ABOUT THE SPEAKER
Rajiv Maheswaran - Researcher
Using advanced data analysis tools, Rajiv Maheswaran and Second Spectrum help make basketball teams smarter.

Why you should listen

Sports fans can get obsessed with stats about player performance and game-day physics. But basketball, a fluid and fast-moving game, has been tough to understand through numbers. Rajiv Maheswaran is working to change that, by offering pro basketball teams insight into game data to make better decisions. Maheswaran is the CEO and co-founder of Second Spectrum, a startup transforming sports through technology. He is also a Research Assistant Professor at the University of Southern California's Computer Science Department and a Project Leader at the Information Sciences Institute at the USC Viterbi School of Engineering, where he co-directs the Computational Behavior Group.

His research spans various aspects of multi-agent systems and distributed artificial intelligence using decision-theoretic and game-theoretic frameworks and solutions. His current interests focus on data analytics, visualization and real-time interaction to understand behavior in spatiotemporal domains. Like, say, the spatiotemporal domain around a basketball hoop.

More profile about the speaker
Rajiv Maheswaran | Speaker | TED.com
TED2015

Rajiv Maheswaran: The math behind basketball's wildest moves

拉吉夫·馬赫斯沃倫: 籃球瘋狂動作背後的數學原理

Filmed:
2,683,104 views

籃球是個節奏快速的運動,充滿臨場發揮、肢體接觸以及時空狀況的判斷。拉吉夫·馬赫斯沃倫和他的同事分析球賽中各種關鍵打法背後的動作細節,協助教練和球員將直覺和全新的數據結合在一起。附加價值是:他們的發現也能幫助我們瞭解人類在其他地方移動的規律。
- Researcher
Using advanced data analysis tools, Rajiv Maheswaran and Second Spectrum help make basketball teams smarter. Full bio

Double-click the English transcript below to play the video.

00:12
My colleagues同事 and I are fascinated入迷
by the science科學 of moving移動 dots.
0
954
3583
我同事和我對移動的點
背後的科學非常著迷。
00:16
So what are these dots?
1
4927
1150
這些點是什麼?
00:18
Well, it's all of us.
2
6101
1287
是我們每一個人。
00:19
And we're moving移動 in our homes家園,
in our offices辦事處, as we shop and travel旅行
3
7412
5085
我們在家、在辦公室裡走動,
在整個城市裡、
甚至世界各地旅遊和購物。
00:24
throughout始終 our cities城市
and around the world世界.
4
12521
2066
00:26
And wouldn't不會 it be great
if we could understand理解 all this movement運動?
5
14958
3669
我們若能夠瞭解這些動作,
不是很棒嗎?
00:30
If we could find patterns模式 and meaning含義
and insight眼光 in it.
6
18918
2890
如果能從中找出模式、
意義和背後意涵的話。
00:34
And luckily for us, we live生活 in a time
7
22259
1785
而我們有幸
活在一個擷取自身資訊
非常容易的時代,
00:36
where we're incredibly令人難以置信 good
at capturing捕獲 information信息 about ourselves我們自己.
8
24068
4497
00:40
So whether是否 it's through通過
sensors傳感器 or videos視頻, or apps應用,
9
28807
3663
無論透過感應器、影片或應用程式,
00:44
we can track跟踪 our movement運動
with incredibly令人難以置信 fine detail詳情.
10
32494
2809
我們都能非常精細地追蹤自己的動作。
00:48
So it turns out one of the places地方
where we have the best最好 data數據 about movement運動
11
36092
5032
然後我們發現,最適合
獲取動作資訊的一個地方,
00:53
is sports體育.
12
41148
1208
就是運動場。
00:54
So whether是否 it's basketball籃球 or baseball棒球,
or football足球 or the other football足球,
13
42682
5333
無論是籃球、棒球、橄欖球或足球,
01:00
we're instrumenting插樁 our stadiums體育場館
and our players玩家 to track跟踪 their movements運動
14
48039
4402
我們都能在場館裡、甚至球員身上
安裝儀器,追蹤他們的動作 --
每個瞬間的動作。
01:04
every一切 fraction分數 of a second第二.
15
52465
1313
01:05
So what we're doing
is turning車削 our athletes運動員 into --
16
53802
4382
所以我們要做的
就是把運動員變成──
01:10
you probably大概 guessed it --
17
58208
1959
你們大概已經猜到了──
01:12
moving移動 dots.
18
60191
1396
移動的點。
01:13
So we've我們已經 got mountains of moving移動 dots
and like most raw生的 data數據,
19
61946
4934
我們收集了海量的移動的點,
但就像大部分的原始數據一樣,
01:18
it's hard to deal合同 with
and not that interesting有趣.
20
66904
2502
它們不易處理、也不甚有趣。
01:21
But there are things that, for example,
basketball籃球 coaches教練 want to know.
21
69430
3769
但藏在數據裡的是,舉例來說,
籃球教練想知道的事。
01:25
And the problem問題 is they can't know them
because they'd他們會 have to watch every一切 second第二
22
73223
3810
而問題是他們無法得知這些事,
因為他們得看著每一秒鐘的比賽,
01:29
of every一切 game遊戲, remember記得 it and process處理 it.
23
77057
2589
記住內容並處理它。
01:31
And a person can't do that,
24
79804
1930
沒有任何人能做到這件事,
01:33
but a machine can.
25
81758
1310
但機器可以。
01:35
The problem問題 is a machine can't see
the game遊戲 with the eye of a coach教練.
26
83661
3410
問題是,機器無法從
教練的角度觀看比賽,
01:39
At least最小 they couldn't不能 until直到 now.
27
87363
2261
至少在此之前,它們都做不到。
01:42
So what have we taught the machine to see?
28
90228
2103
所以我們教會了機器看些什麼呢?
01:45
So, we started開始 simply只是.
29
93569
1787
從簡單的開始。
01:47
We taught it things like passes通行證,
shots鏡頭 and rebounds籃板.
30
95380
3799
我們教它判斷傳球、
投籃、搶籃板等動作,
01:51
Things that most casual隨便 fans球迷 would know.
31
99203
2541
一些大部分普通球迷都知道的事。
01:53
And then we moved移動 on to things
slightly more complicated複雜.
32
101768
2832
然後我們進入稍微複雜一點的動作,
01:56
Events活動 like post-ups後起坐,
and pick-and-rolls拾輥, and isolations隔離.
33
104624
4588
像是低位單打、擋切和清空單打。
02:01
And if you don't know them, that's okay.
Most casual隨便 players玩家 probably大概 do.
34
109377
3543
如果你不知道這些動作,沒關係。
打球的人大概都清楚。
02:05
Now, we've我們已經 gotten得到 to a point where today今天,
the machine understands理解 complex複雜 events事件
35
113560
5340
接著,我們到達今天的地步,
機器已經可以讀出複雜的動作,
02:10
like down screens屏幕 and wide pins.
36
118924
3073
例如:向下掩護和無球掩護(wide pin),
02:14
Basically基本上 things only professionals專業人士 know.
37
122021
2726
一些基本上是專業人士才懂的動作。
02:16
So we have taught a machine to see
with the eyes眼睛 of a coach教練.
38
124771
4388
我們教會了機器
用教練的角度來看比賽。
02:22
So how have we been able能夠 to do this?
39
130009
1857
我們是怎麼做到的?
02:24
If I asked a coach教練 to describe描述
something like a pick-and-roll接機和輥,
40
132511
3118
如果我請教練形容
某個動作,例如擋切,
02:27
they would give me a description描述,
41
135653
1640
他們會給我一段敘述,
02:29
and if I encoded編碼 that as an algorithm算法,
it would be terrible可怕.
42
137317
2856
如果我把這個敘述寫成
一個演算法,大概會慘不忍睹。
02:33
The pick-and-roll接機和輥 happens發生 to be this dance舞蹈
in basketball籃球 between之間 four players玩家,
43
141026
4278
擋切在籃球中,恰如
四個球員之間的舞蹈,
02:37
two on offense罪行 and two on defense防禦.
44
145328
1912
兩個進攻方、兩個防守方。
02:39
And here's這裡的 kind of how it goes.
45
147486
1618
大概是這樣的過程:
02:41
So there's the guy on offense罪行
without the ball
46
149128
2533
有一個未持球的進攻球員
02:43
the ball and he goes next下一個 to the guy
guarding守著 the guy with the ball,
47
151685
3209
他跑到持球球員的旁邊幫他掩護,
02:46
and he kind of stays入住 there
48
154918
1257
在原地稍作停留,
02:48
and they both move移動 and stuff東東 happens發生,
and ta-da噹噹, it's a pick-and-roll接機和輥.
49
156199
3317
然後他們都移動,事情就發生了
——嗒啦——這就是擋拆。
02:51
(Laughter笑聲)
50
159540
2215
(笑聲)
02:53
So that is also an example
of a terrible可怕 algorithm算法.
51
161779
2508
剛剛我示範了一個差勁的演算法。
02:56
So, if the player播放機 who's誰是 the interferer干擾 --
he's called the screener篩選 --
52
164913
4204
如果擋人那名球員──我們稱掩護者──
03:01
goes close by, but he doesn't stop,
53
169278
2872
慢慢靠近,但他並未停留,
03:04
it's probably大概 not a pick-and-roll接機和輥.
54
172174
1765
這可能就不是擋切。
03:06
Or if he does stop,
but he doesn't stop close enough足夠,
55
174560
3945
或是他有停留,但距離不夠近,
03:10
it's probably大概 not a pick-and-roll接機和輥.
56
178529
1761
這可能也不是擋切。
03:12
Or, if he does go close by
and he does stop
57
180642
3237
或是他慢慢靠近、也確實停留,
03:15
but they do it under the basket,
it's probably大概 not a pick-and-roll接機和輥.
58
183903
3324
但這發生在籃下,可能也不是擋切。
03:19
Or I could be wrong錯誤,
they could all be pick-and-rolls拾輥.
59
187462
2524
也可能我判斷錯誤,這些全都是擋切。
這一切取決於精確的
時機、距離和位置,
03:22
It really depends依靠 on the exact精確 timing定時,
the distances距離, the locations地點,
60
190010
4568
03:26
and that's what makes品牌 it hard.
61
194602
1495
這也正是困難的地方。
03:28
So, luckily, with machine learning學習,
we can go beyond our own擁有 ability能力
62
196579
4944
很幸運地,透過機器學習技術,
我們得以用超越自己的能力,
03:33
to describe描述 the things we know.
63
201547
1743
來描述我們知道的事情。
03:35
So how does this work?
Well, it's by example.
64
203314
2280
如何做到這個技術?舉個例。
03:37
So we go to the machine and say,
"Good morning早上, machine.
65
205759
2830
我們跑到機器面前說:「早安,機器。
03:41
Here are some pick-and-rolls拾輥,
and here are some things that are not.
66
209077
3359
這裡有些擋切的例子,
也有些不是的例子。
03:44
Please find a way to tell the difference區別."
67
212720
2252
請找出區分它們的方式。」
03:47
And the key to all of this is to find
features特徵 that enable啟用 it to separate分離.
68
215076
3707
而一切的關鍵在於找到
可以進行區別的特徵。
03:50
So if I was going
to teach it the difference區別
69
218807
2109
如果我要教它區分
蘋果和橘子的差異,
03:52
between之間 an apple蘋果 and orange橙子,
70
220940
1381
我可能會說:
「不妨用顏色或形狀來區分?」
03:54
I might威力 say, "Why don't you
use color顏色 or shape形狀?"
71
222345
2375
而我們要解決的問題是,
類似這樣的特徵是什麼?
03:56
And the problem問題 that we're solving is,
what are those things?
72
224744
2943
03:59
What are the key features特徵
73
227711
1247
哪些是能讓電腦判讀這些移動的點時,
能暢行無阻的重要特徵?
04:00
that let a computer電腦 navigate導航
the world世界 of moving移動 dots?
74
228982
3499
04:04
So figuring盤算 out all these relationships關係
with relative相對的 and absolute絕對 location位置,
75
232505
4823
所以搞清楚每件事情的關聯──
包含相對和絕對位置、
距離、時機、速率──
04:09
distance距離, timing定時, velocities速度 --
76
237352
1909
04:11
that's really the key to the science科學
of moving移動 dots, or as we like to call it,
77
239440
4928
絕對是研究這些移動的點的重要關鍵,
或者用我們喜歡的稱呼方式:
04:16
spatiotemporal時空 pattern模式 recognition承認,
in academic學術的 vernacular白話.
78
244392
3344
「時空模式識別」這樣的學術用語。
04:19
Because the first thing is,
you have to make it sound聲音 hard --
79
247925
2898
因為最重要的是,
必須讓它聽起來很難,
04:22
because it is.
80
250847
1278
因為它真的很難。
04:24
The key thing is, for NBANBA coaches教練,
it's not that they want to know
81
252410
3141
重要的是,對NBA教練來說,
他們想知道的
04:27
whether是否 a pick-and-roll接機和輥 happened發生 or not.
82
255575
1922
不是擋切是否發生,
04:29
It's that they want to know
how it happened發生.
83
257521
2076
而是擋切是怎麼發生的。
04:31
And why is it so important重要 to them?
So here's這裡的 a little insight眼光.
84
259621
2986
為什麼這對他們如此重要?
這裡有一些發現。
04:34
It turns out in modern現代 basketball籃球,
85
262631
1771
原來在現代籃球中,
04:36
this pick-and-roll接機和輥 is perhaps也許
the most important重要 play.
86
264426
2539
擋切可能就是最重要的戰術。
04:39
And knowing會心 how to run it,
and knowing會心 how to defend保衛 it,
87
267065
2620
知道如何執行、如何防守擋切,
基本上是大部分比賽輸贏的關鍵。
04:41
is basically基本上 a key to winning勝利
and losing失去 most games遊戲.
88
269709
2670
04:44
So it turns out that this dance舞蹈
has a great many許多 variations變化
89
272403
3801
所以結果是,擋切這種舞步變化多端,
04:48
and identifying識別 the variations變化
is really the thing that matters事項,
90
276228
3648
真正重要的是要辨別這些變化,
04:51
and that's why we need this
to be really, really good.
91
279900
2529
所以我們需要有非常完善的演算法。
04:55
So, here's這裡的 an example.
92
283228
1176
這裡有個例子。
兩個進攻球員和兩個防守球員
04:56
There are two offensive進攻
and two defensive防禦性 players玩家,
93
284428
2379
準備進行擋切的攻防,
04:58
getting得到 ready準備 to do
the pick-and-roll接機和輥 dance舞蹈.
94
286831
2152
持球者可以選擇利用或拒絕擋切,
05:01
So the guy with ball
can either take, or he can reject拒絕.
95
289007
2683
05:04
His teammate隊友 can either roll or pop流行的.
96
292086
3001
他的隊友則可以選擇切入或後撤。
05:07
The guy guarding守著 the ball
can either go over or under.
97
295111
2986
防守持球者的球員可選擇
從前繞開、或從後繞開。
05:10
His teammate隊友 can either show顯示
or play up to touch觸摸, or play soft柔軟的
98
298121
4565
他的隊友可選擇上前補防、
隨球盯人或向後消極防守,
05:14
and together一起 they can
either switch開關 or blitz閃電戰
99
302710
2618
他們也可以選擇換防或夾擊。
05:17
and I didn't know
most of these things when I started開始
100
305352
2659
一開始我並不知道大部分的動作,
05:20
and it would be lovely可愛 if everybody每個人 moved移動
according根據 to those arrows箭頭.
101
308035
3920
覺得如果大家能照那些箭頭
的方向移動就太棒了,
05:23
It would make our lives生活 a lot easier更輕鬆,
but it turns out movement運動 is very messy.
102
311979
3905
這會讓我們的生活更加容易;
但我們的動作往往非常雜亂。
人的動作有大量扭動,要在精準度和完整度上
05:28
People wiggle擺動 a lot and getting得到
these variations變化 identified確定
103
316047
5484
精確辨識這些變化,是相當困難的,
05:33
with very high accuracy準確性,
104
321555
1303
05:34
both in precision精確 and recall召回, is tough強硬
105
322882
1868
05:36
because that's what it takes to get
a professional專業的 coach教練 to believe in you.
106
324774
3618
因為唯有如此,
才能取得專業教練的信任。
05:40
And despite儘管 all the difficulties困難
with the right spatiotemporal時空 features特徵
107
328416
3380
而儘管找到這些正確的
時空特徵困難重重,
我們還是做到了。
05:43
we have been able能夠 to do that.
108
331820
1474
教練們信任我們機器
辨識這些變化的能力。
05:45
Coaches教練 trust相信 our ability能力 of our machine
to identify鑑定 these variations變化.
109
333318
3927
05:49
We're at the point where
almost幾乎 every一切 single contender競爭者
110
337478
3533
我們已經達到,今年幾乎每一個
爭奪NBA冠軍的隊伍
05:53
for an NBANBA championship錦標賽 this year
111
341035
1623
05:54
is using運用 our software軟件, which哪一個 is built內置
on a machine that understands理解
112
342682
4408
都在使用我們的軟體,
安裝在可以讀懂籃球場上
05:59
the moving移動 dots of basketball籃球.
113
347114
1634
移動的點的機器裡。
06:01
So not only that, we have given特定 advice忠告
that has changed strategies策略
114
349872
5153
不只如此,這些隊伍也根據
我們的建議改變一些戰術,
06:07
that have helped幫助 teams球隊 win贏得
very important重要 games遊戲,
115
355049
3352
幫助他們贏了一些很重要的比賽,
06:10
and it's very exciting扣人心弦 because you have
coaches教練 who've誰一直 been in the league聯盟
116
358425
3732
這令人感到非常興奮,
因為我們讓這些在聯盟裡
打滾了30年的教練,
願意聽一台機器的建議。
06:14
for 30 years年份 that are willing願意 to take
advice忠告 from a machine.
117
362181
3067
06:17
And it's very exciting扣人心弦,
it's much more than the pick-and-roll接機和輥.
118
365874
2906
不只擋切戰術,更讓我們興奮的是,
我們的電腦從簡單的開始,
06:20
Our computer電腦 started開始 out
with simple簡單 things
119
368804
2076
學會越來越複雜的動作,
06:22
and learned學到了 more and more complex複雜 things
120
370904
2064
現在它已經有豐富的知識。
06:24
and now it knows知道 so many許多 things.
121
372992
1561
老實說,它懂得已經比我多了,
06:26
Frankly坦率地說, I don't understand理解
much of what it does,
122
374577
2835
06:29
and while it's not that special特別
to be smarter聰明 than me,
123
377436
3715
但由於比我聰明也沒什麼特別的,
06:33
we were wondering想知道,
can a machine know more than a coach教練?
124
381175
3644
我們更想知道,
機器有可能懂得比教練還多嗎?
06:36
Can it know more than person could know?
125
384843
2055
可能懂得比人類還多嗎?
06:38
And it turns out the answer回答 is yes.
126
386922
1745
結果答案是:可以。
06:40
The coaches教練 want players玩家
to take good shots鏡頭.
127
388691
2557
教練都希望球員掌握好的投籃時機,
06:43
So if I'm standing常設 near the basket
128
391272
1651
如果離籃框很近,
旁邊沒人防守,就是好的投籃時機。
06:44
and there's nobody沒有人 near me,
it's a good shot射擊.
129
392947
2166
如果我離籃框很遠,又被防守者包圍,
通常就是很差的投籃時機。
06:47
If I'm standing常設 far away surrounded包圍
by defenders捍衛者, that's generally通常 a bad shot射擊.
130
395137
3940
06:51
But we never knew知道 how good "good" was,
or how bad "bad" was quantitatively數量上.
131
399101
4876
但我們從來無法從量化數據得知,
「好」有多好、「差」有多差。
06:56
Until直到 now.
132
404209
1150
但現在不同了。
06:57
So what we can do, again,
using運用 spatiotemporal時空 features特徵,
133
405771
3058
所以我們可以,同樣地,
利用時空特徵條件,
07:00
we looked看著 at every一切 shot射擊.
134
408853
1374
檢視每一次投籃。
07:02
We can see: Where is the shot射擊?
What's the angle角度 to the basket?
135
410251
3005
我們可以得知:投籃位置在哪?
和籃框的角度是幾度?
07:05
Where are the defenders捍衛者 standing常設?
What are their distances距離?
136
413280
2762
防守者站在哪裡?距離多少?
07:08
What are their angles?
137
416066
1331
角度多大?
07:09
For multiple defenders捍衛者, we can look
at how the player's玩家 moving移動
138
417421
2977
防守者不只一個時,
我們可以觀察球員如何移動
07:12
and predict預測 the shot射擊 type類型.
139
420422
1433
來預測投籃類型。
07:13
We can look at all their velocities速度
and we can build建立 a model模型 that predicts預測
140
421879
4074
我們可以觀察速率,建立一個可以預測
07:17
what is the likelihood可能性 that this shot射擊
would go in under these circumstances情況?
141
425977
4052
在此情況下的命中率模型。
07:22
So why is this important重要?
142
430188
1500
為什麼這很重要?
07:24
We can take something that was shooting射擊,
143
432102
2803
我們可以將投籃
07:26
which哪一個 was one thing before,
and turn it into two things:
144
434929
2680
這種過去的單一行為,轉化為兩件事:
07:29
the quality質量 of the shot射擊
and the quality質量 of the shooter射手.
145
437633
2651
投籃動作本身的品質,和投籃者的品質。
07:33
So here's這裡的 a bubble泡沫 chart圖表,
because what's TEDTED without a bubble泡沫 chart圖表?
146
441680
3262
這裡有一張泡泡圖,
沒有泡泡圖還像TED嗎?
07:36
(Laughter笑聲)
147
444966
1014
(笑聲)
07:38
Those are NBANBA players玩家.
148
446004
1311
這些都是NBA球員。
07:39
The size尺寸 is the size尺寸 of the player播放機
and the color顏色 is the position位置.
149
447339
3120
泡泡大小代表球員體型大小,
顏色代表他打的位置。
07:42
On the x-axisx軸,
we have the shot射擊 probability可能性.
150
450483
2132
X軸是進球的機率,
07:44
People on the left take difficult shots鏡頭,
151
452639
1953
左邊的球員做了許多勉強的投籃動作,
07:46
on the right, they take easy簡單 shots鏡頭.
152
454616
2229
右邊的球員在有空檔時才會出手。
07:49
On the [y-axisy軸] is their shooting射擊 ability能力.
153
457194
2057
Y軸是球員的投籃能力,
07:51
People who are good are at the top最佳,
bad at the bottom底部.
154
459275
2562
擅長投籃的球員在上方,
不擅長的在下方。
07:53
So for example, if there was a player播放機
155
461861
1760
舉例來說,如果有個球員,
07:55
who generally通常 made製作
47 percent百分 of their shots鏡頭,
156
463621
2097
平均命中率大約47%,
07:57
that's all you knew知道 before.
157
465718
1389
這是過去所有你知道的資訊。
07:59
But today今天, I can tell you that player播放機
takes shots鏡頭 that an average平均 NBANBA player播放機
158
467345
4850
但今天,我能告訴你以
這個球員出手投籃的狀況,
NBA球員的平均命中率是49%,
08:04
would make 49 percent百分 of the time,
159
472219
1961
08:06
and they are two percent百分 worse更差.
160
474204
1684
他比平均低了2%。
08:08
And the reason原因 that's important重要
is that there are lots of 47s out there.
161
476266
4515
這之所以重要,是因為
有這麼多47%命中率的球員。
08:13
And so it's really important重要 to know
162
481714
2549
重點就是要搞清楚,
08:16
if the 47 that you're considering考慮
giving 100 million百萬 dollars美元 to
163
484287
3956
如果你要用100美金
簽下一個47%的球員,
08:20
is a good shooter射手 who takes bad shots鏡頭
164
488267
3055
應該要找能投得準但出手時機不佳的,
08:23
or a bad shooter射手 who takes good shots鏡頭.
165
491346
2397
還是不那麼準但出手時機很好的球員。
08:27
Machine understanding理解 doesn't just change更改
how we look at players玩家,
166
495130
3333
機器的理解力不只改變了
我們對球員的看法,
08:30
it changes變化 how we look at the game遊戲.
167
498487
1858
也改變了我們對比賽的看法。
08:32
So there was this very exciting扣人心弦 game遊戲
a couple一對 of years年份 ago, in the NBANBA finals決賽.
168
500369
3755
兩年前在NBA總冠軍系列戰,
有一場非常刺激的比賽。
08:36
Miami邁阿密 was down by three,
there was 20 seconds left.
169
504148
3207
邁阿密熱火隊落後3分,
時間還剩20秒。
08:39
They were about to lose失去 the championship錦標賽.
170
507379
2025
他們即將把冠軍拱手讓人。
08:41
A gentleman紳士 named命名 LeBron勒布朗 James詹姆士
came來了 up and he took a three to tie領帶.
171
509428
3341
一位叫勒布朗·詹姆士的先生
出手一顆三分球企圖追平比賽,
08:44
He missed錯過.
172
512793
1198
球沒進。
08:46
His teammate隊友 Chris克里斯 Bosh胡說 got a rebound籃板球,
173
514015
1837
他的隊友克里斯·波許搶到籃板,
08:47
passed通過 it to another另一個 teammate隊友
named命名 Ray射線 Allen艾倫.
174
515876
2159
傳給另一位隊友雷·艾倫。
他命中了一顆三分球,
將比賽帶入延長賽,
08:50
He sank沉沒 a three. It went into overtime隨著時間的推移.
175
518059
1919
08:52
They won韓元 the game遊戲.
They won韓元 the championship錦標賽.
176
520002
2096
最後他們贏了比賽,拿到冠軍。
08:54
It was one of the most exciting扣人心弦
games遊戲 in basketball籃球.
177
522122
2444
這是籃球場上最刺激的球賽之一。
08:57
And our ability能力 to know
the shot射擊 probability可能性 for every一切 player播放機
178
525438
3429
而因為我們可以得知每一個球員
在每一秒鐘投進的機率,
09:00
at every一切 second第二,
179
528891
1188
以及每一秒鐘他們搶到籃板的機率,
09:02
and the likelihood可能性 of them getting得到
a rebound籃板球 at every一切 second第二
180
530103
2956
讓我們得以用前所未有的方式
窺見這個時刻的全貌。
09:05
can illuminate照亮 this moment時刻 in a way
that we never could before.
181
533083
3443
09:09
Now unfortunately不幸,
I can't show顯示 you that video視頻.
182
537618
2668
很可惜,現在我無法播放那段影片,
09:12
But for you, we recreated重建 that moment時刻
183
540310
4493
但為了各位,我們重建了那個時刻,
09:16
at our weekly每週 basketball籃球 game遊戲
about 3 weeks ago.
184
544827
2336
就在大約三週前
我們每週例行的籃球比賽裡。
09:19
(Laughter笑聲)
185
547279
2167
(笑聲)
09:21
And we recreated重建 the tracking追踪
that led to the insights見解.
186
549573
3410
我們也重建了讓我們窺見
比賽全貌的追蹤數據。
09:25
So, here is us.
This is Chinatown唐人街 in Los洛杉磯 Angeles洛杉磯,
187
553199
4255
所以,這就是我們,
在洛杉磯的中國城,
09:29
a park公園 we play at every一切 week,
188
557478
1564
我們每週都在這個公園比賽。
09:31
and that's us recreating再創造
the Ray射線 Allen艾倫 moment時刻
189
559066
2231
我們正在重建雷·艾倫的經典時刻,
09:33
and all the tracking追踪
that's associated相關 with it.
190
561321
2229
以及所有相關的追蹤數據。
09:36
So, here's這裡的 the shot射擊.
191
564772
1517
這就是那經典的一球。
09:38
I'm going to show顯示 you that moment時刻
192
566313
2516
我將和各位展示那個時刻,
09:40
and all the insights見解 of that moment時刻.
193
568853
2587
以及那個時刻背後的一切。
09:43
The only difference區別 is, instead代替
of the professional專業的 players玩家, it's us,
194
571464
3730
唯一的不同是,表演者是我們,
不是那些職業球員。
09:47
and instead代替 of a professional專業的
announcer播音員, it's me.
195
575218
2618
還有是我在播報,不是職業播報員,
09:49
So, bear with me.
196
577860
1477
所以請大家見諒。
09:53
Miami邁阿密.
197
581153
1150
邁阿密熱火。
09:54
Down three.
198
582671
1150
3分落後。
09:56
Twenty二十 seconds left.
199
584107
1150
剩下20秒。
09:59
Jeff傑夫 brings帶來 up the ball.
200
587385
1198
傑夫帶球過來。
10:02
Josh玩笑 catches漁獲, puts看跌期權 up a three!
201
590656
1535
喬許接到了球,三分出手!
10:04
[Calculating計算 shot射擊 probability可能性]
202
592631
1849
[計算命中率]
10:07
[Shot射擊 quality質量]
203
595278
1150
[投籃品質]
10:09
[Rebound籃板球 probability可能性]
204
597048
1785
[籃板機率]
10:12
Won't慣於 go!
205
600373
1173
球沒進!
10:13
[Rebound籃板球 probability可能性]
206
601570
1446
[籃板機率]
10:15
Rebound籃板球, Noel諾埃爾.
207
603777
1256
諾爾搶到籃板。
10:17
Back to Daria達里婭.
208
605057
1150
向後傳給朵莉雅。
10:18
[Shot射擊 quality質量]
209
606509
3365
[投籃品質]
10:22
Her three-pointer三分球 -- bang!
210
610676
1620
她三分出手... 球進!
10:24
Tie領帶 game遊戲 with five seconds left.
211
612320
2197
追平比賽,剩下5秒!
10:26
The crowd人群 goes wild野生.
212
614880
1618
觀眾陷入瘋狂。
10:28
(Laughter笑聲)
213
616522
1659
(笑聲)
10:30
That's roughly大致 how it happened發生.
214
618205
1547
事情大概就是這樣發生的。
10:31
(Applause掌聲)
215
619776
1151
(掌聲)
10:32
Roughly大致.
216
620951
1175
大概啦。
10:34
(Applause掌聲)
217
622150
1531
(掌聲)
10:36
That moment時刻 had about a nine percent百分
chance機會 of happening事件 in the NBANBA
218
624121
5484
這個時刻發生在NBA
賽場上的機率大約是9%,
10:41
and we know that
and a great many許多 other things.
219
629629
2261
我們能算出這件事
和其他許多事的機率。
10:43
I'm not going to tell you how many許多 times
it took us to make that happen發生.
220
631914
3491
我絕對不會告訴各位
我們試了幾次才成功。
10:47
(Laughter笑聲)
221
635429
1747
(笑聲)
10:49
Okay, I will! It was four.
222
637200
1872
好啦,告訴你們,四次。
10:51
(Laughter笑聲)
223
639096
1001
(笑聲)
10:52
Way to go, Daria達里婭.
224
640121
1165
幹得不錯,朵莉雅。
10:53
But the important重要 thing about that video視頻
225
641647
4263
但重要的並不是這則影片,
10:57
and the insights見解 we have for every一切 second第二
of every一切 NBANBA game遊戲 -- it's not that.
226
645934
4568
也不是它對NBA每場比賽
每一秒鐘的意涵。
11:02
It's the fact事實 you don't have to be
a professional專業的 team球隊 to track跟踪 movement運動.
227
650639
3929
重要的是,不是只有職業球隊
才能追蹤人的動作,
11:07
You do not have to be a professional專業的
player播放機 to get insights見解 about movement運動.
228
655083
3657
也不是只有職業球員
才需要這些動作背後的意涵。
11:10
In fact事實, it doesn't even have to be about
sports體育 because we're moving移動 everywhere到處.
229
658764
3858
事實上,它也不是只能應用在運動場上,
因為我們隨時都不斷地在各地移動。
11:15
We're moving移動 in our homes家園,
230
663654
2369
我們在家裡移動、
在辦公室裡移動、
11:21
in our offices辦事處,
231
669428
1205
11:24
as we shop and we travel旅行
232
672238
2690
購物和旅遊、
11:29
throughout始終 our cities城市
233
677318
1253
穿梭在我們的城市裡
11:32
and around our world世界.
234
680065
1618
以及全世界。
11:35
What will we know? What will we learn學習?
235
683270
2295
我們可以知道什麼?可以學到什麼?
11:37
Perhaps也許, instead代替 of identifying識別
pick-and-rolls拾輥,
236
685589
2305
或許,除了辨識擋切戰術之外,
11:39
a machine can identify鑑定
the moment時刻 and let me know
237
687918
3010
機器還能辨識出感動時刻,讓我知道
11:42
when my daughter女兒 takes her first steps腳步.
238
690952
2059
我女兒何時踏出她的第一步。
11:45
Which哪一個 could literally按照字面 be happening事件
any second第二 now.
239
693035
2536
這真的是每一秒鐘都可能發生的事。
11:48
Perhaps也許 we can learn學習 to better use
our buildings房屋, better plan計劃 our cities城市.
240
696140
3697
或許我們能夠學會更善加
利用建築物、做更好的都市規劃。
11:52
I believe that with the development發展
of the science科學 of moving移動 dots,
241
700362
4173
我相信藉由移動的點的科學進步,
11:56
we will move移動 better, we will move移動 smarter聰明,
we will move移動 forward前鋒.
242
704559
3643
我們將能更好地移動、更聰明地移動,
並真正向未來移動。
12:00
Thank you very much.
243
708607
1189
非常感謝各位。
12:01
(Applause掌聲)
244
709820
5045
(掌聲)
Translated by Allen Kuo
Reviewed by Twisted Meadows

▲Back to top

ABOUT THE SPEAKER
Rajiv Maheswaran - Researcher
Using advanced data analysis tools, Rajiv Maheswaran and Second Spectrum help make basketball teams smarter.

Why you should listen

Sports fans can get obsessed with stats about player performance and game-day physics. But basketball, a fluid and fast-moving game, has been tough to understand through numbers. Rajiv Maheswaran is working to change that, by offering pro basketball teams insight into game data to make better decisions. Maheswaran is the CEO and co-founder of Second Spectrum, a startup transforming sports through technology. He is also a Research Assistant Professor at the University of Southern California's Computer Science Department and a Project Leader at the Information Sciences Institute at the USC Viterbi School of Engineering, where he co-directs the Computational Behavior Group.

His research spans various aspects of multi-agent systems and distributed artificial intelligence using decision-theoretic and game-theoretic frameworks and solutions. His current interests focus on data analytics, visualization and real-time interaction to understand behavior in spatiotemporal domains. Like, say, the spatiotemporal domain around a basketball hoop.

More profile about the speaker
Rajiv Maheswaran | Speaker | TED.com

Data provided by TED.

This site was created in May 2015 and the last update was on January 12, 2020. It will no longer be updated.

We are currently creating a new site called "eng.lish.video" and would be grateful if you could access it.

If you have any questions or suggestions, please feel free to write comments in your language on the contact form.

Privacy Policy

Developer's Blog

Buy Me A Coffee