ABOUT THE SPEAKER
Susan Etlinger - Data analyst
Susan Etlinger promotes the smart, well-considered and ethical use of data.

Why you should listen

Susan Etlinger is an industry analyst with Altimeter Group, where she focuses on data and analytics. She conducts independent research and has authored two intriguing reports: “The Social Media ROI Cookbook” and “A Framework for Social Analytics.” She also advises global clients on how to work measurement into their organizational structure and how to extract insights from the social web which can lead to tangible actions. In addition, she works with technology innovators to help them refine their roadmaps and strategies. 

Etlinger is on the board of The Big Boulder Initiative, an industry organization dedicated to promoting the successful and ethical use of social data. She is regularly interviewed and asked to speak on data strategy and best practices, and has been quoted in media outlets like The Wall Street Journal, The New York Times, and the BBC.

More profile about the speaker
Susan Etlinger | Speaker | TED.com
TED@IBM

Susan Etlinger: What do we do with all this big data?

蘇珊‧艾特林格: 我們應該拿這些大數據怎麼辦?

Filmed:
1,344,301 views

你會因為某些數據,而覺得更自在、更成功嗎?那麼你的詮釋很可能有誤。在這個動人的演講,蘇珊‧艾特林格解釋為什麼擁有了更多資料,我們更要加強批判性思考能力。因為要超越單純的計算,達到真正的了解,是非常不容易的事。
- Data analyst
Susan Etlinger promotes the smart, well-considered and ethical use of data. Full bio

Double-click the English transcript below to play the video.

00:13
Technology技術 has brought us so much:
0
1354
3135
科技帶給我們很多美好的事物:
00:16
the moon月亮 landing降落, the Internet互聯網,
1
4489
2019
登陸月球、網路、
00:18
the ability能力 to sequence序列 the human人的 genome基因組.
2
6508
2625
人類基因組定序。
00:21
But it also taps水龍頭 into a lot of our deepest最深 fears恐懼,
3
9133
3724
但也挖掘出我們內心深處的許多恐懼。
00:24
and about 30 years年份 ago,
4
12857
1856
大約 30 年前,
00:26
the culture文化 critic評論家 Neil尼爾 Postman郵差 wrote a book
5
14713
2553
文化評論家尼爾.波茲曼寫了一本書,
00:29
called "Amusing有趣 Ourselves我們自己 to Death死亡,"
6
17266
2115
叫做《娛樂至死》,
書中把這個現象說得很妙。
00:31
which哪一個 lays樂事 this out really brilliantly出色.
7
19381
2759
00:34
And here's這裡的 what he said,
8
22140
1650
他是這樣說的:
比較歐威爾和赫胥黎的兩種反烏托邦,
00:35
comparing比較 the dystopian反烏托邦 visions願景
9
23790
2263
00:38
of George喬治 Orwell奧威爾 and Aldous奧爾德斯 Huxley赫胥黎.
10
26053
3573
他說,歐威爾擔心我們會成為
00:41
He said, Orwell奧威爾 feared害怕 we would become成為
11
29626
3126
00:44
a captive俘虜 culture文化.
12
32752
2248
圈養的文化。
00:47
Huxley赫胥黎 feared害怕 we would become成為 a trivial不重要的 culture文化.
13
35000
3752
赫胥黎則擔心我們會成為庸俗的文化。
00:50
Orwell奧威爾 feared害怕 the truth真相 would be
14
38752
2145
歐威爾擔心真相會被隱瞞,
00:52
concealed from us,
15
40897
1923
00:54
and Huxley赫胥黎 feared害怕 we would be drowned淹死的
16
42820
2190
赫胥黎則擔心我們會被瑣碎的汪洋吞沒。
00:57
in a sea of irrelevance無關.
17
45010
2693
簡單點說,
00:59
In a nutshell簡而言之, it's a choice選擇 between之間
18
47703
2170
我們可以選擇「老大哥監視你」
01:01
Big Brother哥哥 watching觀看 you
19
49873
2600
或是「你監視老大哥」
01:04
and you watching觀看 Big Brother哥哥.
20
52473
2496
(觀眾笑聲)
01:06
(Laughter笑聲)
21
54969
1931
01:08
But it doesn't have to be this way.
22
56900
1734
其實不必這樣,
01:10
We are not passive被動 consumers消費者
of data數據 and technology技術.
23
58634
3336
我們不是被動地消費資料和科技,
01:13
We shape形狀 the role角色 it plays播放 in our lives生活
24
61970
2403
我們可以決定科技在生活中扮演的角色,
01:16
and the way we make meaning含義 from it,
25
64373
2130
和它對我們的意義。
01:18
but to do that,
26
66503
1603
但是要這麼做,
01:20
we have to pay工資 as much attention注意 to how we think
27
68106
3513
我們必須重視思考的方式,
不只重視編碼的方式。
01:23
as how we code.
28
71619
2030
01:25
We have to ask questions問題, and hard questions問題,
29
73649
3098
我們必須問問題,難解的問題,
超越單純的算術,
01:28
to move移動 past過去 counting數數 things
30
76747
1869
01:30
to understanding理解 them.
31
78616
2602
試圖去了解。
01:33
We're constantly經常 bombarded炮轟 with stories故事
32
81218
2446
我們不斷聽到世界上有多少資料,
01:35
about how much data數據 there is in the world世界,
33
83664
2476
01:38
but when it comes to big data數據
34
86140
1580
但是談到大數據,
01:39
and the challenges挑戰 of interpreting解讀 it,
35
87720
2596
以及詮釋這些數據資料的挑戰,
01:42
size尺寸 isn't everything.
36
90316
2088
光看數量是不夠的,
01:44
There's also the speed速度 at which哪一個 it moves移動,
37
92404
2903
還必須關注資料成長的速度,
01:47
and the many許多 varieties品種 of data數據 types類型,
38
95307
1696
以及眾多不同的資料類型。
01:49
and here are just a few少數 examples例子:
39
97003
2498
我略舉幾個例子:
01:51
images圖片,
40
99501
2198
圖像、
01:53
text文本,
41
101699
4007
文字、
[請稍候,直到你有用處的時候,謝謝。]
01:57
video視頻,
42
105706
2095
影片、
01:59
audio音頻.
43
107801
1830
聲音。
02:01
And what unites聯信 this disparate不同 types類型 of data數據
44
109631
3042
這些不同資料類型的共通處在於
02:04
is that they're created創建 by people
45
112673
2221
它們都是人建立的,
02:06
and they require要求 context上下文.
46
114894
2775
也都不能斷章取義來詮釋。
02:09
Now, there's a group of data數據 scientists科學家們
47
117669
2445
舉例,有一個資料科學家小組,
02:12
out of the University大學 of Illinois-Chicago伊利諾伊州芝加哥,
48
120114
2305
成員來自伊利諾大學芝加哥分校,
02:14
and they're called the Health健康 Media媒體 Collaboratory合作實驗室,
49
122419
2554
這小組叫做「衛生媒體合作實驗室」。
02:16
and they've他們已經 been working加工 with
the Centers中心 for Disease疾病 Control控制
50
124973
2587
他們和美國疾病管制中心合作,
02:19
to better understand理解
51
127560
1505
想要更了解
02:21
how people talk about quitting戒菸 smoking抽煙,
52
129065
2848
人們怎樣談論戒菸、
02:23
how they talk about electronic電子 cigarettes香煙,
53
131913
2680
怎樣談論電子香煙,
02:26
and what they can do collectively
54
134593
1985
以及怎樣一起幫助吸菸者戒菸。
02:28
to help them quit放棄.
55
136578
1984
02:30
The interesting有趣 thing is, if you want to understand理解
56
138562
2013
有趣的是,
若要了解人們如何談論抽菸 smoking,
02:32
how people talk about smoking抽煙,
57
140575
2216
02:34
first you have to understand理解
58
142791
1901
就要先了解人們說 smoking 是什麼意思。
02:36
what they mean when they say "smoking抽煙."
59
144692
2565
02:39
And on Twitter推特, there are four main主要 categories類別:
60
147257
3926
在推特上大致分成四類:
02:43
number one, smoking抽煙 cigarettes香煙;
61
151183
2997
第一類,抽菸;
02:46
number two, smoking抽煙 marijuana大麻;
62
154180
2807
第二類,抽大麻;
02:48
number three, smoking抽煙 ribs肋骨;
63
156987
2643
第三類,煙熏肋排;
02:51
and number four, smoking抽煙 hot women婦女.
64
159630
3553
第四類,嗆辣正妹;
02:55
(Laughter笑聲)
65
163183
2993
(觀眾笑聲)
02:58
So then you have to think about, well,
66
166176
2426
接著要思考,
03:00
how do people talk about electronic電子 cigarettes香煙?
67
168602
2140
人們怎麼談論電子香菸?
03:02
And there are so many許多 different不同 ways方法
68
170742
2025
講法五花八門,
03:04
that people do this, and you can see from the slide滑動
69
172767
2599
就像這張投影片所列的,
03:07
it's a complex複雜 kind of a query詢問.
70
175366
2610
這種檢索非常複雜。
03:09
And what it reminds提醒 us is that
71
177976
3224
這提醒我們,
03:13
language語言 is created創建 by people,
72
181200
2411
語言是人創造的,
03:15
and people are messy and we're complex複雜
73
183611
2340
而人是複雜、亂無章法的,
03:17
and we use metaphors隱喻 and slang俚語 and jargon行話
74
185951
2767
我們會用隱喻、俚語、行話,
03:20
and we do this 24/7 in many許多, many許多 languages語言,
75
188718
3279
無時無刻的製造,各式各樣的語言,
03:23
and then as soon不久 as we figure數字 it out, we change更改 it up.
76
191997
3224
好不容易破解語言,就立刻又改變了。
03:27
So did these ads廣告 that the CDCCDC put on,
77
195221
5118
那麼,疾管中心拍的這些戒菸文宣,
03:32
these television電視 ads廣告 that featured精選 a woman女人
78
200339
2430
電視廣告裡,一名女子喉嚨破了大洞,
03:34
with a hole in her throat and that were very graphic圖像
79
202769
2021
畫面驚悚嚇人,
03:36
and very disturbing煩擾的,
80
204790
1904
03:38
did they actually其實 have an impact碰撞
81
206694
1885
這些廣告真的有效嗎?
03:40
on whether是否 people quit放棄?
82
208579
2671
真的讓人戒菸了嗎?
03:43
And the Health健康 Media媒體 Collaboratory合作實驗室
respected尊敬 the limits範圍 of their data數據,
83
211250
3307
衛生媒體合作實驗室尊重其數據的限制,
03:46
but they were able能夠 to conclude得出結論
84
214557
2005
但仍能做出結論,
03:48
that those advertisements廣告
and you may可能 have seen看到 them —
85
216562
3312
認為這些廣告—也許你們看過,
03:51
that they had the effect影響 of jolting顛簸 people
86
219874
2591
成功地刺激人們開始反省,
03:54
into a thought process處理
87
222465
1822
可能影響未來的行為。
03:56
that may可能 have an impact碰撞 on future未來 behavior行為.
88
224287
3667
03:59
And what I admire欣賞 and
appreciate欣賞 about this project項目,
89
227954
3891
這個計畫讓我最欽佩、欣賞的地方是,
04:03
aside在旁邊 from the fact事實, including包含 the fact事實
90
231845
1489
除了它是在解決人的實際需要以外,
04:05
that it's based基於 on real真實 human人的 need,
91
233334
4057
04:09
is that it's a fantastic奇妙 example of courage勇氣
92
237391
2846
同時它提供了絕佳的典範,
展現了人類面對瑣碎汪洋的勇氣。
04:12
in the face面對 of a sea of irrelevance無關.
93
240237
4443
04:16
And so it's not just big data數據 that causes原因
94
244680
3305
所以,詮釋的挑戰不只因為資料龐大,
04:19
challenges挑戰 of interpretation解釋, because let's face面對 it,
95
247985
2601
因為,老實說,歷史上有很多的例子顯示,
04:22
we human人的 beings眾生 have a very rich豐富 history歷史
96
250586
2594
04:25
of taking服用 any amount of data數據, no matter how small,
97
253180
2693
無論資料再少,我們向來很能把它搞砸。
04:27
and screwing擰緊 it up.
98
255873
1617
04:29
So many許多 years年份 ago, you may可能 remember記得
99
257490
3737
大家可能記得,很多年前,
04:33
that former前任的 President主席 Ronald羅納德 Reagan裡根
100
261227
2273
前總統雷根曾被痛罵,
04:35
was very criticized批評 for making製造 a statement聲明
101
263500
1991
因為他說,事實是愚笨的東西。
04:37
that facts事實 are stupid things.
102
265491
3010
04:40
And it was a slip of the tongue, let's be fair公平.
103
268501
2794
憑良心說,他只是一時口誤,
他其實是想引用約翰.亞當斯在
04:43
He actually其實 meant意味著 to quote引用 John約翰 Adams'亞當斯 defense防禦
104
271295
2430
04:45
of British英國的 soldiers士兵 in the Boston波士頓 Massacre屠殺 trials試驗
105
273725
2751
為因波士頓慘案受審的英軍辯護時說的:
04:48
that facts事實 are stubborn倔強 things.
106
276476
3150
事實是固執難拗、不容改變的。
04:51
But I actually其實 think there's
107
279626
2624
但我其實認為,
04:54
a bit of accidental偶然 wisdom智慧 in what he said,
108
282250
3418
這口誤可能湊巧講出幾分智慧,
04:57
because facts事實 are stubborn倔強 things,
109
285668
2776
因為事實確實很固執,
05:00
but sometimes有時 they're stupid, too.
110
288444
2923
但是有時也真的很愚笨。
05:03
I want to tell you a personal個人 story故事
111
291367
1888
我要講一個自己的故事,
05:05
about why this matters事項 a lot to me.
112
293255
3548
解釋為什麼這對我這麼重要。
05:08
I need to take a breath呼吸.
113
296803
2437
我要先吸一口氣。
05:11
My son兒子 Isaac艾薩克, when he was two,
114
299240
2754
我兒子艾薩克兩歲的時候,
05:13
was diagnosed確診 with autism自閉症,
115
301994
2417
被診斷為自閉兒。
05:16
and he was this happy快樂, hilarious歡鬧的,
116
304411
2161
但他是個快樂、搞笑、
05:18
loving愛心, affectionate親熱 little guy,
117
306572
2035
有愛心、喜歡親密的孩子,
05:20
but the metrics指標 on his developmental發展的 evaluations評估,
118
308607
2902
但是他的發展評估測驗數據
05:23
which哪一個 looked看著 at things like
the number of words
119
311509
2070
檢視的是:
他當時會說幾個字?零個。
05:25
at that point, none沒有
120
313579
3657
05:29
communicative交際 gestures手勢 and minimal最小 eye contact聯繫,
121
317236
3940
只靠手勢溝通,
眼神接觸也極少,
讓他的發展程度
05:33
put his developmental發展的 level水平
122
321176
2003
05:35
at that of a nine-month-old九個月大的 baby寶寶.
123
323179
3961
被評為九個月大的嬰兒。
按照數據,診斷並沒有錯,
05:39
And the diagnosis診斷 was factually事實 correct正確,
124
327140
2960
05:42
but it didn't tell the whole整個 story故事.
125
330100
3209
卻跟實際狀況有落差。
05:45
And about a year and a half later後來,
126
333309
1401
大概過了一年半,兒子快滿四歲,
05:46
when he was almost幾乎 four,
127
334710
2102
05:48
I found發現 him in front面前 of the computer電腦 one day
128
336812
2363
有一天,我看到他坐在電腦前面,
05:51
running賽跑 a Google谷歌 image圖片 search搜索 on women婦女,
129
339175
5453
在用 Google 搜尋女性的照片,
05:56
spelled拼寫 "w-i-m-e-nwimen."
130
344628
3616
他把女性 (women) 拼成 "w-i-m-e-n"。
06:00
And I did what any obsessed痴迷 parent would do,
131
348244
2740
我的反應跟任何偏執妄想的父母一樣,
06:02
which哪一個 is immediately立即 started開始
hitting the "back" button按鍵
132
350984
1901
立刻開始按瀏覽器的「返回」按鈕,
06:04
to see what else其他 he'd他會 been searching搜索 for.
133
352885
3363
看看他還搜尋過什麼。
06:08
And they were, in order訂購: men男人,
134
356248
2171
結果發現他依序搜尋過:男性 (men)、
06:10
school學校, bus總線 and computer電腦.
135
358419
7267
學校 (school)、公車 (bus)、
和電腦(錯拼成 cpyutr)。
06:17
And I was stunned目瞪口呆,
136
365686
2070
我很吃驚,
06:19
because we didn't know that he could spell拼寫,
137
367756
2002
因為我們根本不知道他會拼字,
06:21
much less read, and so I asked him,
138
369758
1766
更別說閱讀。
所以我問他:
「艾薩克,你怎麼辦到的?」
06:23
"Isaac艾薩克, how did you do this?"
139
371524
2193
06:25
And he looked看著 at me very seriously認真地 and said,
140
373717
2678
他認真的看著我,說:
「在搜尋欄裡打字啊!」
06:28
"Typed類型化 in the box."
141
376395
3352
06:31
He was teaching教學 himself他自己 to communicate通信,
142
379747
3734
他在教自己溝通,
只是我們都找錯方向了。
06:35
but we were looking in the wrong錯誤 place地點,
143
383481
3004
會發生這種情況,
06:38
and this is what happens發生 when assessments評估
144
386485
2295
是因為評量和分析太重視單一面向,
06:40
and analytics分析 overvalue過份尊重 one metric
145
388780
2396
06:43
in this case案件, verbal口頭 communication通訊
146
391176
2609
就像他的自閉症評量,
單看口語表達,
06:45
and undervalue低估 others其他, such這樣
as creative創作的 problem-solving解決問題.
147
393785
5703
而忽視其他要素,
例如,創造性地解決問題。
溝通對艾薩克來說很困難,
06:51
Communication通訊 was hard for Isaac艾薩克,
148
399488
2307
06:53
and so he found發現 a workaround解決方法
149
401795
1912
所以他找到了替代方法,
06:55
to find out what he needed需要 to know.
150
403707
2857
來找解答。
06:58
And when you think about it, it makes品牌 a lot of sense,
151
406564
1890
想想很有道理,
07:00
because forming成型 a question
152
408454
2081
因為問問題是很複雜的過程,
07:02
is a really complex複雜 process處理,
153
410535
2565
07:05
but he could get himself他自己 a lot of the way there
154
413100
2522
但他只要在搜尋欄輸入一個字,
07:07
by putting a word in a search搜索 box.
155
415622
4092
就成功了一大半。
於是這個小小的時刻
07:11
And so this little moment時刻
156
419714
2936
07:14
had a really profound深刻 impact碰撞 on me
157
422650
2836
對我影響深遠,
07:17
and our family家庭
158
425486
1309
對我們全家都是。
07:18
because it helped幫助 us change更改 our frame of reference參考
159
426795
3141
因為,這改變了我們的判斷標準,
07:21
for what was going on with him,
160
429936
2208
用全新的眼光看待兒子的狀況,
07:24
and worry擔心 a little bit less and appreciate欣賞
161
432144
2976
比較不那麼擔憂,
轉而欣賞他解決問題的能力。
07:27
his resourcefulness足智多謀 more.
162
435120
2182
07:29
Facts事實 are stupid things.
163
437302
2861
事實,真的是愚笨的。
07:32
And they're vulnerable弱勢 to misuse濫用,
164
440163
2397
事實也很容易被誤用,
07:34
willful恣意 or otherwise除此以外.
165
442560
1653
不論是有心或無意。
07:36
I have a friend朋友, Emily艾米莉 Willingham威林厄姆, who's誰是 a scientist科學家,
166
444213
3026
我的朋友艾蜜莉.威靈漢是個科學家,
07:39
and she wrote a piece for Forbes福布斯 not long ago
167
447239
2801
她不久前為《富比士》寫了一篇文章,
07:42
entitled標題 "The 10 Weirdest最古怪的 Things
168
450040
1980
叫做〈 自閉症怪異印象十大排行榜〉,
07:44
Ever Linked關聯 to Autism自閉症."
169
452020
1810
07:45
It's quite相當 a list名單.
170
453830
3005
內容挺可怕的:
07:48
The Internet互聯網, blamed指責 for everything, right?
171
456835
3532
「網路」,萬惡淵藪,對吧?
07:52
And of course課程 mothers母親, because.
172
460367
3757
當然「媽媽」也上榜,
不言自明。
等等,還有,
07:56
And actually其實, wait, there's more,
173
464124
1587
07:57
there's a whole整個 bunch in
the "mother母親" category類別 here.
174
465711
3430
這裡有一大類,都跟「媽媽」有關係,
08:01
And you can see it's a pretty漂亮
rich豐富 and interesting有趣 list名單.
175
469141
4815
你可以看到,原因很多、很有意思。
08:05
I'm a big fan風扇 of
176
473956
2193
我最喜歡的是
08:08
being存在 pregnant near freeways高速公路, personally親自.
177
476149
3704
「在高速公路附近受孕」。
08:11
The final最後 one is interesting有趣,
178
479853
1539
最後一項很有趣,
08:13
because the term術語 "refrigerator冰箱 mother母親"
179
481392
3003
因為「冰箱母親」這個封號
08:16
was actually其實 the original原版的 hypothesis假設
180
484395
2605
是自閉症原因最早的假說,
08:19
for the cause原因 of autism自閉症,
181
487000
1431
08:20
and that meant意味著 somebody
who was cold and unloving沒有愛心.
182
488431
2735
用來描述冷漠沒有愛心的母親。
08:23
And at this point, you might威力 be thinking思維,
183
491166
1562
現在,你可能會想:
08:24
"Okay, Susan蘇珊, we get it,
184
492728
1657
「好了,蘇珊,我們懂了,
08:26
you can take data數據, you can
make it mean anything."
185
494385
1782
你可以對資料做任何詮釋。」
08:28
And this is true真正, it's absolutely絕對 true真正,
186
496167
4703
這也沒錯,
絕對正確。
08:32
but the challenge挑戰 is that
187
500870
5610
但是挑戰在於,
08:38
we have this opportunity機會
188
506480
2448
我們自己有這個機會,
08:40
to try to make meaning含義 out of it ourselves我們自己,
189
508928
2284
可以賦予資料意義,
08:43
because frankly坦率地說, data數據 doesn't
create創建 meaning含義. We do.
190
511212
5352
因為老實說,資料不會自己產生意義。
我們才可以。
08:48
So as businesspeople生意人, as consumers消費者,
191
516564
3256
所以,身為商人、消費者、
08:51
as patients耐心, as citizens公民,
192
519820
2539
病人、公民等等,
08:54
we have a responsibility責任, I think,
193
522359
2396
我想我們有責任
08:56
to spend more time
194
524755
2194
多花點時間
08:58
focusing調焦 on our critical危急 thinking思維 skills技能.
195
526949
2870
提升我們的批判性思考能力。
09:01
Why?
196
529819
1078
為什麼?
09:02
Because at this point in our history歷史, as we've我們已經 heard聽說
197
530897
3178
我們聽過很多次,
因為在歷史的這一刻,
09:06
many許多 times over,
198
534075
1706
09:07
we can process處理 exabytes艾字節 of data數據
199
535781
1981
已經能用光速
處理數十億 GB 的資料量,
09:09
at lightning閃電 speed速度,
200
537762
2153
可能更快速、更有效地
做出錯誤的決定,
09:11
and we have the potential潛在 to make bad decisions決定
201
539915
3515
09:15
far more quickly很快, efficiently有效率的,
202
543430
1834
09:17
and with far greater更大 impact碰撞 than we did in the past過去.
203
545264
5028
影響之大可能更甚以往。
09:22
Great, right?
204
550292
1388
這下好了,對吧?
09:23
And so what we need to do instead代替
205
551680
3030
所以,我們反而必須
09:26
is spend a little bit more time
206
554710
2330
多花時間
09:29
on things like the humanities人文
207
557040
2746
發展人文、
09:31
and sociology社會學, and the social社會 sciences科學,
208
559786
3464
社會學和社會科學,
09:35
rhetoric修辭, philosophy哲學, ethics倫理,
209
563250
2308
修辭、哲學、倫理,
09:37
because they give us context上下文 that is so important重要
210
565558
2856
因為這些知識
構成我們的背景涵養,
09:40
for big data數據, and because
211
568414
2576
對大數據非常重要,
也因為這能幫助我們更會思辨,
09:42
they help us become成為 better critical危急 thinkers思想家.
212
570990
2418
09:45
Because after all, if I can spot
213
573408
4207
因為畢竟,
如果我能看出命題裡的問題,
09:49
a problem問題 in an argument論據, it doesn't much matter
214
577615
2486
那麼無論是
用文字或數據表達都可以。
09:52
whether是否 it's expressed表達 in words or in numbers數字.
215
580101
2759
09:54
And this means手段
216
582860
2719
這表示,
09:57
teaching教學 ourselves我們自己 to find
those confirmation確認 biases偏見
217
585579
4421
要教育我們自己
去發覺各種確認的偏見
和謬誤的關聯,
10:02
and false correlations相關
218
590000
1822
10:03
and being存在 able能夠 to spot a naked emotional情緒化 appeal上訴
219
591822
2138
並且能對赤裸裸的情感訴求保持警覺。
10:05
from 30 yards,
220
593960
1662
10:07
because something that happens發生 after something
221
595622
2522
因為甲事之後發生了乙事,
10:10
doesn't mean it happened發生
because of it, necessarily一定,
222
598144
3082
並不代表
甲事必定是乙事的肇因。
10:13
and if you'll你會 let me geek極客 out on you for a second第二,
223
601226
2119
如果大家容我書呆一下,
10:15
the Romans羅馬書 called this
"post崗位 hoc特別 ergoERGO propterpropter hoc特別,"
224
603345
4297
羅馬人稱這現象為「後此謬誤」
"post hoc ergo propter hoc",
10:19
after which哪一個 therefore因此 because of which哪一個.
225
607642
3296
後此,故因此。
10:22
And it means手段 questioning疑問
disciplines學科 like demographics人口統計學.
226
610938
3757
這表示要質疑像人口統計這樣的方法。
10:26
Why? Because they're based基於 on assumptions假設
227
614695
2520
為什麼?
因為這些都假設
我們一定是某種人,
10:29
about who we all are based基於 on our gender性別
228
617215
2306
只憑我們的性別、年齡、居住地,
10:31
and our age年齡 and where we live生活
229
619521
1462
10:32
as opposed反對 to data數據 on what
we actually其實 think and do.
230
620983
3478
而忽視我們實際的思考和行為資料。
現在有了這些資料,
10:36
And since以來 we have this data數據,
231
624461
1663
我們必須做好隱私權控管,
10:38
we need to treat對待 it with appropriate適當 privacy隱私 controls控制
232
626124
3139
10:41
and consumer消費者 opt-in選擇參加,
233
629263
3576
以及讓消費者自願參與。
10:44
and beyond that, we need to be clear明確
234
632839
2993
再來,
我們必須很清楚我們的假設、
10:47
about our hypotheses假設,
235
635832
2103
使用的方法,
10:49
the methodologies方法 that we use,
236
637935
2596
10:52
and our confidence置信度 in the result結果.
237
640531
2804
以及我們對結果的信心。
10:55
As my high school學校 algebra代數 teacher老師 used to say,
238
643335
2474
就像我高中代數老師常說的:
10:57
show顯示 your math數學,
239
645809
1531
「算給我看。
10:59
because if I don't know what steps腳步 you took,
240
647340
3441
因為如果我不知道
你做了哪些步驟,
11:02
I don't know what steps腳步 you didn't take,
241
650781
1991
就不知道哪些步驟你沒有做。
11:04
and if I don't know what questions問題 you asked,
242
652772
2438
如果我不知道你問了哪些問題,
11:07
I don't know what questions問題 you didn't ask.
243
655210
3197
就不知道哪些問題你沒有問。」
11:10
And it means手段 asking ourselves我們自己, really,
244
658407
1523
這表示我們要問自己
11:11
the hardest最難 question of all:
245
659930
1479
最難的一個問題:
11:13
Did the data數據 really show顯示 us this,
246
661409
3500
「數據資料真的有這樣說嗎?
還是這種結果讓我們覺得
11:16
or does the result結果 make us feel
247
664909
2311
11:19
more successful成功 and more comfortable自在?
248
667220
3878
比較成功和自在?」
11:23
So the Health健康 Media媒體 Collaboratory合作實驗室,
249
671098
2584
衛生媒體合作實驗室在計畫結束時,
11:25
at the end結束 of their project項目, they were able能夠
250
673682
1699
發現 87% 的推文
11:27
to find that 87 percent百分 of tweets微博
251
675381
3408
11:30
about those very graphic圖像 and disturbing煩擾的
252
678789
2144
回應那些令人不安的戒菸廣告時,
11:32
anti-smoking反吸煙 ads廣告 expressed表達 fear恐懼,
253
680933
4038
表達了恐懼。
11:36
but did they conclude得出結論
254
684971
1856
但是,
他們有說那些廣告讓人成功戒菸嗎?
11:38
that they actually其實 made製作 people stop smoking抽煙?
255
686827
3161
沒有。這是科學,不是魔術。
11:41
No. It's science科學, not magic魔法.
256
689988
2542
11:44
So if we are to unlock開鎖
257
692530
3190
所以,
如果想要釋放數據的力量,
11:47
the power功率 of data數據,
258
695720
2862
11:50
we don't have to go blindly盲目地 into
259
698582
3448
我們不必盲目地踏進
11:54
Orwell's奧威爾 vision視力 of a totalitarian極權主義 future未來,
260
702030
3436
歐威爾預見的極權主義未來,
11:57
or Huxley's赫胥黎 vision視力 of a trivial不重要的 one,
261
705466
3117
或是赫胥黎的瑣碎世界,
12:00
or some horrible可怕 cocktail雞尾酒 of both.
262
708583
3020
或是兩者的可怕綜合體。
12:03
What we have to do
263
711603
2379
我們必須做的是,
12:05
is treat對待 critical危急 thinking思維 with respect尊重
264
713982
2718
重視批判性思考,
12:08
and be inspired啟發 by examples例子
265
716700
2029
並且向衛生媒體合作室
這樣的典範學習。
12:10
like the Health健康 Media媒體 Collaboratory合作實驗室,
266
718729
2610
就像超級英雄電影常講的:
12:13
and as they say in the superhero超級英雄 movies電影,
267
721339
2328
12:15
let's use our powers權力 for good.
268
723667
1822
「讓我們把我們的力量用在正途。」
12:17
Thank you.
269
725489
2351
謝謝。
(觀眾掌聲)
12:19
(Applause掌聲)
270
727840
2334
Translated by Yesbydefault 倪文娟
Reviewed by Adrienne Lin

▲Back to top

ABOUT THE SPEAKER
Susan Etlinger - Data analyst
Susan Etlinger promotes the smart, well-considered and ethical use of data.

Why you should listen

Susan Etlinger is an industry analyst with Altimeter Group, where she focuses on data and analytics. She conducts independent research and has authored two intriguing reports: “The Social Media ROI Cookbook” and “A Framework for Social Analytics.” She also advises global clients on how to work measurement into their organizational structure and how to extract insights from the social web which can lead to tangible actions. In addition, she works with technology innovators to help them refine their roadmaps and strategies. 

Etlinger is on the board of The Big Boulder Initiative, an industry organization dedicated to promoting the successful and ethical use of social data. She is regularly interviewed and asked to speak on data strategy and best practices, and has been quoted in media outlets like The Wall Street Journal, The New York Times, and the BBC.

More profile about the speaker
Susan Etlinger | Speaker | TED.com

Data provided by TED.

This site was created in May 2015 and the last update was on January 12, 2020. It will no longer be updated.

We are currently creating a new site called "eng.lish.video" and would be grateful if you could access it.

If you have any questions or suggestions, please feel free to write comments in your language on the contact form.

Privacy Policy

Developer's Blog

Buy Me A Coffee