ABOUT THE SPEAKER
Laurie Santos - Cognitive psychologist
Laurie Santos studies primate psychology and monkeynomics -- testing problems in human psychology on primates, who (not so surprisingly) have many of the same predictable irrationalities we do.

Why you should listen

Laurie Santos runs the Comparative Cognition Laboratory (CapLab) at Yale, where she and collaborators across departments (from psychology to primatology to neurobiology) explore the evolutionary origins of the human mind by studying lemurs, capuchin monkeys and other primates. The twist: Santos looks not only for positive humanlike traits, like tool-using and altruism, but irrational ones, like biased decisionmaking.

In elegant, carefully constructed experiments, Santos and CapLab have studied how primates understand and categorize objects in the physical world -- for instance, that monkeys understand an object is still whole even when part of it is obscured. Going deeper, their experiments also search for clues that primates possess a theory of mind -- an ability to think about what other people think.

Most recently, the lab has been looking at behaviors that were once the province mainly of novelists: jealousy, frustration, judgment of others' intentions, poor economic choices. In one experiment, Santos and her team taught monkeys to use a form of money, tradeable for food. When certain foods became cheaper, monkeys would, like humans, overbuy. As we humans search for clues to our own irrational behaviors, Santos' research suggests that the source of our genius for bad decisions might be our monkey brains.

More profile about the speaker
Laurie Santos | Speaker | TED.com
TEDGlobal 2010

Laurie Santos: A monkey economy as irrational as ours

劳瑞 珊图斯谈猴子社会的经济系统和我们的一样不合逻辑

Filmed:
1,506,660 views

劳瑞 珊图斯通过观察 我们的灵长类亲戚作决策,研究人类的不合逻辑的决策的根源。一系列在“猴子经济社会”中经典实验向我们展示了猴子和我们一样,常做出不明智的决策来。
- Cognitive psychologist
Laurie Santos studies primate psychology and monkeynomics -- testing problems in human psychology on primates, who (not so surprisingly) have many of the same predictable irrationalities we do. Full bio

Double-click the English transcript below to play the video.

00:17
I want to start开始 my talk today今天 with two observations意见
0
2000
2000
我想以两个关于人类物种的现象
00:19
about the human人的 species种类.
1
4000
2000
开始今天的话题
00:21
The first observation意见 is something that you might威力 think is quite相当 obvious明显,
2
6000
3000
第一个现象也许你会觉得显而易见
00:24
and that's that our species种类, Homo智人 sapiens智人,
3
9000
2000
这就是 我们的物种 智人
00:26
is actually其实 really, really smart聪明 --
4
11000
2000
事实上非常非常的聪明
00:28
like, ridiculously可笑 smart聪明 --
5
13000
2000
聪明的无法形容
00:30
like you're all doing things
6
15000
2000
正如你们现在做的事情
00:32
that no other species种类 on the planet行星 does right now.
7
17000
3000
地球上其它任何物种都无法做到
00:35
And this is, of course课程,
8
20000
2000
而且 当然
00:37
not the first time you've probably大概 recognized认可 this.
9
22000
2000
这也许不是第一次你意识到这一点
00:39
Of course课程, in addition加成 to being存在 smart聪明, we're also an extremely非常 vain徒然 species种类.
10
24000
3000
当然 除了聪明意外 我们也是十分自负的物种
00:42
So we like pointing指点 out the fact事实 that we're smart聪明.
11
27000
3000
因此我们喜欢指出我们聪明的这个事实
00:45
You know, so I could turn to pretty漂亮 much any sage智者
12
30000
2000
要知道,我可以列举出如莎士比亚或者史蒂芬·考伯特
00:47
from Shakespeare莎士比亚 to Stephen斯蒂芬 Colbert科尔伯特
13
32000
2000
这样的先哲
00:49
to point out things like the fact事实 that
14
34000
2000
来指出一个事实,那就是
00:51
we're noble高贵 in reason原因 and infinite无穷 in faculties各系
15
36000
2000
我们理性高贵、能力无穷,
00:53
and just kind of awesome-er真棒-ER than anything else其他 on the planet行星
16
38000
2000
而且当需要动脑筋的时候
00:55
when it comes to all things cerebral颅内.
17
40000
3000
是地球上最棒的。
00:58
But of course课程, there's a second第二 observation意见 about the human人的 species种类
18
43000
2000
但是,当然我更希望将注意力更多的放在
01:00
that I want to focus焦点 on a little bit more,
19
45000
2000
人类的第二个现象上
01:02
and that's the fact事实 that
20
47000
2000
而且事实上,
01:04
even though虽然 we're actually其实 really smart聪明, sometimes有时 uniquely独特地 smart聪明,
21
49000
3000
虽然我们真的非常聪明,有时候独一无二的聪明,
01:07
we can also be incredibly令人难以置信, incredibly令人难以置信 dumb
22
52000
3000
我们有时也在制定决策的时候,
01:10
when it comes to some aspects方面 of our decision决定 making制造.
23
55000
3000
变得难以置信的愚蠢。
01:13
Now I'm seeing眼看 lots of smirks假笑 out there.
24
58000
2000
我看到在座的很多开始傻笑,
01:15
Don't worry担心, I'm not going to call anyone任何人 in particular特定 out
25
60000
2000
不要担心,我不是来指出
01:17
on any aspects方面 of your own拥有 mistakes错误.
26
62000
2000
你们中的任何一位犯的错误。
01:19
But of course课程, just in the last two years年份
27
64000
2000
但是,当然仅仅在过去的两年里,
01:21
we see these unprecedented史无前例 examples例子 of human人的 ineptitude无能.
28
66000
3000
我们见证了许多前所未有的,足以证明人类的无能的例子。
01:24
And we've我们已经 watched看着 as the tools工具 we uniquely独特地 make
29
69000
3000
我们见到了我们使用特制的工具,
01:27
to pull the resources资源 out of our environment环境
30
72000
2000
将资源从环境中发掘出来,
01:29
kind of just blow打击 up in our face面对.
31
74000
2000
就像突然从我们的脸上爆发一样。
01:31
We've我们已经 watched看着 the financial金融 markets市场 that we uniquely独特地 create创建 --
32
76000
2000
我们也看到我们特意创造的,
01:33
these markets市场 that were supposed应该 to be foolproof简单的 --
33
78000
3000
本应该万无一失的金融市场,
01:36
we've我们已经 watched看着 them kind of collapse坍方 before our eyes眼睛.
34
81000
2000
在我们眼皮子底下轰然坍塌。
01:38
But both of these two embarrassing尴尬 examples例子, I think,
35
83000
2000
但是,我想这两个令人尴尬的例子
01:40
don't highlight突出 what I think is most embarrassing尴尬
36
85000
3000
并不是人类所犯错误里
01:43
about the mistakes错误 that humans人类 make,
37
88000
2000
最让人尴尬的。
01:45
which哪一个 is that we'd星期三 like to think that the mistakes错误 we make
38
90000
3000
我们可能更倾向于认为这些错误
01:48
are really just the result结果 of a couple一对 bad apples苹果
39
93000
2000
更像几个烂苹果,
01:50
or a couple一对 really sort分类 of FAIL失败 Blog-worthy博客值得 decisions决定.
40
95000
3000
或者几个错误的值得在博客上宣扬的决定。
01:53
But it turns out, what social社会 scientists科学家们 are actually其实 learning学习
41
98000
3000
但是事实上,社会科学家认为
01:56
is that most of us, when put in certain某些 contexts上下文,
42
101000
3000
当在一定的环境中,我们中的大多数人
01:59
will actually其实 make very specific具体 mistakes错误.
43
104000
3000
都会犯一些非常特定的错误。
02:02
The errors错误 we make are actually其实 predictable可预测.
44
107000
2000
我们犯的这些错误实际上是可以预判的,
02:04
We make them again and again.
45
109000
2000
我们总是在犯同样的错误。
02:06
And they're actually其实 immune免疫的 to lots of evidence证据.
46
111000
2000
而且对很多证据视而不见。
02:08
When we get negative feedback反馈,
47
113000
2000
当我们得到负面反馈的时候,
02:10
we still, the next下一个 time we're face面对 with a certain某些 context上下文,
48
115000
3000
却总是在再次面对同样的情况时,
02:13
tend趋向 to make the same相同 errors错误.
49
118000
2000
犯下同样的错误。
02:15
And so this has been a real真实 puzzle难题 to me
50
120000
2000
所以我觉得困惑:
02:17
as a sort分类 of scholar学者 of human人的 nature性质.
51
122000
2000
作为研究人类天性的学者,
02:19
What I'm most curious好奇 about is,
52
124000
2000
我最好奇的是,
02:21
how is a species种类 that's as smart聪明 as we are
53
126000
3000
我们作为一个如此聪明的种类,
02:24
capable of such这样 bad
54
129000
2000
为何总是犯如此糟糕,
02:26
and such这样 consistent一贯 errors错误 all the time?
55
131000
2000
如此类似的错误呢?
02:28
You know, we're the smartest最聪明的 thing out there, why can't we figure数字 this out?
56
133000
3000
你们知道,我们是最聪明的,为什么对这个问题得不到答案?
02:31
In some sense, where do our mistakes错误 really come from?
57
136000
3000
从某种意义上来说,我们的错误到底从何而来?
02:34
And having thought about this a little bit, I see a couple一对 different不同 possibilities可能性.
58
139000
3000
考虑一阵子之后,我感觉有一些不同的可能性。
02:37
One possibility可能性 is, in some sense, it's not really our fault故障.
59
142000
3000
第一种可能性就是在某种意义上,这的确不是我们的错。
02:40
Because we're a smart聪明 species种类,
60
145000
2000
因为我们是聪明的物种,
02:42
we can actually其实 create创建 all kinds of environments环境
61
147000
2000
我们事实上能创造出很多种
02:44
that are super, super complicated复杂,
62
149000
2000
非常非常复杂的环境,
02:46
sometimes有时 too complicated复杂 for us to even actually其实 understand理解,
63
151000
3000
复杂到有时候我们都不能理解,
02:49
even though虽然 we've我们已经 actually其实 created创建 them.
64
154000
2000
虽然是我们创造出来的。
02:51
We create创建 financial金融 markets市场 that are super complex复杂.
65
156000
2000
我们创造出了超级复杂的金融市场,
02:53
We create创建 mortgage抵押 terms条款 that we can't actually其实 deal合同 with.
66
158000
3000
和自己都不能应付的房屋贷款条款,
02:56
And of course课程, if we are put in environments环境 where we can't deal合同 with it,
67
161000
3000
而且当然,如果我们处于不能应付的环境中,
02:59
in some sense makes品牌 sense that we actually其实
68
164000
2000
在某种意义上,
03:01
might威力 mess食堂 certain某些 things up.
69
166000
2000
是我们自己把一些事情搞砸了。
03:03
If this was the case案件, we'd星期三 have a really easy简单 solution
70
168000
2000
如果这样的话,我们可以很轻松的解决
03:05
to the problem问题 of human人的 error错误.
71
170000
2000
这些人为错误的问题。
03:07
We'd星期三 actually其实 just say, okay, let's figure数字 out
72
172000
2000
我们可以说,好吧,
03:09
the kinds of technologies技术 we can't deal合同 with,
73
174000
2000
让我们挑出我们不能对付的技术,
03:11
the kinds of environments环境 that are bad --
74
176000
2000
还有那些糟糕的环境,
03:13
get rid摆脱 of those, design设计 things better,
75
178000
2000
抛弃它们,设计更好的东西,
03:15
and we should be the noble高贵 species种类
76
180000
2000
而且我们需要成为我们期待的
03:17
that we expect期望 ourselves我们自己 to be.
77
182000
2000
那种高尚的物种。
03:19
But there's another另一个 possibility可能性 that I find a little bit more worrying令人担忧,
78
184000
3000
但是我更担心的是另外一个可能,
03:22
which哪一个 is, maybe it's not our environments环境 that are messed搞砸 up.
79
187000
3000
那就是,也许不是糟糕的环境的问题,
03:25
Maybe it's actually其实 us that's designed设计 badly.
80
190000
3000
也许问题出在没有设计好的我们自己身上。
03:28
This is a hint暗示 that I've gotten得到
81
193000
2000
这是我从观察社会科学家对人类错误的理解
03:30
from watching观看 the ways方法 that social社会 scientists科学家们 have learned学到了 about human人的 errors错误.
82
195000
3000
而得到的启发。
03:33
And what we see is that people tend趋向 to keep making制造 errors错误
83
198000
3000
我觉察到人们会一次又一次地
03:36
exactly究竟 the same相同 way, over and over again.
84
201000
3000
以同样的方式犯错误。
03:39
It feels感觉 like we might威力 almost几乎 just be built内置
85
204000
2000
就好像是我们被造的时候,
03:41
to make errors错误 in certain某些 ways方法.
86
206000
2000
就设计好了会以某种方式犯错误。
03:43
This is a possibility可能性 that I worry担心 a little bit more about,
87
208000
3000
这就是我更担心的可能,
03:46
because, if it's us that's messed搞砸 up,
88
211000
2000
因为如果我们自己的原因,
03:48
it's not actually其实 clear明确 how we go about dealing交易 with it.
89
213000
2000
那就更不清楚应该怎么应对它了。
03:50
We might威力 just have to accept接受 the fact事实 that we're error错误 prone易于
90
215000
3000
我们也许只能接受这个事实,那就是我们也会犯错误,
03:53
and try to design设计 things around it.
91
218000
2000
在设计东西的过程中只能尽可能的避免这些错误。
03:55
So this is the question my students学生们 and I wanted to get at.
92
220000
3000
所以这就是我和我的学生都很关心的问题,
03:58
How can we tell the difference区别 between之间 possibility可能性 one and possibility可能性 two?
93
223000
3000
我们如何分辨这两种可能的不同呢?
04:01
What we need is a population人口
94
226000
2000
我们需要一个聪明的,
04:03
that's basically基本上 smart聪明, can make lots of decisions决定,
95
228000
2000
能做许多决定,
04:05
but doesn't have access访问 to any of the systems系统 we have,
96
230000
2000
但是和我们的系统——也就是我们可能弄糟的任何东西
04:07
any of the things that might威力 mess食堂 us up --
97
232000
2000
都互不相干,
04:09
no human人的 technology技术, human人的 culture文化,
98
234000
2000
没有人类的技术,人类的文化,
04:11
maybe even not human人的 language语言.
99
236000
2000
可能甚至没有人类的语言的群体。
04:13
And so this is why we turned转身 to these guys here.
100
238000
2000
这就是为什么我们研究他们。
04:15
These are one of the guys I work with. This is a brown棕色 capuchin僧帽 monkey.
101
240000
3000
这是我的工作对象之一。它是棕色卷尾猴。
04:18
These guys are New World世界 primates灵长类动物,
102
243000
2000
它们属于新世界灵长科,
04:20
which哪一个 means手段 they broke打破 off from the human人的 branch
103
245000
2000
也就是说它们在三千五百万年前
04:22
about 35 million百万 years年份 ago.
104
247000
2000
已经与人类得分支脱离了。
04:24
This means手段 that your great, great, great great, great, great --
105
249000
2000
这样的话,你的曾曾曾。。。祖母
04:26
with about five million百万 "greats巨星" in there --
106
251000
2000
大概往上推1千万代,
04:28
grandmother祖母 was probably大概 the same相同 great, great, great, great
107
253000
2000
可能和在这里的霍利
04:30
grandmother祖母 with five million百万 "greats巨星" in there
108
255000
2000
往上推1千万代的曾曾曾。。。祖母
04:32
as Holly冬青 up here.
109
257000
2000
是相同的。
04:34
You know, so you can take comfort安慰 in the fact事实 that this guy up here is a really really distant遥远,
110
259000
3000
为此我们可以放心的说在这里的家伙和我们是真的真的很远的
04:37
but albeit尽管 evolutionary发展的, relative相对的.
111
262000
2000
虽然有进化的远亲。
04:39
The good news新闻 about Holly冬青 though虽然 is that
112
264000
2000
关于霍利的好消息是:
04:41
she doesn't actually其实 have the same相同 kinds of technologies技术 we do.
113
266000
3000
她实际上没有我们一样的技术。
04:44
You know, she's a smart聪明, very cut creature生物, a primate灵长类动物 as well,
114
269000
3000
你们知道,她是聪明的,很可爱的小动物,也属于灵长类,
04:47
but she lacks缺乏 all the stuff东东 we think might威力 be messing搞乱 us up.
115
272000
2000
而且她没有那些我们自己都搞不懂的东西。
04:49
So she's the perfect完善 test测试 case案件.
116
274000
2000
所以她应该是比较合适的实验对象。
04:51
What if we put Holly冬青 into the same相同 context上下文 as humans人类?
117
276000
3000
如果我们把霍利放在跟人类同样的情境里呢?
04:54
Does she make the same相同 mistakes错误 as us?
118
279000
2000
她会不会犯跟我们同样的错误?
04:56
Does she not learn学习 from them? And so on.
119
281000
2000
她是不是不会从中吸取教训呢?等等。。。
04:58
And so this is the kind of thing we decided决定 to do.
120
283000
2000
这些都是我们想探讨的问题。
05:00
My students学生们 and I got very excited兴奋 about this a few少数 years年份 ago.
121
285000
2000
我和我的学生在好几年前就很期待这个实验。
05:02
We said, all right, let's, you know, throw so problems问题 at Holly冬青,
122
287000
2000
我们说,让我们丢给霍利一些人类才有的问题,
05:04
see if she messes混乱 these things up.
123
289000
2000
看看她有什么反应。
05:06
First problem问题 is just, well, where should we start开始?
124
291000
3000
第一个问题就是,嗯,从哪儿开始呢?
05:09
Because, you know, it's great for us, but bad for humans人类.
125
294000
2000
因为实验对我们来说很好,但对人类来说就很难了。
05:11
We make a lot of mistakes错误 in a lot of different不同 contexts上下文.
126
296000
2000
我们在不同的领域会犯不同的错误。
05:13
You know, where are we actually其实 going to start开始 with this?
127
298000
2000
所以,我们的实验到底要从哪儿开始呢?
05:15
And because we started开始 this work around the time of the financial金融 collapse坍方,
128
300000
3000
正好实验开始的时候是在金融危机的时候,
05:18
around the time when foreclosures丧失抵押品赎回权 were hitting the news新闻,
129
303000
2000
同时新闻也不停的报道抵押品回收的消息,
05:20
we said, hhmmHHMM, maybe we should
130
305000
2000
我们想,也许
05:22
actually其实 start开始 in the financial金融 domain.
131
307000
2000
就从金融领域开始好了。
05:24
Maybe we should look at monkey's猴子的 economic经济 decisions决定
132
309000
3000
让我们来观察猴子在经济方面的决策,
05:27
and try to see if they do the same相同 kinds of dumb things that we do.
133
312000
3000
看看他们是不是也犯跟我们一样的错误。
05:30
Of course课程, that's when we hit击中 a sort分类 second第二 problem问题 --
134
315000
2000
当然,第二个问题也就随之而来,
05:32
a little bit more methodological方法论 --
135
317000
2000
就是方法上的问题,
05:34
which哪一个 is that, maybe you guys don't know,
136
319000
2000
各位可能不知道,
05:36
but monkeys猴子 don't actually其实 use money. I know, you haven't没有 met会见 them.
137
321000
3000
猴子是不是用货币的。各位没跟猴子及出国。
05:39
But this is why, you know, they're not in the queue队列 behind背后 you
138
324000
2000
这就是为什么当你在杂货店或者提款机前面的时候,
05:41
at the grocery杂货 store商店 or the ATM自动取款机 -- you know, they don't do this stuff东东.
139
326000
3000
没看到猴子排在你后面——他们才不做这种事情。
05:44
So now we faced面对, you know, a little bit of a problem问题 here.
140
329000
3000
所以我们在这儿碰到一点麻烦,
05:47
How are we actually其实 going to ask monkeys猴子 about money
141
332000
2000
如果猴子不用钱,
05:49
if they don't actually其实 use it?
142
334000
2000
那要怎么让猴子开始用钱呢?
05:51
So we said, well, maybe we should just, actually其实 just suck吮吸 it up
143
336000
2000
我们就像,好吧,稍微忍耐一下,
05:53
and teach monkeys猴子 how to use money.
144
338000
2000
先从教猴子用钱开始。
05:55
So that's just what we did.
145
340000
2000
所以我们就照做了。
05:57
What you're looking at over here is actually其实 the first unit单元 that I know of
146
342000
3000
各位看到我手上拿的这个小东西
06:00
of non-human非人类的 currency货币.
147
345000
2000
就是我知道的第一个非人类社会的货币的基本单位。
06:02
We weren't very creative创作的 at the time we started开始 these studies学习,
148
347000
2000
我们在开始这项研究的时候没多少创意,
06:04
so we just called it a token代币.
149
349000
2000
所以暂时叫它代币。
06:06
But this is the unit单元 of currency货币 that we've我们已经 taught our monkeys猴子 at Yale耶鲁
150
351000
3000
我们在耶鲁大学教猴子们使用这些货币
06:09
to actually其实 use with humans人类,
151
354000
2000
和人类做交易,
06:11
to actually其实 buy购买 different不同 pieces of food餐饮.
152
356000
3000
用来买不同的水果。
06:14
It doesn't look like much -- in fact事实, it isn't like much.
153
359000
2000
它看起来不起眼,实际上也没什么价值。
06:16
Like most of our money, it's just a piece of metal金属.
154
361000
2000
和我们的货币系统一样,它使用金属做的。
06:18
As those of you who've谁一直 taken采取 currencies货币 home from your trip know,
155
363000
3000
就像各位旅行后带回家的各种外币一样,
06:21
once一旦 you get home, it's actually其实 pretty漂亮 useless无用.
156
366000
2000
一旦你到家了,这钱也就没法用了。
06:23
It was useless无用 to the monkeys猴子 at first
157
368000
2000
在猴子们了解能用这些代币做什么之前,
06:25
before they realized实现 what they could do with it.
158
370000
2000
对它们来说这些东西也一点用都没有。
06:27
When we first gave it to them in their enclosures机箱,
159
372000
2000
当我们第一次把这些代币放到猴笼里,
06:29
they actually其实 kind of picked采摘的 them up, looked看着 at them.
160
374000
2000
它们捡了起来,看着这些代币。
06:31
They were these kind of weird奇怪的 things.
161
376000
2000
对它们来说是很奇怪的事情。
06:33
But very quickly很快, the monkeys猴子 realized实现
162
378000
2000
不过很快这些猴子就认识到,
06:35
that they could actually其实 hand these tokens令牌 over
163
380000
2000
他们可以用这些代币
06:37
to different不同 humans人类 in the lab实验室 for some food餐饮.
164
382000
3000
跟实验室里不同的人换食物。
06:40
And so you see one of our monkeys猴子, Mayday劳动节, up here doing this.
165
385000
2000
可以看到其中一只猴子,五月天,就正在做这件事情。
06:42
This is A and B are kind of the points where she's sort分类 of a little bit
166
387000
3000
A图到B图是她 正对这些代币感到一点好奇,
06:45
curious好奇 about these things -- doesn't know.
167
390000
2000
因为她从来没见过这些东西。
06:47
There's this waiting等候 hand from a human人的 experimenter实验者,
168
392000
2000
图C是实验人员正在伸出手等着,
06:49
and Mayday劳动节 quickly很快 figures人物 out, apparently显然地 the human人的 wants this.
169
394000
3000
五月天很快就意识到,显然人类想要这个代币。
06:52
Hands it over, and then gets得到 some food餐饮.
170
397000
2000
她交出代币,然后就拿到一些食物。
06:54
It turns out not just Mayday劳动节, all of our monkeys猴子 get good
171
399000
2000
不只是五月天,
06:56
at trading贸易 tokens令牌 with human人的 salesman推销员.
172
401000
2000
实验室里所有的猴子都懂。
06:58
So here's这里的 just a quick video视频 of what this looks容貌 like.
173
403000
2000
这里有个小短片,我们大家来看看发生了什么。
07:00
Here's这里的 Mayday劳动节. She's going to be trading贸易 a token代币 for some food餐饮
174
405000
3000
这是五月天。她要用代币换食物,
07:03
and waiting等候 happily高高兴兴 and getting得到 her food餐饮.
175
408000
3000
她开心的等啊等,然后也顺利的拿到了食物。
07:06
Here's这里的 Felix费利克斯, I think. He's our alphaα male; he's a kind of big guy.
176
411000
2000
这是Felix,猴子群的老大,是个大家伙。
07:08
But he too waits等待 patiently耐心地, gets得到 his food餐饮 and goes on.
177
413000
3000
他也同样耐心的等到了食物的到来。
07:11
So the monkeys猴子 get really good at this.
178
416000
2000
所以猴子们对交易这件事挺在行。
07:13
They're surprisingly出奇 good at this with very little training训练.
179
418000
3000
只要很少一点训练他们就能表现得非常好。
07:16
We just allowed允许 them to pick this up on their own拥有.
180
421000
2000
我们只是放手让他们自己做选择。
07:18
The question is: is this anything like human人的 money?
181
423000
2000
问题是:这跟人类的货币有什么关系?
07:20
Is this a market市场 at all,
182
425000
2000
市场运作就是这样而已?
07:22
or did we just do a weird奇怪的 psychologist's心理学家 trick
183
427000
2000
或者我们只是用一些奇特的心理手段,
07:24
by getting得到 monkeys猴子 to do something,
184
429000
2000
引诱猴子们去做一些事情,
07:26
looking smart聪明, but not really being存在 smart聪明.
185
431000
2000
看似聪明实际上却并不聪明的事情。
07:28
And so we said, well, what would the monkeys猴子 spontaneously自发 do
186
433000
3000
所以我们想,如果这真是它们的货币,也真是像我们用钱那样用它,
07:31
if this was really their currency货币, if they were really using运用 it like money?
187
436000
3000
猴子们会做什么样的自然反应?
07:34
Well, you might威力 actually其实 imagine想像 them
188
439000
2000
各位可以想象一下,
07:36
to do all the kinds of smart聪明 things
189
441000
2000
当他们开始用货币彼此做交易的时候,
07:38
that humans人类 do when they start开始 exchanging交换 money with each other.
190
443000
3000
就是他们开始做类似人类做的聪明事情了。
07:41
You might威力 have them start开始 paying付款 attention注意 to price价钱,
191
446000
3000
他们会开始注意到价格,
07:44
paying付款 attention注意 to how much they buy购买 --
192
449000
2000
注意到该用多少价格去买,
07:46
sort分类 of keeping保持 track跟踪 of their monkey token代币, as it were.
193
451000
3000
而且记住这些猴子币的使用情况。
07:49
Do the monkeys猴子 do anything like this?
194
454000
2000
看看猴子们是否做了这些事情呢?
07:51
And so our monkey marketplace市井 was born天生.
195
456000
3000
于是我们的猴子市集诞生了。
07:54
The way this works作品 is that
196
459000
2000
它是这样运作的:
07:56
our monkeys猴子 normally一般 live生活 in a kind of big zoo动物园 social社会 enclosure附件.
197
461000
3000
我们让猴子生活在一种类似动物园的透明笼子里,
07:59
When they get a hankering渴望 for some treats对待,
198
464000
2000
当它们表现出想要做交易的时候,
08:01
we actually其实 allowed允许 them a way out
199
466000
2000
我们会让它们
08:03
into a little smaller enclosure附件 where they could enter输入 the market市场.
200
468000
2000
转移到一个可以进入“市场”的透明笼子里。
08:05
Upon entering进入 the market市场 --
201
470000
2000
一进入这个市场——
08:07
it was actually其实 a much more fun开玩笑 market市场 for the monkeys猴子 than most human人的 markets市场
202
472000
2000
这个市场可比人类的市场有趣多了,
08:09
because, as the monkeys猴子 entered进入 the door of the market市场,
203
474000
3000
因为,当猴子一进入这个市场,
08:12
a human人的 would give them a big wallet钱包 full充分 of tokens令牌
204
477000
2000
人们会给他们一个装满代币的钱包,
08:14
so they could actually其实 trade贸易 the tokens令牌
205
479000
2000
它们可以用代币
08:16
with one of these two guys here --
206
481000
2000
和画面中的其中一个人做交易,
08:18
two different不同 possible可能 human人的 salesmen推销员
207
483000
2000
2个不同的销售员,
08:20
that they could actually其实 buy购买 stuff东东 from.
208
485000
2000
猴子们可以从他们那儿买到不同的东西。
08:22
The salesmen推销员 were students学生们 from my lab实验室.
209
487000
2000
这两位是我实验室里的学生。
08:24
They dressed连衣裙的 differently不同; they were different不同 people.
210
489000
2000
他们穿着不同的衣服。
08:26
And over time, they did basically基本上 the same相同 thing
211
491000
3000
在一段时间内,销售员会一直做同样的事情,
08:29
so the monkeys猴子 could learn学习, you know,
212
494000
2000
所以猴子们就能意识到
08:31
who sold出售 what at what price价钱 -- you know, who was reliable可靠, who wasn't, and so on.
213
496000
3000
谁卖什么价格,谁比较可靠等等之类的事情。
08:34
And you can see that each of the experimenters实验者
214
499000
2000
各位能看到这2位销售员
08:36
is actually其实 holding保持 up a little, yellow黄色 food餐饮 dish.
215
501000
3000
都拿着一个小小的黄色食物盘,
08:39
and that's what the monkey can for a single token代币.
216
504000
2000
猴子可以用一个代币买盘子里的东西。
08:41
So everything costs成本 one token代币,
217
506000
2000
其实每样东西都值一个代币,
08:43
but as you can see, sometimes有时 tokens令牌 buy购买 more than others其他,
218
508000
2000
但有时候一个代币可以买到比较多的东西,
08:45
sometimes有时 more grapes葡萄 than others其他.
219
510000
2000
也就是买到比较多的葡萄。
08:47
So I'll show显示 you a quick video视频 of what this marketplace市井 actually其实 looks容貌 like.
220
512000
3000
让我给大家演示一下这个猴子市集的运作情况。
08:50
Here's这里的 a monkey-eye-view猴眼图. Monkeys猴子 are shorter, so it's a little short.
221
515000
3000
这是从猴子的视角拍的,所以比较低。
08:53
But here's这里的 Honey蜜糖.
222
518000
2000
她是小可爱。
08:55
She's waiting等候 for the market市场 to open打开 a little impatiently不耐烦.
223
520000
2000
她有点不耐烦的等着市场开张。
08:57
All of a sudden突然 the market市场 opens打开. Here's这里的 her choice选择: one grapes葡萄 or two grapes葡萄.
224
522000
3000
然后市场开张了,她有2个选择:买1个葡萄或者2个葡萄。
09:00
You can see Honey蜜糖, very good market市场 economist经济学家,
225
525000
2000
各位可以发现小可爱是个很棒的市场经济学家,
09:02
goes with the guy who gives more.
226
527000
3000
她跟卖较多葡萄的人做交易了。
09:05
She could teach our financial金融 advisers顾问 a few少数 things or two.
227
530000
2000
她可以给我们的财务学教授上课了。
09:07
So not just Honey蜜糖,
228
532000
2000
不只是小可爱,
09:09
most of the monkeys猴子 went with guys who had more.
229
534000
3000
大多数的猴子都会跟卖较多葡萄的人做交易。
09:12
Most of the monkeys猴子 went with guys who had better food餐饮.
230
537000
2000
大多数的猴子都会跟有较好食物的人交易。
09:14
When we introduced介绍 sales销售, we saw the monkeys猴子 paid支付 attention注意 to that.
231
539000
3000
开始与猴子做买卖猴,我们发现猴子会专注在这件事情上。
09:17
They really cared照顾 about their monkey token代币 dollar美元.
232
542000
3000
他们会在意猴子币的真正价值。
09:20
The more surprising奇怪 thing was that when we collaborated合作 with economists经济学家
233
545000
3000
最令人惊讶的是,当我们开始与经济学家合作,
09:23
to actually其实 look at the monkeys'猴子 data数据 using运用 economic经济 tools工具,
234
548000
3000
使用经济工具分析猴子的数据的时候,
09:26
they basically基本上 matched匹配, not just qualitatively定性,
235
551000
3000
不管是在定性研究上,
09:29
but quantitatively数量上 with what we saw
236
554000
2000
还是在定量研究上,
09:31
humans人类 doing in a real真实 market市场.
237
556000
2000
他们的使用方式与我们人类在市场上做的一样。
09:33
So much so that, if you saw the monkeys'猴子 numbers数字,
238
558000
2000
以至于在定量研究中,
09:35
you couldn't不能 tell whether是否 they came来了 from a monkey or a human人的 in the same相同 market市场.
239
560000
3000
你根本没法分辨这些数据结果是人类的还是猴子的。
09:38
And what we'd星期三 really thought we'd星期三 doneDONE
240
563000
2000
我们已经成功做到
09:40
is like we'd星期三 actually其实 introduced介绍 something
241
565000
2000
引介给猴子一些东西,
09:42
that, at least最小 for the monkeys猴子 and us,
242
567000
2000
至少猴子与我们
09:44
works作品 like a real真实 financial金融 currency货币.
243
569000
2000
将代币运作得跟金融货币差不多。
09:46
Question is: do the monkeys猴子 start开始 messing搞乱 up in the same相同 ways方法 we do?
244
571000
3000
另一个问题是:猴子会不会跟我们一样把这个制度搞乱?
09:49
Well, we already已经 saw anecdotally据传 a couple一对 of signs迹象 that they might威力.
245
574000
3000
其实我们也观察到一些现象。
09:52
One thing we never saw in the monkey marketplace市井
246
577000
2000
第一,在猴子市场中我们没发现到
09:54
was any evidence证据 of saving保存 --
247
579000
2000
任何储蓄的证据,
09:56
you know, just like our own拥有 species种类.
248
581000
2000
没发现像我们人一样的储蓄行为。
09:58
The monkeys猴子 entered进入 the market市场, spent花费 their entire整个 budget预算
249
583000
2000
猴子来到市场,会把所有钱花光,
10:00
and then went back to everyone大家 else其他.
250
585000
2000
然后再跳回猴群里。
10:02
The other thing we also spontaneously自发 saw,
251
587000
2000
我们同时也发现另一件事,
10:04
embarrassingly尴尬 enough足够,
252
589000
2000
非常尴尬,
10:06
is spontaneous自发 evidence证据 of larceny盗窃罪.
253
591000
2000
就是自发性的盗窃行为。
10:08
The monkeys猴子 would rip-off撕掉 the tokens令牌 at every一切 available可得到 opportunity机会 --
254
593000
3000
猴子不放过任何机会来偷代币,
10:11
from each other, often经常 from us --
255
596000
2000
偷同伴的、偷我们的。
10:13
you know, things we didn't necessarily一定 think we were introducing引入,
256
598000
2000
这些都是我们不认为介绍给了猴子们的行为,
10:15
but things we spontaneously自发 saw.
257
600000
2000
但是我们还是同时看到了这种行为。
10:17
So we said, this looks容貌 bad.
258
602000
2000
这看起来很糟糕。
10:19
Can we actually其实 see if the monkeys猴子
259
604000
2000
我们是否能够看到
10:21
are doing exactly究竟 the same相同 dumb things as humans人类 do?
260
606000
3000
猴子们做出跟人类一样愚蠢的事情?
10:24
One possibility可能性 is just kind of let
261
609000
2000
有个方法是先创立猴子金融市场,
10:26
the monkey financial金融 system系统 play out,
262
611000
2000
然后再让这个市场停摆,
10:28
you know, see if they start开始 calling调用 us for bailouts救助 in a few少数 years年份.
263
613000
2000
不过,这样做实验可能得等上好几年。
10:30
We were a little impatient不耐烦 so we wanted
264
615000
2000
我们有点等不及,
10:32
to sort分类 of speed速度 things up a bit.
265
617000
2000
所以让实验进行得快一点。
10:34
So we said, let's actually其实 give the monkeys猴子
266
619000
2000
我们就像,那就让这些小猴子们
10:36
the same相同 kinds of problems问题
267
621000
2000
面对一些问题,
10:38
that humans人类 tend趋向 to get wrong错误
268
623000
2000
这些问题是人类经常会犯错的
10:40
in certain某些 kinds of economic经济 challenges挑战,
269
625000
2000
一些经济议题,或者
10:42
or certain某些 kinds of economic经济 experiments实验.
270
627000
2000
一些经济方面的实验。
10:44
And so, since以来 the best最好 way to see how people go wrong错误
271
629000
3000
想要了解人类是怎么犯错的,
10:47
is to actually其实 do it yourself你自己,
272
632000
2000
最直接的方式就是自己做一次。
10:49
I'm going to give you guys a quick experiment实验
273
634000
2000
所以我给大家一个小实验,
10:51
to sort分类 of watch your own拥有 financial金融 intuitions直觉 in action行动.
274
636000
2000
请各位用你的财务直觉来回答。
10:53
So imagine想像 that right now
275
638000
2000
请各位现在想象一下,
10:55
I handed each and every一切 one of you
276
640000
2000
我给现场每个人各1千美金,
10:57
a thousand U.S. dollars美元 -- so 10 crisp hundred dollar美元 bills票据.
277
642000
3000
10张百元钞票成一捆的1千美金。
11:00
Take these, put it in your wallet钱包
278
645000
2000
把它放进你的皮夹里,
11:02
and spend a second第二 thinking思维 about what you're going to do with it.
279
647000
2000
花点时间想想你要拿这笔钱做什么。
11:04
Because it's yours你的 now; you can buy购买 whatever随你 you want.
280
649000
2000
这是你的钱,你可以用它买任何想要的东西。
11:06
Donate it, take it, and so on.
281
651000
2000
捐出去,花掉,怎么都行。
11:08
Sounds声音 great, but you get one more choice选择 to earn a little bit more money.
282
653000
3000
听起来不错吧?不过再给你另一个机会,让你能拿1千美金以上的钱。
11:11
And here's这里的 your choice选择: you can either be risky有风险,
283
656000
3000
第一种选择:冒险拿多一些,
11:14
in which哪一个 case案件 I'm going to flip翻动 one of these monkey tokens令牌.
284
659000
2000
我用丢猴子代币来决定这个选择的结果。
11:16
If it comes up heads, you're going to get a thousand dollars美元 more.
285
661000
2000
如果代币是正面,你可以多得1千美金。
11:18
If it comes up tails尾巴, you get nothing.
286
663000
2000
如果是背面,那你一分钱都不能多得。
11:20
So it's a chance机会 to get more, but it's pretty漂亮 risky有风险.
287
665000
3000
有机会拿到比较多,但是要冒点风险。
11:23
Your other option选项 is a bit safe安全. Your just going to get some money for sure.
288
668000
3000
而另一个比较安全的选择:让你再拿一笔确切的金额。
11:26
I'm just going to give you 500 bucks雄鹿.
289
671000
2000
不过只能拿500美金。
11:28
You can stick it in your wallet钱包 and use it immediately立即.
290
673000
3000
你可以把这笔钱放进皮夹或者马上花掉。
11:31
So see what your intuition直觉 is here.
291
676000
2000
你的直觉决定好了吗?
11:33
Most people actually其实 go with the play-it-safe播放它安全 option选项.
292
678000
3000
大部分的人会选择不冒险的选项。
11:36
Most people say, why should I be risky有风险 when I can get 1,500 dollars美元 for sure?
293
681000
3000
这些人想说,我确定能拿1500美金,干嘛还要去冒险?
11:39
This seems似乎 like a good bet赌注. I'm going to go with that.
294
684000
2000
这似乎是一个不错的选择,我选这个。
11:41
You might威力 say, eh, that's not really irrational不合理的.
295
686000
2000
各位也许觉得这样选没错啊,
11:43
People are a little risk-averse规避风险. So what?
296
688000
2000
人是风险趋避者,有问题吗?
11:45
Well, the "so what?" comes when start开始 thinking思维
297
690000
2000
人是不是风险趋避者的问题,
11:47
about the same相同 problem问题
298
692000
2000
请思考过另一个类似问题后,
11:49
set up just a little bit differently不同.
299
694000
2000
再作判断。
11:51
So now imagine想像 that I give each and every一切 one of you
300
696000
2000
现在再想象一下,我现在给各位2千美金,
11:53
2,000 dollars美元 -- 20 crisp hundred dollar美元 bills票据.
301
698000
3000
20张百元钞票成一捆。
11:56
Now you can buy购买 double to stuff东东 you were going to get before.
302
701000
2000
你刚刚想买的物品可以多买一倍。
11:58
Think about how you'd feel sticking症结 it in your wallet钱包.
303
703000
2000
想想这笔钱在皮夹里的感觉。
12:00
And now imagine想像 that I have you make another另一个 choice选择
304
705000
2000
现在,选择的一刻又来了,
12:02
But this time, it's a little bit worse更差.
305
707000
2000
但这次,条件比较糟糕。
12:04
Now, you're going to be deciding决定 how you're going to lose失去 money,
306
709000
3000
因为你将决定“失去金钱”的方式,
12:07
but you're going to get the same相同 choice选择.
307
712000
2000
一样要从中做个选择。
12:09
You can either take a risky有风险 loss失利 --
308
714000
2000
第一个选择是有风险的损失——
12:11
so I'll flip翻动 a coin硬币. If it comes up heads, you're going to actually其实 lose失去 a lot.
309
716000
3000
一样用丢硬币,如果是正面,你会损失1千美金。
12:14
If it comes up tails尾巴, you lose失去 nothing, you're fine, get to keep the whole整个 thing --
310
719000
3000
如果是反面,你1毛都不用丢,2千美金好好放着。
12:17
or you could play it safe安全, which哪一个 means手段 you have to reach达到 back into your wallet钱包
311
722000
3000
或者可以不冒险,也就是说你乖乖把皮夹拿出来,
12:20
and give me five of those $100 bills票据, for certain某些.
312
725000
3000
然后给我5张100元钞票。
12:23
And I'm seeing眼看 a lot of furrowed紧锁 brows眉毛 out there.
313
728000
3000
我看到很多人眉头紧缩哦。
12:26
So maybe you're having the same相同 intuitions直觉
314
731000
2000
测试各位的这个问题,
12:28
as the subjects主题 that were actually其实 tested测试 in this,
315
733000
2000
也许各位有着同样直觉的答案,
12:30
which哪一个 is when presented呈现 with these options选项,
316
735000
2000
当这些选项摊开给大家选择时,
12:32
people don't choose选择 to play it safe安全.
317
737000
2000
人们不会选安全的方案,
12:34
They actually其实 tend趋向 to go a little risky有风险.
318
739000
2000
而会选择冒险。
12:36
The reason原因 this is irrational不合理的 is that we've我们已经 given特定 people in both situations情况
319
741000
3000
明明是有着同样选择的2种情境下,
12:39
the same相同 choice选择.
320
744000
2000
后者竟然变得不太理智。
12:41
It's a 50/50 shot射击 of a thousand or 2,000,
321
746000
3000
拿到1000或2000元的机会各50%,
12:44
or just 1,500 dollars美元 with certainty肯定.
322
749000
2000
或者100%拿到1500元。
12:46
But people's人们 intuitions直觉 about how much risk风险 to take
323
751000
3000
而人们对于风险多寡的直觉,
12:49
varies变化 depending根据 on where they started开始 with.
324
754000
2000
居然是来自一开始手上有多少筹码来决定。
12:51
So what's going on?
325
756000
2000
这是怎么回事?
12:53
Well, it turns out that this seems似乎 to be the result结果
326
758000
2000
嗯,这答案来自
12:55
of at least最小 two biases偏见 that we have at the psychological心理 level水平.
327
760000
3000
我们心理层面上的2项偏误。
12:58
One is that we have a really hard time thinking思维 in absolute绝对 terms条款.
328
763000
3000
一个是我们没有足够的时间去计算绝对价值。
13:01
You really have to do work to figure数字 out,
329
766000
2000
你应该要找时间好好考虑清楚,
13:03
well, one option's期权 a thousand, 2,000;
330
768000
2000
一个选择是拿1000或2000,
13:05
one is 1,500.
331
770000
2000
一个是拿1500.
13:07
Instead代替, we find it very easy简单 to think in very relative相对的 terms条款
332
772000
3000
相反的,如果选项改成相对价值的话,
13:10
as options选项 change更改 from one time to another另一个.
333
775000
3000
就比较容易理清了。
13:13
So we think of things as, "Oh, I'm going to get more," or "Oh, I'm going to get less."
334
778000
3000
选项改成:“拿到更多”或“拿比较少”。
13:16
This is all well and good, except that
335
781000
2000
这样的话很好,只不过
13:18
changes变化 in different不同 directions方向
336
783000
2000
稍微改变一下手法,
13:20
actually其实 effect影响 whether是否 or not we think
337
785000
2000
就会影响我们对于
13:22
options选项 are good or not.
338
787000
2000
选项是好是坏的观感。
13:24
And this leads引线 to the second第二 bias偏压,
339
789000
2000
这会引出第二项偏误,
13:26
which哪一个 economists经济学家 have called loss失利 aversion厌恶.
340
791000
2000
经济学家称此为“损失规避”。
13:28
The idea理念 is that we really hate讨厌 it when things go into the red.
341
793000
3000
也就是说,我们会非常讨厌任何损失。
13:31
We really hate讨厌 it when we have to lose失去 out on some money.
342
796000
2000
我们会极度不愿意失去任何金钱。
13:33
And this means手段 that sometimes有时 we'll actually其实
343
798000
2000
这就意味着我们会转移我们的偏好
13:35
switch开关 our preferences优先 to avoid避免 this.
344
800000
2000
来避免任何损失。
13:37
What you saw in that last scenario脚本 is that
345
802000
2000
刚刚在第二个情境里面,
13:39
subjects主题 get risky有风险
346
804000
2000
人们会选择冒险,
13:41
because they want the small shot射击 that there won't惯于 be any loss失利.
347
806000
3000
因为不想放过任何“零损失”的机会。
13:44
That means手段 when we're in a risk风险 mindset心态 --
348
809000
2000
这也点出了我们对于风险的心态——
13:46
excuse借口 me, when we're in a loss失利 mindset心态,
349
811000
2000
当我们进入“损失规避”模式时,
13:48
we actually其实 become成为 more risky有风险,
350
813000
2000
我们会变得更喜欢风险,
13:50
which哪一个 can actually其实 be really worrying令人担忧.
351
815000
2000
这就是最令人担心的部分。
13:52
These kinds of things play out in lots of bad ways方法 in humans人类.
352
817000
3000
人类的负面行为也因此而暴露出来。
13:55
They're why stock股票 investors投资者 hold保持 onto losing失去 stocks个股 longer --
353
820000
3000
也是为什么股票投资者会死抱着不断下跌的股票,
13:58
because they're evaluating评估 them in relative相对的 terms条款.
354
823000
2000
因为他们用相对价值来计算后得到的结论。
14:00
They're why people in the housing住房 market市场 refused拒绝 to sell their house --
355
825000
2000
这也是为什么房市里的投资客不愿意卖掉房子,
14:02
because they don't want to sell at a loss失利.
356
827000
2000
因为他们不想要房子贬值的时候卖掉。
14:04
The question we were interested有兴趣 in
357
829000
2000
我们感兴趣的是
14:06
is whether是否 the monkeys猴子 show显示 the same相同 biases偏见.
358
831000
2000
猴子们是否也有同样的偏误。
14:08
If we set up those same相同 scenarios场景 in our little monkey market市场,
359
833000
3000
若我们在猴子市场里设计同样的问题,
14:11
would they do the same相同 thing as people?
360
836000
2000
他们是否会表现出跟人一样的行为?
14:13
And so this is what we did, we gave the monkeys猴子 choices选择
361
838000
2000
所以我们让猴子在两个销售员间做选择,
14:15
between之间 guys who were safe安全 -- they did the same相同 thing every一切 time --
362
840000
3000
一个是安全的交易者,他会一直拿出同样的商品量;
14:18
or guys who were risky有风险 --
363
843000
2000
另一位是有风险的交易者,
14:20
they did things differently不同 half the time.
364
845000
2000
他有一半的时间会拿出不同商品。
14:22
And then we gave them options选项 that were bonuses奖金 --
365
847000
2000
我们提供有红利的选项——
14:24
like you guys did in the first scenario脚本 --
366
849000
2000
就像刚才的第一情境——
14:26
so they actually其实 have a chance机会 more,
367
851000
2000
因此猴子们同样也有机会拿到更多,
14:28
or pieces where they were experiencing经历 losses损失 --
368
853000
3000
或者碰到一些损失,
14:31
they actually其实 thought they were going to get more than they really got.
369
856000
2000
实际上他们会觉得自己会拿到比较多的葡萄。
14:33
And so this is what this looks容貌 like.
370
858000
2000
这是实验的情景。
14:35
We introduced介绍 the monkeys猴子 to two new monkey salesmen推销员.
371
860000
2000
我们将2为新的销售员介绍给猴子们。
14:37
The guy on the left and right both start开始 with one piece of grape葡萄,
372
862000
2000
左边和右边一开始都是拿出1粒葡萄,
14:39
so it looks容貌 pretty漂亮 good.
373
864000
2000
看起来很公平。
14:41
But they're going to give the monkeys猴子 bonuses奖金.
374
866000
2000
但是这2位会给猴子们一些红利。
14:43
The guy on the left is a safe安全 bonus奖金.
375
868000
2000
左边提供的是安全红利。
14:45
All the time, he adds增加 one, to give the monkeys猴子 two.
376
870000
3000
从头到尾,他会多给猴子1粒葡萄。
14:48
The guy on the right is actually其实 a risky有风险 bonus奖金.
377
873000
2000
右边的是提供风险红利。
14:50
Sometimes有时 the monkeys猴子 get no bonus奖金 -- so this is a bonus奖金 of zero.
378
875000
3000
有时候猴子拿不到任何红利,所以他不会多拿任何葡萄。
14:53
Sometimes有时 the monkeys猴子 get two extra额外.
379
878000
3000
但有时候猴子能多拿2粒葡萄。
14:56
For a big bonus奖金, now they get three.
380
881000
2000
很棒的红利,所以猴子能一次拿3粒葡萄。
14:58
But this is the same相同 choice选择 you guys just faced面对.
381
883000
2000
这跟刚刚给各位的实验内容是一样的。
15:00
Do the monkeys猴子 actually其实 want to play it safe安全
382
885000
3000
那么,猴子是会去选择有安全红利的交易,
15:03
and then go with the guy who's谁是 going to do the same相同 thing on every一切 trial审讯,
383
888000
2000
就是那位每次交易都会提供同样东西的人;
15:05
or do they want to be risky有风险
384
890000
2000
或者,他们会去选有风险的红利。
15:07
and try to get a risky有风险, but big, bonus奖金,
385
892000
2000
虽然要冒点险,有可能拿不到任何红利,
15:09
but risk风险 the possibility可能性 of getting得到 no bonus奖金.
386
894000
2000
但是如果能拿到就赚翻了。
15:11
People here played发挥 it safe安全.
387
896000
2000
人类倾向选择安全的做法。
15:13
Turns out, the monkeys猴子 play it safe安全 too.
388
898000
2000
结果,没想到猴子也会选择安全的一方。
15:15
Qualitatively定性 and quantitatively数量上,
389
900000
2000
在定性和定量研究里,
15:17
they choose选择 exactly究竟 the same相同 way as people,
390
902000
2000
在同样的测试内容中,
15:19
when tested测试 in the same相同 thing.
391
904000
2000
猴子与人类有一致的行为反应。
15:21
You might威力 say, well, maybe the monkeys猴子 just don't like risk风险.
392
906000
2000
各位也许会觉得,可能是因为猴子不喜欢冒险。
15:23
Maybe we should see how they do with losses损失.
393
908000
2000
那么让我们来看看猴子面对损失时的行为。
15:25
And so we ran a second第二 version of this.
394
910000
2000
于是我们就做了第二个版本的实验。
15:27
Now, the monkeys猴子 meet遇到 two guys
395
912000
2000
现在,猴子们会面对这两个销售员,
15:29
who aren't giving them bonuses奖金;
396
914000
2000
他们不会再给猴子红利了;
15:31
they're actually其实 giving them less than they expect期望.
397
916000
2000
他们会拿走猴子们预期的葡萄数。
15:33
So they look like they're starting开始 out with a big amount.
398
918000
2000
所以他们一开始就拿出较多的葡萄。
15:35
These are three grapes葡萄; the monkey's猴子的 really psyched激动 for this.
399
920000
2000
一开始就拿出3粒葡萄:这是猴子最想看到的情形。
15:37
But now they learn学习 these guys are going to give them less than they expect期望.
400
922000
3000
不过他们发现,这两个家伙会给比预期少的数量。
15:40
They guy on the left is a safe安全 loss失利.
401
925000
2000
左边这位,他提供固定的损失量。
15:42
Every一切 single time, he's going to take one of these away
402
927000
3000
每次他都会固定少给猴子一粒葡萄,
15:45
and give the monkeys猴子 just two.
403
930000
2000
也就是只给他们2粒。
15:47
the guy on the right is the risky有风险 loss失利.
404
932000
2000
右边这位提供有风险的损失量。
15:49
Sometimes有时 he gives no loss失利, so the monkeys猴子 are really psyched激动,
405
934000
3000
有时候一个都不会少,完全符合猴子预期,
15:52
but sometimes有时 he actually其实 gives a big loss失利,
406
937000
2000
但有时候他会拿走更多,
15:54
taking服用 away two to give the monkeys猴子 only one.
407
939000
2000
也就是只给猴子一粒葡萄。
15:56
And so what do the monkeys猴子 do?
408
941000
2000
猴子们会怎么决定?
15:58
Again, same相同 choice选择; they can play it safe安全
409
943000
2000
和刚才一样,他们可以做保险的交易,
16:00
for always getting得到 two grapes葡萄 every一切 single time,
410
945000
3000
每次交易都拿固定的2粒葡萄,
16:03
or they can take a risky有风险 bet赌注 and choose选择 between之间 one and three.
411
948000
3000
或者做有风险的交易,拿1粒或者3粒。
16:06
The remarkable卓越 thing to us is that, when you give monkeys猴子 this choice选择,
412
951000
3000
最让我们关注的是,当猴子们面对这个选择时,
16:09
they do the same相同 irrational不合理的 thing that people do.
413
954000
2000
他们表现出跟人类一样的非理性行为。
16:11
They actually其实 become成为 more risky有风险
414
956000
2000
根据实验的起始条件,
16:13
depending根据 on how the experimenters实验者 started开始.
415
958000
3000
猴子们变得倾向冒险。
16:16
This is crazy because it suggests提示 that the monkeys猴子 too
416
961000
2000
这真是太不可思议了,
16:18
are evaluating评估 things in relative相对的 terms条款
417
963000
2000
因为猴子居然也用相对价值来评估,
16:20
and actually其实 treating治疗 losses损失 differently不同 than they treat对待 gains收益.
418
965000
3000
而且在面对损失和面对收获时有着非常不同的行为。
16:23
So what does all of this mean?
419
968000
2000
这给我们什么启示?
16:25
Well, what we've我们已经 shown显示 is that, first of all,
420
970000
2000
我们先做归纳。首先,
16:27
we can actually其实 give the monkeys猴子 a financial金融 currency货币,
421
972000
2000
我们给猴子一种财务货币,
16:29
and they do very similar类似 things with it.
422
974000
2000
然后教它们一些简单的交易行为,
16:31
They do some of the smart聪明 things we do,
423
976000
2000
它们会做出跟人类一样聪明的事情,
16:33
some of the kind of not so nice不错 things we do,
424
978000
2000
也会做跟人类一样不太好的事情,
16:35
like steal it and so on.
425
980000
2000
比如偷钱之类的。
16:37
But they also do some of the irrational不合理的 things we do.
426
982000
2000
同事它们也会做出跟人类一样非理性的行为。
16:39
They systematically系统 get things wrong错误
427
984000
2000
它们有条理地做出错误行为,
16:41
and in the same相同 ways方法 that we do.
428
986000
2000
跟我们如出一辙。
16:43
This is the first take-home带回家 message信息 of the Talk,
429
988000
2000
今天我想给各位的第一个结论,
16:45
which哪一个 is that if you saw the beginning开始 of this and you thought,
430
990000
2000
如果你只听到开头的部分,你可能会想——
16:47
oh, I'm totally完全 going to go home and hire聘请 a capuchin僧帽 monkey financial金融 adviser顾问.
431
992000
2000
我回家后真该雇佣一只卷尾猴当我的财务大臣。
16:49
They're way cuter可爱 than the one at ... you know --
432
994000
2000
这家伙的可爱程度超过家里的那位。。。
16:51
Don't do that; they're probably大概 going to be just as dumb
433
996000
2000
但你可千万别这么做,因为这些猴子的糊涂程度
16:53
as the human人的 one you already已经 have.
434
998000
3000
跟你家里的那位差不多。
16:56
So, you know, a little bad -- Sorry, sorry, sorry.
435
1001000
2000
这有点遗憾。各位听我说,
16:58
A little bad for monkey investors投资者.
436
1003000
2000
请猴子来当投资客不太好。
17:00
But of course课程, you know, the reason原因 you're laughing is bad for humans人类 too.
437
1005000
3000
当然,偷笑的各位也觉得人一样不善于当投资客。
17:03
Because we've我们已经 answered回答 the question we started开始 out with.
438
1008000
3000
这问题的答案在刚才就已经证明给大家看了。
17:06
We wanted to know where these kinds of errors错误 came来了 from.
439
1011000
2000
而我们为了想了解这些错误从何而来,
17:08
And we started开始 with the hope希望 that maybe we can
440
1013000
2000
就抱着某些希望,像是
17:10
sort分类 of tweak our financial金融 institutions机构,
441
1015000
2000
在某种程度上调整我们的金融机构,
17:12
tweak our technologies技术 to make ourselves我们自己 better.
442
1017000
3000
或调整我们的财务方法让自己过得更好。
17:15
But what we've我们已经 learn学习 is that these biases偏见 might威力 be a deeper更深 part部分 of us than that.
443
1020000
3000
但我们已经了解到其实这两种偏误已经深深地影响了我们。
17:18
In fact事实, they might威力 be due应有 to the very nature性质
444
1023000
2000
事实上,这些偏误之所以会影响我们这么深,
17:20
of our evolutionary发展的 history历史.
445
1025000
2000
是因为它们老早就深植在我们的进化过程中。
17:22
You know, maybe it's not just humans人类
446
1027000
2000
各位,也许笨蛋不只是
17:24
at the right side of this chain that's dunceyduncey.
447
1029000
2000
图中这进化链中最右边的人类,
17:26
Maybe it's sort分类 of dunceyduncey all the way back.
448
1031000
2000
也许变笨蛋的来源是从古早就有了。
17:28
And this, if we believe the capuchin僧帽 monkey results结果,
449
1033000
3000
如果我们相信这些针对猴子的实验结果,
17:31
means手段 that these dunceyduncey strategies策略
450
1036000
2000
也就表示我们承认这种愚蠢对策,
17:33
might威力 be 35 million百万 years年份 old.
451
1038000
2000
早在3500万年前就出现了。
17:35
That's a long time for a strategy战略
452
1040000
2000
这存在已久的对策
17:37
to potentially可能 get changed around -- really, really old.
453
1042000
3000
已经默默地影响我们很久。
17:40
What do we know about other old strategies策略 like this?
454
1045000
2000
我们对这类的对策了解多少?
17:42
Well, one thing we know is that they tend趋向 to be really hard to overcome克服.
455
1047000
3000
我们了解的其中一个事实就是,我们很难去改变它。
17:45
You know, think of our evolutionary发展的 predilection好发
456
1050000
2000
想一想我们最先进化的部分
17:47
for eating sweet things, fatty脂肪 things like cheesecake乳酪蛋糕.
457
1052000
3000
就是懂得吃甜食、高脂肪的食物,如芝士蛋糕。
17:50
You can't just shut关闭 that off.
458
1055000
2000
你没办法闭嘴不吃。
17:52
You can't just look at the dessert甜点 cart大车 as say, "No, no, no. That looks容貌 disgusting讨厌 to me."
459
1057000
3000
你没办法对着装满推车的点心说:“我才不吃,这些令我作呕。”
17:55
We're just built内置 differently不同.
460
1060000
2000
但人与人之间存在着差异性。
17:57
We're going to perceive感知 it as a good thing to go after.
461
1062000
2000
我们会追求自己认为好的事物。
17:59
My guess猜测 is that the same相同 thing is going to be true真正
462
1064000
2000
所以我推测
18:01
when humans人类 are perceiving感知
463
1066000
2000
人们对于财务上的决策
18:03
different不同 financial金融 decisions决定.
464
1068000
2000
也会有不同的认知见解。
18:05
When you're watching观看 your stocks个股 plummet铅坠 into the red,
465
1070000
2000
你会傻愣愣地看持有的股票价格直线下降,
18:07
when you're watching观看 your house price价钱 go down,
466
1072000
2000
或者看着自己持有的不动产贬值,
18:09
you're not going to be able能够 to see that
467
1074000
2000
而你不会去注意到事情的真相,
18:11
in anything but old evolutionary发展的 terms条款.
468
1076000
2000
因为我们与生俱来就是有这样的行为。
18:13
This means手段 that the biases偏见
469
1078000
2000
这种心理上的偏差
18:15
that lead investors投资者 to do badly,
470
1080000
2000
会让投资者做出糟糕的决定,
18:17
that lead to the foreclosure丧失抵押品赎回权 crisis危机
471
1082000
2000
所以像这次的次贷危机
18:19
are going to be really hard to overcome克服.
472
1084000
2000
就变得很难去避免。
18:21
So that's the bad news新闻. The question is: is there any good news新闻?
473
1086000
2000
听起来都是坏消息,哪有没有好消息呢?
18:23
I'm supposed应该 to be up here telling告诉 you the good news新闻.
474
1088000
2000
我这里是有一些好消息告诉各位。
18:25
Well, the good news新闻, I think,
475
1090000
2000
我想这个好消息就是,
18:27
is what I started开始 with at the beginning开始 of the Talk,
476
1092000
2000
就如同我在今天开头时所说,
18:29
which哪一个 is that humans人类 are not only smart聪明;
477
1094000
2000
人类不只是聪明而已;
18:31
we're really inspirationallyinspirationally smart聪明
478
1096000
2000
我们比起生物界里的其它动物,
18:33
to the rest休息 of the animals动物 in the biological生物 kingdom王国.
479
1098000
3000
都要聪明许多。
18:36
We're so good at overcoming克服 our biological生物 limitations限制 --
480
1101000
3000
我们非常擅长克服我们先天上的不足——
18:39
you know, I flew over here in an airplane飞机.
481
1104000
2000
就像我是搭飞机来这里,
18:41
I didn't have to try to flap拍打 my wings翅膀.
482
1106000
2000
我不需要把手当翅膀拍动来飞。
18:43
I'm wearing穿着 contact联系 lenses镜头 now so that I can see all of you.
483
1108000
3000
我带着隐形眼镜就能看清楚各位,
18:46
I don't have to rely依靠 on my own拥有 near-sightedness近视.
484
1111000
3000
不需要依赖我这双大近视的眼睛。
18:49
We actually其实 have all of these cases
485
1114000
2000
我们有这么多例子
18:51
where we overcome克服 our biological生物 limitations限制
486
1116000
3000
都是用科技或其它方式来突破我们生物限制的事实,
18:54
through通过 technology技术 and other means手段, seemingly似乎 pretty漂亮 easily容易.
487
1119000
3000
让一切看起来是这么简单。
18:57
But we have to recognize认识 that we have those limitations限制.
488
1122000
3000
但我们也必须了解自己的极限在哪里,
19:00
And here's这里的 the rub.
489
1125000
2000
而这是最难的地方。
19:02
It was Camus加缪 who once一旦 said that, "Man is the only species种类
490
1127000
2000
就像卡谬曾说,
19:04
who refuses拒绝 to be what he really is."
491
1129000
3000
“人是唯一搞不清楚自己是什么的物种。”
19:07
But the irony讽刺 is that
492
1132000
2000
讽刺的是
19:09
it might威力 only be in recognizing认识 our limitations限制
493
1134000
2000
我们得知道人类的极限在哪儿,
19:11
that we can really actually其实 overcome克服 them.
494
1136000
2000
才能克服它们。
19:13
The hope希望 is that you all will think about your limitations限制,
495
1138000
3000
希望各位都能意识到自己的极限在哪儿,
19:16
not necessarily一定 as unovercomableunovercomable,
496
1141000
3000
它并不是不可逾越的,
19:19
but to recognize认识 them, accept接受 them
497
1144000
2000
了解它,接受它,
19:21
and then use the world世界 of design设计 to actually其实 figure数字 them out.
498
1146000
3000
然后发展出让世人更了解人类极限的工具。
19:24
That might威力 be the only way that we will really be able能够
499
1149000
3000
想要能激发出人类潜力,
19:27
to achieve实现 our own拥有 human人的 potential潜在
500
1152000
2000
同时成为那种我们心里想成为的高贵物种,
19:29
and really be the noble高贵 species种类 we hope希望 to all be.
501
1154000
3000
这也许是唯一的办法。
19:32
Thank you.
502
1157000
2000
谢谢各位。
19:34
(Applause掌声)
503
1159000
5000
(掌声)
Translated by Wenjia Tang
Reviewed by Tracie Chen

▲Back to top

ABOUT THE SPEAKER
Laurie Santos - Cognitive psychologist
Laurie Santos studies primate psychology and monkeynomics -- testing problems in human psychology on primates, who (not so surprisingly) have many of the same predictable irrationalities we do.

Why you should listen

Laurie Santos runs the Comparative Cognition Laboratory (CapLab) at Yale, where she and collaborators across departments (from psychology to primatology to neurobiology) explore the evolutionary origins of the human mind by studying lemurs, capuchin monkeys and other primates. The twist: Santos looks not only for positive humanlike traits, like tool-using and altruism, but irrational ones, like biased decisionmaking.

In elegant, carefully constructed experiments, Santos and CapLab have studied how primates understand and categorize objects in the physical world -- for instance, that monkeys understand an object is still whole even when part of it is obscured. Going deeper, their experiments also search for clues that primates possess a theory of mind -- an ability to think about what other people think.

Most recently, the lab has been looking at behaviors that were once the province mainly of novelists: jealousy, frustration, judgment of others' intentions, poor economic choices. In one experiment, Santos and her team taught monkeys to use a form of money, tradeable for food. When certain foods became cheaper, monkeys would, like humans, overbuy. As we humans search for clues to our own irrational behaviors, Santos' research suggests that the source of our genius for bad decisions might be our monkey brains.

More profile about the speaker
Laurie Santos | Speaker | TED.com

Data provided by TED.

This site was created in May 2015 and the last update was on January 12, 2020. It will no longer be updated.

We are currently creating a new site called "eng.lish.video" and would be grateful if you could access it.

If you have any questions or suggestions, please feel free to write comments in your language on the contact form.

Privacy Policy

Developer's Blog

Buy Me A Coffee