ABOUT THE SPEAKER
Janelle Shane - AI researcher
While moonlighting as a research scientist, Janelle Shane found fame documenting the often hilarious antics of AI algorithms.

Why you should listen

Janelle Shane's humor blog, AIweirdness.com, looks at, as she tells it, "the strange side of artificial intelligence." Her upcoming book, You Look Like a Thing and I Love You: How AI Works and Why It's Making the World a Weirder Place, uses cartoons and humorous pop-culture experiments to look inside the minds of the algorithms that run our world, making artificial intelligence and machine learning both accessible and entertaining.

According to Shane, she has only made a neural network-written recipe once -- and discovered that horseradish brownies are about as terrible as you might imagine.

More profile about the speaker
Janelle Shane | Speaker | TED.com
TED2019

Janelle Shane: The danger of AI is weirder than you think

詹妮爾‧沙恩: 人工智慧的危險性比你想的還要怪異

Filmed:
376,501 views

人工智慧研究者詹妮爾‧沙恩說,人工智慧的危險性並不在於它會反抗我們,而是它會完全照我們所指示的去做。沙恩分享了人工智慧演算法在解決人類問題(如創造新的冰淇淋口味,或在道路上辨識汽車)時,所發生既詭異、有時還讓人擔憂的事。沙恩也說明了為什麼人工智慧遠比不上真實的大腦。
- AI researcher
While moonlighting as a research scientist, Janelle Shane found fame documenting the often hilarious antics of AI algorithms. Full bio

Double-click the English transcript below to play the video.

00:13
So, artificial人造 intelligence情報
0
1765
3000
人工智慧
00:16
is known已知 for disrupting妨害
all kinds of industries行業.
1
4789
3529
顛覆各產業為人所知。
00:20
What about ice cream奶油?
2
8961
2043
那冰淇淋呢?
00:23
What kind of mind-blowing令人興奮
new flavors口味 could we generate生成
3
11879
3639
有了先進的人工智慧,
我們能變出什麼驚人的新口味?
00:27
with the power功率 of an advanced高級
artificial人造 intelligence情報?
4
15542
2976
00:31
So I teamed聯手 up with a group of coders編碼器
from Kealing基林 Middle中間 School學校
5
19011
4161
我和基林中學的
一組程式設計師合作,
00:35
to find out the answer回答 to this question.
6
23196
2241
想找出這個問題的答案。
00:37
They collected over 1,600
existing現有 ice cream奶油 flavors口味,
7
25461
5081
他們收集了既有的
一千六百種冰淇淋口味,
00:42
and together一起, we fed美聯儲 them to an algorithm算法
to see what it would generate生成.
8
30566
5522
將這些資料輸入到演算法中,
看看會產出什麼。
00:48
And here are some of the flavors口味
that the AIAI came來了 up with.
9
36112
3753
以下是人工智慧想出來的一些口味。
00:52
[Pumpkin南瓜 Trash垃圾 Break打破]
10
40444
1471
〔南瓜垃圾〕
00:53
(Laughter笑聲)
11
41939
1402
(笑聲)
00:55
[Peanut花生 Butter黃油 Slime粘液]
12
43365
2469
〔花生醬黏液〕
00:58
[Strawberry草莓 Cream奶油 Disease疾病]
13
46822
1343
〔草莓奶油疾病〕
01:00
(Laughter笑聲)
14
48189
2126
(笑聲)
01:02
These flavors口味 are not delicious美味的,
as we might威力 have hoped希望 they would be.
15
50339
4597
這些口味並不如我們預期的可口。
01:06
So the question is: What happened發生?
16
54960
1864
所以問題是:到底怎麼了?
哪裡出問題了?
01:08
What went wrong錯誤?
17
56848
1394
01:10
Is the AIAI trying to kill us?
18
58266
1959
人工智慧想要害死我們嗎?
01:13
Or is it trying to do what we asked,
and there was a problem問題?
19
61027
4310
或它只是照我們的指示去做,
卻出了問題?
01:18
In movies電影, when something
goes wrong錯誤 with AIAI,
20
66567
2464
在電影中,人工智慧如果出問題,
01:21
it's usually平時 because the AIAI has decided決定
21
69055
2712
通常都是因為人工智慧決定
01:23
that it doesn't want to obey遵守
the humans人類 anymore,
22
71791
2272
不要繼續服從人類了,
01:26
and it's got its own擁有 goals目標,
thank you very much.
23
74087
2623
它有自己的目標,非常謝謝。
01:29
In real真實 life, though雖然,
the AIAI that we actually其實 have
24
77266
3216
不過,在我們現實生活中的人工智慧
01:32
is not nearly幾乎 smart聰明 enough足夠 for that.
25
80506
1863
並沒有聰明到能做出那樣的事。
01:34
It has the approximate近似 computing計算 power功率
26
82781
2982
它大概只有蚯蚓程度的計算能力,
01:37
of an earthworm蚯蚓,
27
85787
1276
或頂多到一隻蜜蜂的程度,
01:39
or maybe at most a single honeybee蜜蜂,
28
87087
3403
01:42
and actually其實, probably大概 maybe less.
29
90514
2215
其實,可能還更低。
01:44
Like, we're constantly經常 learning學習
new things about brains大腦
30
92753
2594
對於大腦我們不斷有新的發現,
01:47
that make it clear明確 how much our AIs認可
don't measure測量 up to real真實 brains大腦.
31
95371
4360
讓我們更清楚知道,
人工智慧遠遠比不上真實大腦。
01:51
So today's今天的 AIAI can do a task任務
like identify鑑定 a pedestrian行人 in a picture圖片,
32
99755
5663
所以,現今的人工智慧可以做到
在圖片中辨識出行人之類的事,
01:57
but it doesn't have a concept概念
of what the pedestrian行人 is
33
105442
2983
但它不知道什麼是行人,
02:00
beyond that it's a collection採集
of lines and textures紋理 and things.
34
108449
4824
只知道行人是許多
線條、結構、東西的組合。
02:05
It doesn't know what a human人的 actually其實 is.
35
113792
2521
它不知道人類是什麼。
02:08
So will today's今天的 AIAI
do what we ask it to do?
36
116822
3282
所以,現今的人工智慧
會照我們要求的做嗎?
02:12
It will if it can,
37
120128
1594
如果能的話,它會,
02:13
but it might威力 not do what we actually其實 want.
38
121746
2726
但它可能不會照我們
真正想要它做的去做。
02:16
So let's say that you
were trying to get an AIAI
39
124496
2415
比如,你想要人工智慧
02:18
to take this collection採集 of robot機器人 parts部分
40
126935
2619
把這一堆機器人的零件
02:21
and assemble集合 them into some kind of robot機器人
to get from Point A to Point B.
41
129578
4197
組裝成某種機器人,
從 A 點走到 B 點。
02:25
Now, if you were going to try
and solve解決 this problem問題
42
133799
2481
如果你是用傳統的電腦程式方法來寫,
02:28
by writing寫作 a traditional-style傳統風格
computer電腦 program程序,
43
136304
2351
02:30
you would give the program程序
step-by-step一步步 instructions說明
44
138679
3417
你就得要給程式一步一步的指令,
02:34
on how to take these parts部分,
45
142120
1329
告訴它要拿哪些零件,
如何組裝成有腳的機器人,
02:35
how to assemble集合 them
into a robot機器人 with legs
46
143473
2407
02:37
and then how to use those legs
to walk步行 to Point B.
47
145904
2942
接著告訴它如何用腳來走到 B 點。
02:41
But when you're using運用 AIAI
to solve解決 the problem問題,
48
149441
2340
但,若用人工智慧來解決
這個問題,做法就不同了。
02:43
it goes differently不同.
49
151805
1174
02:45
You don't tell it
how to solve解決 the problem問題,
50
153003
2382
你不用告訴它如何解決問題,
只要給它一個目標,
02:47
you just give it the goal目標,
51
155409
1479
02:48
and it has to figure數字 out for itself本身
via通過 trial審訊 and error錯誤
52
156912
3262
它自己要用嘗試錯誤法
來想辦法達成目標。
02:52
how to reach達到 that goal目標.
53
160198
1484
02:54
And it turns out that the way AIAI tends趨向
to solve解決 this particular特定 problem問題
54
162254
4102
結果發現,人工智慧
解決這個問題的方法
02:58
is by doing this:
55
166380
1484
傾向於用這種方式:
02:59
it assembles組裝 itself本身 into a tower
and then falls下降 over
56
167888
3367
它會把它自己組裝成
一座塔,然後倒向 B,
03:03
and lands土地 at Point B.
57
171279
1827
就會到達 B 點了。
03:05
And technically技術上, this solves解決了 the problem問題.
58
173130
2829
技術上來說,問題的確解決了。
它的確抵達了 B 點。
03:07
Technically技術上, it got to Point B.
59
175983
1639
03:09
The danger危險 of AIAI is not that
it's going to rebel反叛 against反對 us,
60
177646
4265
人工智慧的危險性
並不在於它會反抗我們,
03:13
it's that it's going to do
exactly究竟 what we ask it to do.
61
181935
4274
而是它會「完全」照我們的要求去做。
03:18
So then the trick
of working加工 with AIAI becomes:
62
186876
2498
所以使用人工智慧的秘訣就變成是:
03:21
How do we set up the problem問題
so that it actually其實 does what we want?
63
189398
3828
我們要如何把問題設定好,
讓它真能照我們所想的去做?
03:26
So this little robot機器人 here
is being存在 controlled受控 by an AIAI.
64
194726
3306
這個小機器人是由人工智慧控制。
03:30
The AIAI came來了 up with a design設計
for the robot機器人 legs
65
198056
2814
人工智慧構思出機器人的腳,
03:32
and then figured想通 out how to use them
to get past過去 all these obstacles障礙.
66
200894
4078
接著它再想出要如何
用腳來越過這些障礙。
03:36
But when David大衛 Ha set up this experiment實驗,
67
204996
2741
但,當大衛‧哈在設計這個實驗時,
03:39
he had to set it up
with very, very strict嚴格 limits範圍
68
207761
2856
他得要訂下非常非常嚴格的限制,
03:42
on how big the AIAI
was allowed允許 to make the legs,
69
210641
3292
限制人工智慧能把腳做到多大,
03:45
because otherwise除此以外 ...
70
213957
1550
因為,若不限制……
03:55
(Laughter笑聲)
71
223058
3931
(笑聲)
04:00
And technically技術上, it got
to the end結束 of that obstacle障礙 course課程.
72
228563
3745
技術上,它也的確到了
障礙道的另一端。
04:04
So you see how hard it is to get AIAI
to do something as simple簡單 as just walk步行.
73
232332
4942
所以大家可以了解,讓人工智慧
做出走路這麼簡單的事有多難了。
04:09
So seeing眼看 the AIAI do this,
you may可能 say, OK, no fair公平,
74
237298
3820
看到人工智慧這麼做,
你可能會說,好,這不公平,
04:13
you can't just be
a tall tower and fall秋季 over,
75
241142
2580
你不能變成高塔然後倒下來就到位,
04:15
you have to actually其實, like,
use legs to walk步行.
76
243746
3435
你必須要真的用腳來走路。
04:19
And it turns out,
that doesn't always work, either.
77
247205
2759
結果發現,那也行不通。
04:21
This AI'sAI 的 job工作 was to move移動 fast快速.
78
249988
2759
這個人工智慧的工作
是要達成快速移動。
04:25
They didn't tell it that it had
to run facing面對 forward前鋒
79
253115
3593
他們沒有告訴人工智慧說
跑步時一定要面對前方,
04:28
or that it couldn't不能 use its arms武器.
80
256732
2258
也沒說它不可以用手臂。
04:31
So this is what you get
when you train培養 AIAI to move移動 fast快速,
81
259487
4618
所以如果你訓練人工智慧要做到
快速移動,就會得到這種結果,
04:36
you get things like somersaulting翻筋斗
and silly愚蠢 walks散步.
82
264129
3534
你會得到筋斗翻和很蠢的走路姿勢。
04:39
It's really common共同.
83
267687
1400
這很常見。
04:41
So is twitching抽搐 along沿 the floor地板 in a heap.
84
269667
3179
「成堆地沿著地板抽動」亦然。
04:44
(Laughter笑聲)
85
272870
1150
(笑聲)
我認為更詭異的
04:47
So in my opinion意見, you know what
should have been a whole整個 lot weirder怪異
86
275241
3254
是《魔鬼終結者》的機器人。
04:50
is the "Terminator終結者" robots機器人.
87
278519
1396
04:52
Hacking黑客 "The Matrix矩陣" is another另一個 thing
that AIAI will do if you give it a chance機會.
88
280256
3755
如果你給人工智慧機會,
它也會駭入《駭客任務》的母體。
04:56
So if you train培養 an AIAI in a simulation模擬,
89
284035
2517
如果在模擬狀況中訓練人工智慧,
04:58
it will learn學習 how to do things like
hack into the simulation's模擬的 math數學 errors錯誤
90
286576
4113
它會學習如何做出的事包括
駭入模擬的數學錯誤中
05:02
and harvest收成 them for energy能源.
91
290713
2207
並獲取它們作為能量。
05:04
Or it will figure數字 out how to move移動 faster更快
by glitching毛刺 repeatedly反复 into the floor地板.
92
292944
5475
或者,它會重覆在地板
鑽上鑽下使自己移動得更快。
05:10
When you're working加工 with AIAI,
93
298443
1585
和人工智慧合作比較像是
和某種大自然的詭異力量合作,
05:12
it's less like working加工 with another另一個 human人的
94
300052
2389
05:14
and a lot more like working加工
with some kind of weird奇怪的 force of nature性質.
95
302465
3629
而不太像是和人類合作。
05:18
And it's really easy簡單 to accidentally偶然
give AIAI the wrong錯誤 problem問題 to solve解決,
96
306562
4623
一不小心就會叫人工智慧
去解決不正確的問題,
05:23
and often經常 we don't realize實現 that
until直到 something has actually其實 gone走了 wrong錯誤.
97
311209
4538
且通常出錯後我們才會發現。
05:28
So here's這裡的 an experiment實驗 I did,
98
316242
2080
我做了一個實驗,
05:30
where I wanted the AIAI
to copy複製 paint塗料 colors顏色,
99
318346
3182
我希望人工智慧能複製顏料顏色,
05:33
to invent發明 new paint塗料 colors顏色,
100
321552
1746
發明新的顏料顏色,
05:35
given特定 the list名單 like the ones那些
here on the left.
101
323322
2987
給它左側的這個清單。
05:38
And here's這裡的 what the AIAI
actually其實 came來了 up with.
102
326798
3004
這些是人工智慧創造出來的顏色。
05:41
[Sindis辛蒂斯 Poop船尾, Turdly圖爾德利, Suffer遭受, Gray灰色 Pubic公共]
103
329826
3143
〔辛迪司便便、混蛋、
苦難、灰色陰部〕
05:44
(Laughter笑聲)
104
332993
4230
(笑聲)
05:51
So technically技術上,
105
339177
1886
技術上來說,
05:53
it did what I asked it to.
106
341087
1864
它照我的意思做了。
05:54
I thought I was asking it for,
like, nice不錯 paint塗料 color顏色 names,
107
342975
3308
我以為我要求人工智慧
給我好聽的色彩名稱,
05:58
but what I was actually其實 asking it to do
108
346307
2307
但我實際上是在要求它
06:00
was just imitate模擬 the kinds
of letter combinations組合
109
348638
3086
模仿它在原始顏色中
所見到的那些字母組合。
06:03
that it had seen看到 in the original原版的.
110
351748
1905
06:05
And I didn't tell it anything
about what words mean,
111
353677
3098
我沒有告訴它字的意思,
06:08
or that there are maybe some words
112
356799
2560
也沒告訴它可能有一些字
06:11
that it should avoid避免 using運用
in these paint塗料 colors顏色.
113
359383
2889
不太適合用在顏料顏色上。
06:15
So its entire整個 world世界
is the data數據 that I gave it.
114
363141
3494
它所有的訊息就僅是
我給它的資料而已。
06:18
Like with the ice cream奶油 flavors口味,
it doesn't know about anything else其他.
115
366659
4028
和冰淇淋口味的例子一樣,
其他的它什麼都不知道。
06:24
So it is through通過 the data數據
116
372491
1638
通常會因為資料內容的關係,
06:26
that we often經常 accidentally偶然 tell AIAI
to do the wrong錯誤 thing.
117
374153
4044
無意間讓人工智慧去執行錯誤的運作。
06:30
This is a fish called a tench滕奇.
118
378694
3032
這是一種叫丁鱖的魚。
06:33
And there was a group of researchers研究人員
119
381750
1815
有一群研究人員
06:35
who trained熟練 an AIAI to identify鑑定
this tench滕奇 in pictures圖片.
120
383589
3874
訓練人工智慧在照片中辨識出丁鱖。
06:39
But then when they asked it
121
387487
1296
但當他們問人工智慧,它是用
圖上的哪個部分來辨識出丁鱖,
06:40
what part部分 of the picture圖片 it was actually其實
using運用 to identify鑑定 the fish,
122
388807
3426
06:44
here's這裡的 what it highlighted突出.
123
392257
1358
結果它標記出這些部分。
06:47
Yes, those are human人的 fingers手指.
124
395203
2189
是的,這些是人類的手指。
06:49
Why would it be looking for human人的 fingers手指
125
397416
2059
如果它的目標是要辨識出魚類,
為什麼要去找人類的手指?
06:51
if it's trying to identify鑑定 a fish?
126
399499
1921
06:54
Well, it turns out that the tench滕奇
is a trophy fish,
127
402126
3164
結果發現,丁鱖是釣客的戰利品,
06:57
and so in a lot of pictures圖片
that the AIAI had seen看到 of this fish
128
405314
3811
所以,人工智慧在訓練期間
所看到的大量丁鱖照片,
07:01
during training訓練,
129
409149
1151
看起來像這樣。(笑聲)
07:02
the fish looked看著 like this.
130
410324
1490
07:03
(Laughter笑聲)
131
411838
1635
07:05
And it didn't know that the fingers手指
aren't part部分 of the fish.
132
413497
3330
人工智慧不知道手指並非魚的一部分。
07:10
So you see why it is so hard
to design設計 an AIAI
133
418808
4120
這就是為什麼難以設計出
能看懂眼前事物為何的人工智慧。
07:14
that actually其實 can understand理解
what it's looking at.
134
422952
3319
07:18
And this is why designing設計
the image圖片 recognition承認
135
426295
2862
這也就是為什麼在自動駕駛汽車上
設計影像辨識系統如此困難。
07:21
in self-driving自駕車 cars汽車 is so hard,
136
429181
2067
07:23
and why so many許多 self-driving自駕車 car汽車 failures故障
137
431272
2205
很多自動駕駛汽車會失敗
07:25
are because the AIAI got confused困惑.
138
433501
2885
是因為困惑的人工智慧。
07:28
I want to talk about an example from 2016.
139
436410
4008
我想要談談 2016 年的一個例子。
07:32
There was a fatal致命 accident事故 when somebody
was using運用 Tesla's特斯拉 autopilot自動駕駛儀 AIAI,
140
440442
4455
某人在使用特斯拉的自動駕駛
人工智慧時發生了致命的意外,
07:36
but instead代替 of using運用 it on the highway高速公路
like it was designed設計 for,
141
444921
3414
它原本是設計行駛在高速公路上的,
但他們卻讓它行駛在城市街道上。
07:40
they used it on city streets街道.
142
448359
2205
07:43
And what happened發生 was,
143
451239
1175
事情的經過是:有台卡車
經過這台車的前面,
07:44
a truck卡車 drove開車 out in front面前 of the car汽車
and the car汽車 failed失敗 to brake制動.
144
452438
3396
這台車沒有煞車。
07:48
Now, the AIAI definitely無疑 was trained熟練
to recognize認識 trucks卡車 in pictures圖片.
145
456507
4762
人工智慧一定有被訓練過
如何辨識出照片中的卡車。
07:53
But what it looks容貌 like happened發生 is
146
461293
2145
但發生的狀況似乎是
07:55
the AIAI was trained熟練 to recognize認識
trucks卡車 on highway高速公路 driving主動,
147
463462
2931
人工智慧被訓練辨識出
在高速公路上行駛的卡車,
07:58
where you would expect期望
to see trucks卡車 from behind背後.
148
466417
2899
在高速公路上你會看到的
應該是卡車的車尾。
08:01
Trucks卡車 on the side is not supposed應該
to happen發生 on a highway高速公路,
149
469340
3420
高速公路上不應該會看到卡車的側面,
08:04
and so when the AIAI saw this truck卡車,
150
472784
3455
所以,當人工智慧看到這台卡車時,
08:08
it looks容貌 like the AIAI recognized認可 it
as most likely容易 to be a road sign標誌
151
476263
4827
人工智慧似乎把它當作是路上的號誌,
08:13
and therefore因此, safe安全 to drive駕駛 underneath.
152
481114
2273
因此判斷可以安全地從下方行駛過去。
08:16
Here's這裡的 an AIAI misstep過失
from a different不同 field領域.
153
484114
2580
再來是另一個領域中的人工智慧過失。
08:18
Amazon亞馬遜 recently最近 had to give up
on a résumé-sorting-排序 algorithm算法
154
486718
3460
亞馬遜最近必須要放棄他們
努力研發的履歷排序演算法,
08:22
that they were working加工 on
155
490202
1220
08:23
when they discovered發現 that the algorithm算法
had learned學到了 to discriminate辨析 against反對 women婦女.
156
491446
3908
因為他們發現演算法學會歧視女性。
他們用過去僱用員工的記錄資料
08:27
What happened發生 is they had trained熟練 it
on examplesumés
157
495378
2716
當作訓練人工智慧的範例。
08:30
of people who they had hired僱用 in the past過去.
158
498118
2242
從範例中,人工智慧學到不要選擇
08:32
And from these examples例子, the AIAI learned學到了
to avoid避免 the résumés of people
159
500384
4023
上過女子大學的人,
08:36
who had gone走了 to women's女士的 colleges高校
160
504431
2026
08:38
or who had the word "women婦女"
somewhere某處 in their resume恢復,
161
506481
2806
也不要選擇在履歷中某處
寫到「女」字的人,
08:41
as in, "women's女士的 soccer足球 team球隊"
or "Society社會 of Women婦女 Engineers工程師."
162
509311
4576
比如「女子足球隊」
或「女工程師協會」。
08:45
The AIAI didn't know that it wasn't supposed應該
to copy複製 this particular特定 thing
163
513911
3974
人工智慧看到人類這麼做,
它並不知道它不該複製這種模式。
08:49
that it had seen看到 the humans人類 do.
164
517909
1978
08:51
And technically技術上, it did
what they asked it to do.
165
519911
3177
技術上來說,它也照著
他們給它的指示做了。
08:55
They just accidentally偶然 asked it
to do the wrong錯誤 thing.
166
523112
2797
他們只是不小心
叫人工智慧做了錯的事。
08:58
And this happens發生 all the time with AIAI.
167
526653
2895
人工智慧常常會發生這種狀況。
09:02
AIAI can be really destructive有害
and not know it.
168
530120
3591
人工智慧可能造成破壞卻不自覺。
09:05
So the AIs認可 that recommend推薦
new content內容 in FacebookFacebook的, in YouTubeYouTube的,
169
533735
5078
所以,在臉書、Youtube 上
負責做推薦的人工智慧,
09:10
they're optimized優化 to increase增加
the number of clicks點擊 and views意見.
170
538837
3539
它們進行了優化以增加點閱率次數。
09:14
And unfortunately不幸, one way
that they have found發現 of doing this
171
542400
3436
不幸的是,它們發現,
達到目標的方法之一
09:17
is to recommend推薦 the content內容
of conspiracy陰謀 theories理論 or bigotry偏執.
172
545860
4503
就是推薦關於陰謀論或偏執的內容。
09:22
The AIs認可 themselves他們自己 don't have any concept概念
of what this content內容 actually其實 is,
173
550902
5302
人工智慧本身
對於推薦的內容一無所知,
09:28
and they don't have any concept概念
of what the consequences後果 might威力 be
174
556228
3395
也對推薦這些內容會造成的後果
09:31
of recommending建議 this content內容.
175
559647
2109
一無所悉。
09:34
So, when we're working加工 with AIAI,
176
562296
2011
當我們使用人工智慧時,
09:36
it's up to us to avoid避免 problems問題.
177
564331
4182
必須要由我們來避免問題。
09:40
And avoiding避免 things going wrong錯誤,
178
568537
2323
我們若要避免出錯,
09:42
that may可能 come down to
the age-old古老 problem問題 of communication通訊,
179
570884
4526
可能就得歸結到溝通的老問題上,
09:47
where we as humans人類 have to learn學習
how to communicate通信 with AIAI.
180
575434
3745
我們人類得要學習
如何和人工智慧溝通。
09:51
We have to learn學習 what AIAI
is capable of doing and what it's not,
181
579203
4039
我們得要了解人工智慧
能夠做什麼、不能做什麼,
且要知道,人工智慧
只有小蟲等級的大腦,
09:55
and to understand理解 that,
with its tiny little worm brain,
182
583266
3086
09:58
AIAI doesn't really understand理解
what we're trying to ask it to do.
183
586376
4013
它不知道我們真正想要它做什麼。
10:03
So in other words, we have
to be prepared準備 to work with AIAI
184
591148
3321
換言之,我們得有心理準備,
我們所使用的人工智慧
10:06
that's not the super-competent超能力,
all-knowing順風耳 AIAI of science科學 fiction小說.
185
594493
5258
並非科幻小說裡那種
超能、無所不知的人工智慧。
10:11
We have to prepared準備 to work with an AIAI
186
599775
2862
我們必須準備好與現今還是
小蟲大腦等級的人工智慧共事。
10:14
that's the one that we actually其實 have
in the present當下 day.
187
602661
2938
10:17
And present-day今天 AIAI is plenty豐富 weird奇怪的 enough足夠.
188
605623
4205
而現今的人工智慧是非常怪異的。
10:21
Thank you.
189
609852
1190
謝謝。
10:23
(Applause掌聲)
190
611066
5225
(掌聲)
Translated by Lilian Chiu
Reviewed by SF Huang

▲Back to top

ABOUT THE SPEAKER
Janelle Shane - AI researcher
While moonlighting as a research scientist, Janelle Shane found fame documenting the often hilarious antics of AI algorithms.

Why you should listen

Janelle Shane's humor blog, AIweirdness.com, looks at, as she tells it, "the strange side of artificial intelligence." Her upcoming book, You Look Like a Thing and I Love You: How AI Works and Why It's Making the World a Weirder Place, uses cartoons and humorous pop-culture experiments to look inside the minds of the algorithms that run our world, making artificial intelligence and machine learning both accessible and entertaining.

According to Shane, she has only made a neural network-written recipe once -- and discovered that horseradish brownies are about as terrible as you might imagine.

More profile about the speaker
Janelle Shane | Speaker | TED.com

Data provided by TED.

This site was created in May 2015 and the last update was on January 12, 2020. It will no longer be updated.

We are currently creating a new site called "eng.lish.video" and would be grateful if you could access it.

If you have any questions or suggestions, please feel free to write comments in your language on the contact form.

Privacy Policy

Developer's Blog

Buy Me A Coffee