254
4102
结果是,貌似人工智能在
解决这一类问题的时候
02:58
is by doing this:
55
166380
1484
会这么做:
02:59
it assembles组装 itself本身 into a tower
and then falls下降 over
56
167888
3367
它把自己搭建成
一座塔然后倾倒,
03:03
and lands土地 at Point B.
57
171279
1827
最后在 B 点落下。
03:05
And technically技术上, this solves解决了 the problem问题.
58
173130
2829
从技术的层面上看,的确解决了问题。
03:07
Technically技术上, it got to Point B.
59
175983
1639
从技术上来说的确到达了 B 点。
03:09
The danger危险 of AIAI is not that
it's going to rebel反叛 against反对 us,
60
177646
4265
人工智能的危险
不在于它会反抗我们,
03:13
it's that it's going to do
exactly究竟 what we ask it to do.
61
181935
4274
而是它们会严格按照
我们的要求去做。
03:18
So then the trick
of working加工 with AIAI becomes:
62
186876
2498
所以和人工智能共事的技巧变成了:
03:21
How do we set up the problem问题
so that it actually其实 does what we want?
63
189398
3828
我们该如何设置问题才能让它
做我们真正想做的事?
03:26
So this little robot机器人 here
is being存在 controlled受控 by an AIAI.
64
194726
3306
这一台小机器人
由人工智能操控。
03:30
The AIAI came来了 up with a design设计
for the robot机器人 legs
65
198056
2814
人工智能想到了一个
机器人脚部的设计,
03:32
and then figured想通 out how to use them
to get past过去 all these obstacles障碍.
66
200894
4078
然后想到了如何
利用它们绕过障碍。
03:36
But when David大卫 Ha set up this experiment实验,
67
204996
2741
但是当大卫·哈
在做这个实验的时候,
03:39
he had to set it up
with very, very strict严格 limits范围
68
207761
2856
他不得不对人工智能
容许搭建起来的脚
03:42
on how big the AIAI
was allowed允许 to make the legs,
69
210641
3292
设立非常、非常严格的限制,
03:45
because otherwise除此以外 ...
70
213957
1550
不然的话...
03:55
(Laughter笑声)
71
223058
3931
(笑声)
04:00
And technically技术上, it got
to the end结束 of that obstacle障碍 course课程.
72
228563
3745
从技术上说,他的确
到达了障碍路线的终点。
04:04
So you see how hard it is to get AIAI
to do something as simple简单 as just walk步行.
73
232332
4942
现在我们知道了,仅仅是让人工智能
实现简单的行走就有多困难。
04:09
So seeing眼看 the AIAI do this,
you may可能 say, OK, no fair公平,
74
237298
3820
当看到人工智能这么做的时候,
你可能会说,这不公平。
04:13
you can't just be
a tall tower and fall秋季 over,
75
241142
2580
你不能只是变成
一座塔然后直接倒下,
04:15
you have to actually其实, like,
use legs to walk步行.
76
243746
3435
你必须得用脚去走路,
04:19
And it turns out,
that doesn't always work, either.
77
247205
2759
结果是,
那往往也不行。
04:21
This AI'sai 的 job工作 was to move移动 fast快速.
78
249988
2759
这个人工智能的任务是快速移动。
04:25
They didn't tell it that it had
to run facing面对 forward前锋
79
253115
3593
他们没有说它应该面向前方奔跑,
04:28
or that it couldn't不能 use its arms武器.
80
256732
2258
也没有说不能使用它的手臂。
04:31
So this is what you get
when you train培养 AIAI to move移动 fast快速,
81
259487
4618
这就是当你训练人工智能
快速移动时所能得到的结果,
04:36
you get things like somersaulting翻筋斗
and silly愚蠢 walks散步.
82
264129
3534
你能得到的就是像这样的
空翻或者滑稽漫步。
04:39
It's really common共同.
83
267687
1400
太常见了。
04:41
So is twitching抽搐 along沿 the floor地板 in a heap.
84
269667
3179
在地板上扭动前进
也是一样的结果。
04:44
(Laughter笑声)
85
272870
1150
(笑声)
04:47
So in my opinion意见, you know what
should have been a whole整个 lot weirder怪异
86
275241
3254
在我看来,更奇怪的
04:50
is the "Terminator终结者" robots机器人.
87
278519
1396
就是“终结者”机器人。
04:52
Hacking黑客 "The Matrix矩阵" is another另一个 thing
that AIAI will do if you give it a chance机会.
88
280256
3755
要是有可能的话,人工智能
还真会入侵“黑客帝国"。
04:56
So if you train培养 an AIAI in a simulation模拟,
89
284035
2517
如果你用仿真环境
训练一个人工智能的话,
04:58
it will learn学习 how to do things like
hack into the simulation's模拟的 math数学 errors错误
90
286576
4113
它会学习如何入侵到
一个仿真环境中的数学错误里,
05:02
and harvest收成 them for energy能源.
91
290713
2207
并从中获得能量。
05:04
Or it will figure数字 out how to move移动 faster更快
by glitching毛刺 repeatedly反复 into the floor地板.
92
292944
5475
或者会计算出如何通过
不断地在地板上打滑来加快速度。
05:10
When you're working加工 with AIAI,
93
298443
1585
当你和人工智能一起工作的时候,
05:12
it's less like working加工 with another另一个 human人的
94
300052
2389
不太像是在跟另一个人一起工作,
05:14
and a lot more like working加工
with some kind of weird奇怪的 force of nature性质.
95
302465
3629
而更像是在和某种
奇怪的自然力量工作。
05:18
And it's really easy简单 to accidentally偶然
give AIAI the wrong错误 problem问题 to solve解决,
96
306562
4623
一不小心就很容易让人工
智能去破解错误的问题,
05:23
and often经常 we don't realize实现 that
until直到 something has actually其实 gone走了 wrong错误.
97
311209
4538
往往直到出现问题
我们才察觉到不妥。
05:28
So here's这里的 an experiment实验 I did,
98
316242
2080
所以我做了这样的一个实验,
05:30
where I wanted the AIAI
to copy复制 paint涂料 colors颜色,
99
318346
3182
我想要让人工智能
利用左边的颜色列表
05:33
to invent发明 new paint涂料 colors颜色,
100
321552
1746
复制颜料颜色,
05:35
given特定 the list名单 like the ones那些
here on the left.
101
323322
2987
去创造新的颜色。
05:38
And here's这里的 what the AIAI
actually其实 came来了 up with.
102
326798
3004
这就是人工智能想到的结果。
05:41
[Sindis辛迪斯 Poop船尾, Turdly图尔德利, Suffer遭受, Gray灰色 Pubic公共]
103
329826
3143
【辛迪斯粪便,如粪球般,
受难,灰色公众】
05:44
(Laughter笑声)
104
332993
4230
(笑声)
05:51
So technically技术上,
105
339177
1886
基本上,
05:53
it did what I asked it to.
106
341087
1864
它达到了我的要求。
05:54
I thought I was asking it for,
like, nice不错 paint涂料 color颜色 names,
107
342975
3308
我以为我给出的要求是,
让它想出美好的颜色名,
05:58
but what I was actually其实 asking it to do
108
346307
2307
但是实际上我让它做的
06:00
was just imitate模拟 the kinds
of letter combinations组合
109
348638
3086
只是单纯地模仿
字母的组合,
06:03
that it had seen看到 in the original原版的.
110
351748
1905
那些它在输入中见到的字母组合。
06:05
And I didn't tell it anything
about what words mean,
111
353677
3098
而且我并没有告诉它
这些单词的意思是什么,
06:08
or that there are maybe some words
112
356799
2560
或者告诉它也许有些单词
06:11
that it should avoid避免 using运用
in these paint涂料 colors颜色.
113
359383
2889
不能用来给颜色命名。
06:15
So its entire整个 world世界
is the data数据 that I gave it.
114
363141
3494
也就是说它的整个世界里
只有我给出的数据。
06:18
Like with the ice cream奶油 flavors口味,
it doesn't know about anything else其他.
115
366659
4028
正如让它发明冰淇淋的口味那样,
它除此之外一无所知。
06:24
So it is through通过 the data数据
116
372491
1638
也就是通过数据,
06:26
that we often经常 accidentally偶然 tell AIAI
to do the wrong错误 thing.
117
374153
4044
我们常常不小心
让人工智能做错事。
06:30
This is a fish called a tench滕奇.
118
378694
3032
有一种叫丁鲷的鱼,
06:33
And there was a group of researchers研究人员
119
381750
1815
一群研究者尝试过
06:35
who trained熟练 an AIAI to identify鉴定
this tench滕奇 in pictures图片.
120
383589
3874
训练人工智能去
识别图片里的丁鲷。
06:39
But then when they asked it
121
387487
1296
但是当他们试图搞清
06:40
what part部分 of the picture图片 it was actually其实
using运用 to identify鉴定 the fish,
122
388807
3426
它到底用了图片的
哪个部分去识别这种鱼,
06:44
here's这里的 what it highlighted突出.
123
392257
1358
这是它所显示的部分。
06:47
Yes, those are human人的 fingers手指.
124
395203
2189
没错,那些是人类的手指。
06:49
Why would it be looking for human人的 fingers手指
125
397416
2059
为什么它会去识别人类的手指,
06:51
if it's trying to identify鉴定 a fish?
126
399499
1921
而不是鱼呢?
06:54
Well, it turns out that the tench滕奇
is a trophy fish,
127
402126
3164
因为丁鲷实际上是一种战利品鱼,
06:57
and so in a lot of pictures图片
that the AIAI had seen看到 of this fish
128
405314
3811
所以人工智能在被训练时,
07:01
during training训练,
129
409149
1151
看过的大多数照片中
07:02
the fish looked看着 like this.
130
410324
1490
鱼都长这样。
07:03
(Laughter笑声)
131
411838
1635
(笑声)
07:05
And it didn't know that the fingers手指
aren't part部分 of the fish.
132
413497
3330
而人工智能并不知道原来
手指并不是鱼的一部分。
07:10
So you see why it is so hard
to design设计 an AIAI
133
418808
4120
现在你们应该能想象,
设计一个能真正懂得
07:14
that actually其实 can understand理解
what it's looking at.
134
422952
3319
自己在做什么的人工
智能是多么困难。
07:18
And this is why designing设计
the image图片 recognition承认
135
426295
2862
这也就是为什么
给无人驾驶汽车
07:21
in self-driving自驾车 cars汽车 is so hard,
136
429181
2067
设计图像识别技术那么困难,
07:23
and why so many许多 self-driving自驾车 car汽车 failures故障
137
431272
2205
导致无人驾驶失败的原因
07:25
are because the AIAI got confused困惑.
138
433501
2885
就是,人工智能迷糊了。
07:28
I want to talk about an example from 2016.
139
436410
4008
接下来我想分享一个
发生在 2016 年的故事。
07:32
There was a fatal致命 accident事故 when somebody
was using运用 Tesla's特斯拉 autopilot自动驾驶仪 AIAI,
140
440442
4455
有人在使用特斯拉的
自动驾驶功能时发生了特大事故,
07:36
but instead代替 of using运用 it on the highway高速公路
like it was designed设计 for,
141
444921
3414
因为这个人工智能是
为上高速路而设计的,
07:40
they used it on city streets街道.
142
448359
2205
结果车主居然开到市内街道上。
07:43
And what happened发生 was,
143
451239
1175
结果是,
一辆卡车突然出现在轿车前面,
而轿车没有刹车。
07:44
a truck卡车 drove开车 out in front面前 of the car汽车
and the car汽车 failed失败 to brake制动.
144
452438
3396
07:48
Now, the AIAI definitely无疑 was trained熟练
to recognize认识 trucks卡车 in pictures图片.
145
456507
4762
当然这个人工智能受过训练,
能识别图片中的卡车。
07:53
But what it looks容貌 like happened发生 is
146
461293
2145
但是当时的情况看起来,
07:55
the AIAI was trained熟练 to recognize认识
trucks卡车 on highway高速公路 driving主动,
147
463462
2931
人工智能接受的训练是
识别行驶在高速路上的卡车,
07:58
where you would expect期望
to see trucks卡车 from behind背后.
148
466417
2899
理论上你看到的应该是卡车的尾部,
08:01
Trucks卡车 on the side is not supposed应该
to happen发生 on a highway高速公路,
149
469340
3420
而侧面对着你的卡车
是不会出现在高速路上的,
08:04
and so when the AIAI saw this truck卡车,
150
472784
3455
所以当人工智能看到这辆卡车的时候,
08:08
it looks容貌 like the AIAI recognized认可 it
as most likely容易 to be a road sign标志
151
476263
4827
可能把卡车认作一个路标,
08:13
and therefore因此, safe安全 to drive驾驶 underneath.
152
481114
2273
因此,它判断
从下面开过去是安全的。
08:16
Here's这里的 an AIAI misstep过失
from a different不同 field领域.
153
484114
2580
接下来是人工智能在
另一个领域的错误示例。
08:18
Amazon亚马逊 recently最近 had to give up
on a résumé-sorting-排序 algorithm算法
154
486718
3460
亚马逊最近不得不放弃
一个他们已经开发了一段时间
08:22
that they were working加工 on
155
490202
1220
的简历分类的算法,
因为他们发现这个算法
竟然学会了歧视女性。
08:23
when they discovered发现 that the algorithm算法
had learned学到了 to discriminate辨析 against反对 women妇女.
156
491446
3908
原因是当他们把过去招聘人员的简历
08:27
What happened发生 is they had trained熟练 it
on examplesumés
157
495378
2716
08:30
of people who they had hired雇用 in the past过去.
158
498118
2242
用作人工智能的训练材料。
08:32
And from these examples例子, the AIAI learned学到了
to avoid避免 the résumés of people
159
500384
4023
从这些素材中,人工智能学会了
怎样过滤一些应聘者的简历,
那些上过女子大学的
08:36
who had gone走了 to women's女士的 colleges高校
160
504431
2026
08:38
or who had the word "women妇女"
somewhere某处 in their resume恢复,
161
506481
2806
或者是那些含有
“女性”字眼的简历,
08:41
as in, "women's女士的 soccer足球 team球队"
or "Society社会 of Women妇女 Engineers工程师."
162
509311
4576
比如说“女子足球队”
或者“女性工程师学会”。
08:45
The AIAI didn't know that it wasn't supposed应该
to copy复制 this particular特定 thing
163
513911
3974
人工智能并不知道自己
不应该复制他所见过的
08:49
that it had seen看到 the humans人类 do.
164
517909
1978
人类这种特定的行为。
08:51
And technically技术上, it did
what they asked it to do.
165
519911
3177
从技术层面上说,
它的确按要求做到了。
08:55
They just accidentally偶然 asked it
to do the wrong错误 thing.
166
523112
2797
只是开发者不小心
下错了指令。
08:58
And this happens发生 all the time with AIAI.
167
526653
2895
这样的情况在人工智能领域屡见不鲜。
09:02
AIAI can be really destructive有害
and not know it.
168
530120
3591
人工智能破坏力惊人且不自知。
09:05
So the AIs认可 that recommend推荐
new content内容 in FacebookFacebook的, in YouTubeYouTube的,
169
533735
5078
就如用于脸书和油管上
内容推荐的人工智能,
09:10
they're optimized优化 to increase增加
the number of clicks点击 and views意见.
170
538837
3539
它们被优化以增加
点击量和阅览量。
09:14
And unfortunately不幸, one way
that they have found发现 of doing this
171
542400
3436
但是不幸的是,它们实现
目标的其中一个手段,
09:17
is to recommend推荐 the content内容
of conspiracy阴谋 theories理论 or bigotry偏执.
172
545860
4503
就是推荐阴谋论或者偏执内容。
09:22
The AIs认可 themselves他们自己 don't have any concept概念
of what this content内容 actually其实 is,
173
550902
5302
人工智能本身对这些内容没有概念,
09:28
and they don't have any concept概念
of what the consequences后果 might威力 be
174
556228
3395
也根本不知道推荐这样的内容
09:31
of recommending建议 this content内容.
175
559647
2109
会产生怎样的后果。
09:34
So, when we're working加工 with AIAI,
176
562296
2011
所以当我们与人工智能
一起工作的时候,
09:36
it's up to us to avoid避免 problems问题.
177
564331
4182
我们有责任去规避问题。
09:40
And avoiding避免 things going wrong错误,
178
568537
2323
规避可能出错的因素,
09:42
that may可能 come down to
the age-old古老 problem问题 of communication通讯,
179
570884
4526
这也就带出一个
老生常谈的沟通问题,
09:47
where we as humans人类 have to learn学习
how to communicate通信 with AIAI.
180
575434
3745
作为人类,我们要学习
怎样和人工智能沟通。
09:51
We have to learn学习 what AIAI
is capable of doing and what it's not,
181
579203
4039
我们必须明白人工智能
能做什么,不能做什么,
09:55
and to understand理解 that,
with its tiny little worm brain,
182
583266
3086
要明白,凭它们的那点小脑袋,
09:58
AIAI doesn't really understand理解
what we're trying to ask it to do.
183
586376
4013
人工智能并不能完全明白
我们想让它们做什么。
10:03
So in other words, we have
to be prepared准备 to work with AIAI
184
591148
3321
换言之,我们必须对与
人工智能共事做好准备,
10:06
that's not the super-competent超能力,
all-knowing顺风耳 AIAI of science科学 fiction小说.
185
594493
5258
这可不是科幻片里那些
全能全知的人工智能。
10:11
We have to prepared准备 to work with an AIAI
186
599775
2862
我们必须准备好跟
10:14
that's the one that we actually其实 have
in the present当下 day.
187
602661
2938
眼下存在的人工智能共事。
10:17
And present-day今天 AIAI is plenty丰富 weird奇怪的 enough足够.
188
605623
4205
现在的人工智能还真的挺奇怪的。
10:21
Thank you.
189
609852
1190
谢谢。
10:23
(Applause掌声)
190
611066
5225
(掌声)
Translated by Archi XIAO
Reviewed by Jingdan Niu

▲Back to top

ABOUT THE SPEAKER
Janelle Shane - AI researcher
While moonlighting as a research scientist, Janelle Shane found fame documenting the often hilarious antics of AI algorithms.

Why you should listen

Janelle Shane's humor blog, AIweirdness.com, looks at, as she tells it, "the strange side of artificial intelligence." Her upcoming book, You Look Like a Thing and I Love You: How AI Works and Why It's Making the World a Weirder Place, uses cartoons and humorous pop-culture experiments to look inside the minds of the algorithms that run our world, making artificial intelligence and machine learning both accessible and entertaining.

According to Shane, she has only made a neural network-written recipe once -- and discovered that horseradish brownies are about as terrible as you might imagine.

More profile about the speaker
Janelle Shane | Speaker | TED.com

Data provided by TED.

This site was created in May 2015 and the last update was on January 12, 2020. It will no longer be updated.

We are currently creating a new site called "eng.lish.video" and would be grateful if you could access it.

If you have any questions or suggestions, please feel free to write comments in your language on the contact form.

Privacy Policy

Developer's Blog

Buy Me A Coffee