ABOUT THE SPEAKER
Dao Nguyen - Media analytics expert
As Publisher of BuzzFeed, Dao Nguyen thinks about how media spreads online and the technology and data that publishers can use to understand why.

Why you should listen

Dao Nguyen is the Publisher of BuzzFeed, a reinvention of the traditional title in which she oversees the company’s tech, product, data and publishing platform, as well as ad product, pricing, and distribution. Nguyen joined BuzzFeed in 2012 and has been instrumental in its rapid growth as the largest independent digital media company in the world. Prior to joining BuzzFeed, Nguyen oversaw product for a financial careers venture within Dow Jones. She also previously served as Chief Executive Officer of Le Monde Interactif, publisher of the leading news site lemonde.fr. Before moving to France, she was Executive Producer at Concrete Media, a small web agency, and a consultant at Andersen Consulting (now Accenture). She has a degree in Applied Mathematics / Computer Science from Harvard and is based in New York City.

More profile about the speaker
Dao Nguyen | Speaker | TED.com
TED Salon Brightline Initiative

Dao Nguyen: What makes something go viral?

Dao Nguyen: 爆紅事件背後的關鍵因素

Filmed:
1,432,741 views

什麼樣的社群媒體內容才可以獲得大家的喜愛? 讓 BuzzFeed 的編輯 Dao Nguyen 來告訴我們她的團隊是怎麼創造出熱門的文章和影片,和怎麼建立一個系統來了解人們是如何用社群媒體內容來連接彼此並創造出新文化。
- Media analytics expert
As Publisher of BuzzFeed, Dao Nguyen thinks about how media spreads online and the technology and data that publishers can use to understand why. Full bio

Double-click the English transcript below to play the video.

00:12
Last year, some BuzzFeedBuzzFeed
employees僱員 were scheming心計
0
841
3569
去年
網路新聞 BuzzFeed 的一些員工
計劃著要
00:16
to prank惡作劇 their boss老闆, Ze Frank坦率,
1
4434
2330
在他們老闆傑·法蘭克生日的那天
00:19
on his birthday生日.
2
7415
1242
捉弄他
00:21
They decided決定 to put a family家庭
of baby寶寶 goats山羊 in his office辦公室.
3
9319
4204
他們決定將幾隻小山羊
藏在他的辦公室
00:25
(Laughter笑聲)
4
13547
1405
(笑聲)
00:26
Now, BuzzFeedBuzzFeed had recently最近 signed on
to the FacebookFacebook的 Live生活 experiment實驗,
5
14976
4421
最近 BuzzFeed 開始使用
臉書的直播功能
00:31
and so naturally自然,
6
19421
1371
所以很自然地
00:32
we decided決定 to livestream現場直播
the whole整個 event事件 on the internet互聯網
7
20816
3882
我們決定要在網路上
直播整個過程
00:36
to capture捕獲 the moment時刻
when Ze would walk步行 in
8
24722
3300
從傑走進辦公室
直到他發現辦公室裡的
00:40
and discover發現 livestock家畜 in his office辦公室.
9
28046
2962
小山羊們
00:44
We thought the whole整個 thing
would last maybe 10 minutes分鐘,
10
32019
3164
我們以為這個過程
只會持續 10 分鐘
一些公司的員工們
00:47
and a few少數 hundred company公司 employees僱員
would log日誌 in for the inside joke玩笑.
11
35207
4524
會登入來觀看這個惡作劇
00:52
But what happened發生?
12
40132
1263
但結果呢
00:53
They kept不停 on getting得到 delayed延遲:
13
41977
1718
這個惡作劇一直被各種事情拖延:
00:55
he went to get a drink,
14
43719
1486
傑跑去買東西喝
00:57
he was called to a meeting會議,
15
45229
1448
傑突然被叫去開會
00:58
the meeting會議 ran long,
16
46701
1743
這個會還開了很久
01:00
he went to the bathroom浴室.
17
48468
1165
後來他還跑去洗手間
01:01
More and more people
started開始 logging記錄 in to watch the goats山羊.
18
49657
4220
越來越多的人開始
點進來看這場惡作劇
01:06
By the time Ze walked in
more than 30 minutes分鐘 later後來,
19
54493
4013
直到 30 分鐘後
傑再次走進辦公室
01:10
90,000 viewers觀眾 were watching觀看
the livestream現場直播.
20
58530
5106
已經有 90,000 人
正在看這個直播了
01:16
Now, our team球隊 had a lot
of discussion討論 about this video視頻
21
64601
3957
在那之後
我們的團隊對這隻影片
為什麼會這麼成功
01:20
and why it was so successful成功.
22
68582
1976
展開了討論
01:22
It wasn't the biggest最大 live生活 video視頻
that we had doneDONE to date日期.
23
70582
2876
這其實不是我們做過的
最大的直播影片
01:25
The biggest最大 one that we had doneDONE
involved參與 a fountain噴泉 of cheese起司.
24
73482
3642
我們做過最大的是一個
關於乳酪噴泉的影片
01:30
But it performed執行 so much better
than we had expected預期.
25
78063
3825
但是這次的效果
卻出乎我們的意料
01:33
What was it about the goats山羊 in the office辦公室
that we didn't anticipate預料?
26
81912
4263
這其中有什麼因素
是我們沒有想到的呢?
01:38
Now, a reasonable合理 person could have
any number of hypotheses假設.
27
86781
4058
大家都可以提出各種合理猜測
01:42
Maybe people love baby寶寶 animals動物.
28
90863
2418
可能是因為觀眾喜歡看小動物
01:45
Maybe people love office辦公室 pranks惡作劇.
29
93751
1724
可能是因為觀眾喜歡辦公室惡作劇
01:47
Maybe people love stories故事
about their bosses老闆
30
95499
2745
可能是因為大家想看老闆在幹嘛
01:50
or birthday生日 surprises驚喜.
31
98268
1533
或者只是因為想看生日驚喜
01:52
But our team球隊 wasn't really thinking思維
about what the video視頻 was about.
32
100382
3700
但比起關注這隻影片內容是什麼
01:56
We were thinking思維 about
33
104106
1272
我們的團隊更想要知道的是
01:57
what the people watching觀看 the video視頻
were thinking思維 and feeling感覺.
34
105402
4076
當大家在看直播的時候
他們在想什麼
以及感受到了什麼
02:01
We read some of the 82,000 comments註釋
that were made製作 during the video視頻,
35
109502
4783
我們看了一些大家在直播中
留下的 82,000 條評論
02:06
and we hypothesized假設 that they were excited興奮
36
114309
3792
我們推測
大家之所以如此感興趣
02:10
because they were participating參與
in the shared共享 anticipation預期
37
118125
3174
是因為他們共同參與到了
02:13
of something that was about to happen發生.
38
121323
2730
這個即將發生惡作劇的期待當中
02:16
They were part部分 of a community社區,
just for an instant瞬間,
39
124077
3212
他們在短暫的時間裡
成為了這個期待團體的一部分
02:19
and it made製作 them happy快樂.
40
127313
1353
這使他們感到快樂
02:21
So we decided決定 that we needed需要
to test測試 this hypothesis假設.
41
129102
3344
所以
我們決定要測試一下這個推論
02:24
What could we do to test測試
this very same相同 thing?
42
132793
3482
我們要怎麼做
才能測試到一樣的效果呢?
02:28
The following以下 week,
43
136995
1391
在接下來的一個禮拜
因為我們知道食物的影片都會很熱門
02:30
armed武裝 with the additional額外 knowledge知識
that food餐飲 videos視頻 are very popular流行,
44
138410
4675
02:35
we dressed連衣裙的 two people in hazmat危險品 suits西裝
45
143109
3571
我們讓兩個人穿上了防護服
02:38
and wrapped包裹 rubber橡膠 bands
around a watermelon西瓜 until直到 it exploded爆炸.
46
146704
4261
將橡皮筋綁在西瓜上
直到西瓜爆炸
(笑聲)
02:42
(Laughter笑聲)
47
150989
1581
02:44
Eight hundred thousand people watched看著
48
152889
3372
八十萬人觀看了這場直播
02:48
the 690th rubber橡膠 band
explode爆炸 the watermelon西瓜,
49
156285
4031
直到第 690 條橡皮筋
終於令西瓜爆炸
02:52
marking印記 it as the biggest最大
FacebookFacebook的 Live生活 event事件 to date日期.
50
160340
3453
使這個直播變成臉書上
觀看人數最多的影片
02:56
The question I get most frequently經常 is:
51
164483
2610
我經常會被問到
02:59
How do you make something go viral病毒?
52
167117
1833
你是怎麼讓一樣東西爆紅的
03:01
The question itself本身 is misplaced放錯地方;
53
169713
2206
其實這個問題本身就是錯的
03:03
it's not about the something.
54
171943
1693
因為關鍵不應該是事物本身
03:05
It's about what the people
doing the something,
55
173660
3297
而是觀眾是怎麼去接觸這件事的
03:08
reading or watching觀看 --
56
176981
1203
不管是通過文章還是影片
03:10
what are they thinking思維?
57
178208
1280
他們在想什麼
03:11
Now, most media媒體 companies公司,
when they think about metadata元數據,
58
179841
3346
現在很多媒體公司
當他們在分析元數據的時候
03:15
they think about subjects主題 or formats格式.
59
183211
2383
他們只關注事件本體
或者是進行的形式
03:18
It's about goats山羊,
60
186412
1150
這是一隻關於小山羊的影片
03:19
it's about office辦公室 pranks惡作劇,
61
187586
1776
這是一隻辦公室惡作劇的影片
這是一隻關於食物的影片
03:21
it's about food餐飲,
62
189386
1297
這是一篇清單文章
一隻影片或是一個測試
03:22
it's a list名單 or a video視頻 or a quiz測驗,
63
190707
1854
它有 2,000 字那麼長
03:24
it's 2,000 words long,
64
192585
1259
它有 15 分鐘那麼長
03:25
it's 15 minutes分鐘 long,
65
193868
1153
裡面包括了 23 條推文
03:27
it has 23 embedded嵌入式 tweets微博 or 15 images圖片.
66
195045
3122
或是 15 張圖片
這些元數據可能很有趣
03:30
Now, that kind of metadata元數據
is mildly溫和 interesting有趣,
67
198191
3012
但卻無法分析到一件事情
03:33
but it doesn't actually其實 get at
what really matters事項.
68
201227
2966
爆紅的真正原因
03:36
What if, instead代替 of tagging標記
what articles用品 or videos視頻 are about,
69
204217
4158
比起給爆紅的文章
或影片的內容貼標籤
我們或許能去探究這件事
03:40
what if we asked:
70
208399
1190
03:41
How is it helping幫助 our users用戶
do a real真實 job工作 in their lives生活?
71
209613
3553
對觀眾的真實生活有什麼影響
這樣會不會有其他新發現呢?
03:46
Last year, we started開始 a project項目
72
214173
2820
去年
我們開始了一個計畫
03:49
to formally正式地 categorize分類
our content內容 in this way.
73
217017
2932
將我們的內容正式用這種方法分類
03:51
We called it, "cultural文化 cartography製圖."
74
219973
2747
我們將這個方法叫做文化製圖
03:55
It formalized形式化 an informal非正式的 practice實踐
that we've我們已經 had for a really long time:
75
223720
4002
它將我們一直在做的
一件事情形式化
03:59
don't just think about the subject學科 matter;
76
227746
2226
分析的時候不要只想到事物本身
04:01
think also about, and in fact事實,
primarily主要 about,
77
229996
3168
還要想到
事實上第一時間就要想到
04:05
the job工作 that your content內容 is doing
for the reader讀者 or the viewer觀眾.
78
233188
3739
你的內容對讀者或是觀眾
會產生什麼影響
04:09
Let me show顯示 you the map地圖
that we have today今天.
79
237450
2506
這張是我們製作的地圖
04:11
Each bubble泡沫 is a specific具體 job工作,
80
239980
2842
每一個泡泡代表一個特定的功能
04:14
and each group of bubbles泡泡
in a specific具體 color顏色 are related有關 jobs工作.
81
242846
4770
每一組相同顏色的泡泡
是相關聯的功能
04:19
First up: humor幽默.
82
247640
1478
第一個:幽默
04:21
"Makes使 me laugh."
83
249918
1161
「讓我大笑」
04:23
There are so many許多 ways方法
to make somebody laugh.
84
251103
2788
有很多方法可以讓一個人笑
04:25
You can be laughing at someone有人,
85
253915
1517
可以是一個好笑的人
04:27
you could laugh
at specific具體 internet互聯網 humor幽默,
86
255456
2155
可以是一則網路笑話
04:29
you could be laughing at some good,
clean清潔, inoffensive無害 dad jokes笑話.
87
257635
3392
也可以是不傷人但老套的笑話
04:33
"This is me." Identity身分.
88
261706
2300
「這就是我」
個人特質
04:36
People are increasingly日益 using運用 media媒體
to explain說明, "This is who I am.
89
264030
3808
越來越多的人喜歡
用社群媒體來解釋
「這就是我」
04:39
This is my upbringing教養, this is my culture文化,
90
267862
2199
這是我的教養
這是我的文化
04:42
this is my fandom影迷,
this is my guilty有罪 pleasure樂趣,
91
270085
2338
這是我喜歡的東西
這是我拿不上檯面的愛好
04:44
and this is how I laugh about myself."
92
272447
2183
這是我怎麼嘲笑自己
04:48
"Helps幫助 me connect with another另一個 person."
93
276600
1882
「幫助我聯繫其他人」
04:50
This is one of the greatest最大
gifts禮品 of the internet互聯網.
94
278506
2411
這是網路最大的優點之一
04:52
It's amazing驚人 when you find
a piece of media媒體
95
280941
2191
你會很興奮
當你在網路上發現
04:55
that precisely恰恰 describes介紹
your bond with someone有人.
96
283156
2532
有東西可以精確地描述
你和另外一個人的關係
04:59
This is the group of jobs工作
that helps幫助 me do something --
97
287020
2598
這是另外一組功能:幫我解決問題
教我如何排解一場紛爭
05:01
helps幫助 me settle解決 an argument論據,
98
289642
1377
幫我從自己或別人的身上學到更多
05:03
helps幫助 me learn學習 something
about myself or another另一個 person,
99
291043
2673
幫我解釋我自己的故事
05:05
or helps幫助 me explain說明 my story故事.
100
293740
1856
05:07
This is the group of jobs工作
that makes品牌 me feel something --
101
295620
2689
這是一組功能:能挑動我的心弦
讓我覺得新奇
05:10
makes品牌 me curious好奇 or sad傷心
or restores恢復 my faith信仰 in humanity人性.
102
298333
3157
或者難過
或者讓我重拾對人的信任
05:13
Many許多 media媒體 companies公司
and creators創作者 do put themselves他們自己
103
301514
3719
很多媒體公司和業者
都有做到站在觀眾的立場思考問題
05:17
in their audiences'觀眾 shoes.
104
305257
1468
05:18
But in the age年齡 of social社會 media媒體,
we can go much farther更遠.
105
306749
2704
但在這個社群媒體的時代
我們可以做更多
05:22
People are connected連接的 to each other
on FacebookFacebook的, on Twitter推特,
106
310056
4062
人們通過臉書及推特聯繫
05:26
and they're increasingly日益 using運用 media媒體
to have a conversation會話
107
314142
4263
越來越多的人也通過
社群媒體來和朋友聊天
05:30
and to talk to each other.
108
318429
1454
05:31
If we can be a part部分 of establishing建立
a deeper更深 connection連接 between之間 two people,
109
319907
5836
如果我們可以在人們之間
創造更深層的聯繫
05:37
then we will have doneDONE
a real真實 job工作 for these people.
110
325767
3189
那我們真的是在創造價值
05:41
Let me give you some examples例子
of how this plays播放 out.
111
329394
2589
讓我來舉個例子來解釋這個理念
05:44
This is one of my favorite喜愛 lists名單:
112
332578
1891
這是我最喜歡的一篇文章
05:46
"32 Memes模因 You Should
Send發送 Your Sister妹妹 Immediately立即" --
113
334493
3303
32 個你應該要馬上告訴你姊的梗
05:49
immediately立即.
114
337820
1302
馬上
05:51
For example, "When you're going
through通過 your sister's姐妹 stuff東東,
115
339583
3104
比如說「當你在翻你姊的東西的時候
05:54
and you hear her coming未來 up the stairs樓梯."
116
342711
1979
聽到她上樓的聲音」
05:56
Absolutely絕對, I've doneDONE that.
117
344714
1790
當然,我也做過那樣的事
05:58
"Watching觀看 your sister妹妹 get in trouble麻煩
for something that you did
118
346528
3155
「看著你的姊姊
因為你做的事陷入麻煩
06:01
and blamed指責 on her."
119
349707
1192
卻責備她」
06:02
Yes, I've doneDONE that as well.
120
350923
1608
是的,我也做過那樣的事
06:04
This list名單 got three million百萬 views意見.
121
352555
1799
這篇貼文獲得了三百萬的瀏覽次數
06:06
Why is that?
122
354378
1165
為什麼?
06:07
Because it did, very well, several一些 jobs工作:
123
355567
2976
因為它做到了這幾點:
06:10
"This is us."
124
358567
1520
「這就是我們」
06:12
"Connect with family家庭."
125
360111
1265
「與家庭產生連結」
06:13
"Makes使 me laugh."
126
361400
1181
「讓我大笑」
06:14
Here are some of the thousands數千
and thousands數千 of comments註釋
127
362605
3134
這是上千條姐妹們互相傳送
06:17
that sisters姐妹 sent發送 to each other
using運用 this list名單.
128
365763
2849
給對方的評論中的一條
06:21
Sometimes有時 we discover發現
what jobs工作 do after the fact事實.
129
369508
3511
有時候我們會在事情發生後
才發現它的影響
06:25
This quiz測驗, "Pick an Outfit衣服 and We'll Guess猜測
Your Exact精確 Age年齡 and Height高度,"
130
373592
5138
這個爆紅的測試:
選擇一套衣服來測試
你的真實年齡和身高
06:30
went very viral病毒: 10 million百萬 views意見.
131
378754
2063
得到了一千萬次的瀏覽
06:32
Ten million百萬 views意見.
132
380841
1176
一千萬次
我的意思是
06:34
I mean -- did we actually其實 determine確定
the exact精確 age年齡 and height高度
133
382041
4526
難道我們真的有測量這一千萬人的
真實年齡和身高嗎?
06:38
of 10 million百萬 people?
134
386591
1584
06:40
That's incredible難以置信. It's incredible難以置信.
135
388199
2262
這真的是太厲害了
太厲害了
06:42
In fact事實, we didn't.
136
390485
1244
但事實上,我們並沒有
06:43
(Laughter笑聲)
137
391753
1129
(笑聲)
06:44
Turns out that this quiz測驗
went extremely非常 viral病毒
138
392906
4093
而且這個測試
在 55 歲以上的女性間最流行
06:49
among其中 a group of 55-and-up-和向上 women婦女 --
139
397023
3563
06:52
(Laughter笑聲)
140
400610
1172
(笑聲)
06:53
who were surprised詫異 and delighted欣喜的
141
401806
3649
這是一群看到自己被定為
28 歲和 175 公分高後
06:57
that BuzzFeedBuzzFeed determined決心
that they were 28 and 5'9".
142
405479
5718
會很驚訝和高興的群體
07:03
(Laughter笑聲)
143
411221
1610
(笑聲)
07:04
"They put me at 34 years年份 younger更年輕
and seven inches英寸 taller.
144
412855
3208
「我的測試結果年輕了 34 歲
和高了 18 公分耶
07:08
I dress連衣裙 for comfort安慰 and do not give
a damn該死的 what anyone任何人 says.
145
416087
2948
我每天都穿得很舒服
完全不在意別人講什麼
07:11
Age年齡 is a state of mind心神."
146
419059
1779
因為年齡是一種心態」
07:12
This quiz測驗 was successful成功
not because it was accurate準確,
147
420862
3050
這個測試很成功不是因為
它的測試結果有多準確
07:15
but because it allowed允許 these ladies女士們
to do a very important重要 job工作 --
148
423936
4054
而是因為它讓這些女性們
07:20
the humblebraghumblebrag.
149
428014
1204
有了機會成功的誇獎自己
07:22
Now, we can even apply應用
this framework骨架 to recipes食譜 and food餐飲.
150
430478
4983
我們甚至可以將這個理念
用在食譜和食物上
07:27
A recipe's食譜的 normal正常 job工作 is to tell you
what to make for dinner晚餐 or for lunch午餐.
151
435887
5573
食譜一般是用來告訴你
怎麼去做午餐和晚餐的
07:34
And this is how you would normally一般
brainstorm頭腦風暴 for a recipe食譜:
152
442205
3408
你構思食譜的過程應該是:
07:37
you figure數字 out what ingredients配料
you want to use,
153
445637
2323
找出你要用的原料
07:39
what recipe食譜 that makes品牌,
154
447984
1168
烹調的方法
07:41
and then maybe you slap拍擊 a job工作 on
at the end結束 to sell it.
155
449176
3245
可能到最後你還成功的
賣出了這份食譜
07:44
But what if we flipped翻轉 it around
and thought about the job工作 first?
156
452445
4367
但如果我們反過來呢
07:49
One brainstorming頭腦風暴 session會議
involved參與 the job工作 of bonding結合.
157
457730
4665
我們腦力激盪的主題是連結
07:54
So, could we make a recipe食譜
that brought people together一起?
158
462976
4300
我們可以製作一份食譜
將大家都凝聚在一起嗎?
07:59
This is not a normal正常 brainstorming頭腦風暴
process處理 at a food餐飲 publisher出版者.
159
467300
4421
這不是一個正常的腦力激盪過程
08:05
So we know that people
like to bake together一起,
160
473532
2715
我們知道大家喜歡一起烘培
08:08
and we know that people
like to do challenges挑戰 together一起,
161
476271
3285
我們知道大家喜歡一起接受挑戰
08:11
so we decided決定 to come up with a recipe食譜
that involved參與 those two things,
162
479580
4733
所以我們覺得製作一個
包括兩樣東西的
08:16
and we challenged挑戰 ourselves我們自己:
163
484337
1911
具有挑戰性的食譜
08:18
Could we get people to say,
164
486272
1806
我們想讓大家可以和自己的好朋友說
08:20
"Hey, BFFBFF, let's see
if we can do this together一起"?
165
488102
4086
「嘿,我們來試試做這個怎麼樣?」
08:24
The resulting造成 video視頻 was
the "FudgiestFudgiest Brownies巧克力 Ever" video視頻.
166
492807
3335
我們做了一隻影片叫做
「史上最布朗尼的布朗尼」
08:28
It was enormously巨大 successful成功
in every一切 metric possible可能 --
167
496166
2924
它獲得了巨大的成功
08:31
70 million百萬 views意見.
168
499114
1364
總共七千萬的觀看次數
08:32
And people said the exact精確 things
that we were going after:
169
500935
3700
大家都做出了我們預期的反應:
08:36
"Hey, Colette科萊特, we need to make these,
are you up for a challenge挑戰?"
170
504659
3100
「 嘿!柯萊,我們來
挑戰看看這個怎麼樣?」
08:39
"Game遊戲 on."
171
507783
1153
「 沒問題! 」
這隻影片成功達到了它的目的
08:40
It did the job工作 that it set out to do,
172
508960
2270
08:43
which哪一個 was to bring帶來 people together一起
over baking and chocolate巧克力.
173
511254
4116
通過烘培和巧克力將大家凝聚在一起
08:49
I'm really excited興奮 about
the potential潛在 for this project項目.
174
517294
3924
我對於這個計畫的潛力感到很興奮
08:53
When we talk about this framework骨架
with our content內容 creators創作者,
175
521242
3142
當我們和內容創作者
談論到這個理念的時候
08:56
they instantly即刻 get it,
176
524408
1165
他們很快就懂了
08:57
no matter what beat擊敗 they cover,
what country國家 they’re回覆 in,
177
525597
2733
無論他們翻唱什麼音樂
在哪個國家
09:00
or what language語言 they speak說話.
178
528354
1365
講什麼語言
09:01
So cultural文化 cartography製圖 has helped幫助 us
massively大規模 scale規模 our workforce勞動力 training訓練.
179
529743
4377
所以文化製圖在我們的
培訓上幫助了很多
09:06
When we talk about this project項目
and this framework骨架
180
534621
3650
當我們和廣告業者和品牌商
09:10
with advertisers廣告商 and brands品牌,
181
538295
1372
談論到這個項目和理念的時候
09:11
they also instantly即刻 get it,
182
539691
1578
他們也很快就理解了
09:13
because advertisers廣告商,
more often經常 than media媒體 companies公司,
183
541293
5626
因為廣告業者
很多時候比媒體公司
09:18
understand理解 how important重要 it is
to understand理解 the job工作
184
546943
3522
更加了解他們產品
09:22
that their products製品
are doing for customers顧客.
185
550489
2446
對他們的顧客
有什麼幫助的重要性
09:26
But the reason原因 I'm the most excited興奮
about this project項目
186
554580
3743
但讓我對這個計畫
感到最興奮的原因是
09:30
is because it changes變化 the relationship關係
between之間 media媒體 and data數據.
187
558347
3871
它改變了媒體和數據間的關係
很多媒體公司將媒體當成自己的工具
09:35
Most media媒體 companies公司
think of media媒體 as "mine."
188
563051
3434
09:39
How many許多 fans球迷 do I have?
189
567547
1207
我有多少粉絲?
09:40
How many許多 followers追隨者 have I gained獲得?
190
568778
1597
我有多少新的追蹤者?
09:42
How many許多 views意見 have I gotten得到?
191
570399
1707
我得到了多少觀看次數?
09:44
How many許多 unique獨特 IDsid do I have
in my data數據 warehouse倉庫?
192
572130
2777
我的資料倉儲裡
有多少個唯一識別碼?
09:47
But that misses錯過 the true真正 value of data數據,
which哪一個 is that it's yours你的.
193
575372
3948
但卻忽略了數據的真實價值:「你」
如果我們從資料裡知道
09:53
If we can capture捕獲 in data數據
what really matters事項 to you,
194
581166
6098
對你來說什麼是最重要的
如果我們更加了解我們的工作
09:59
and if we can understand理解 more
the role角色 that our work plays播放
195
587288
4488
在人們的生活中扮演著什麼角色
10:03
in your actual實際 life,
196
591800
1389
10:05
the better content內容 we can create創建 for you,
197
593213
2863
那我們就可以給大家
創造出更好的內容
10:08
and the better that we can reach達到 you.
198
596100
1857
我們就更能和你產生連結
10:10
Who are you?
199
598760
1275
你是誰?
10:13
How did you get there?
200
601293
1580
你在哪裡?
10:14
Where are you going?
201
602897
1209
你要去哪裡?
10:16
What do you care關心 about?
202
604130
1269
你在乎什麼?
10:17
What can you teach us?
203
605423
1379
你可以教我們什麼?
10:19
That's cultural文化 cartography製圖.
204
607151
1460
這就是文化製圖
10:21
Thank you.
205
609146
1156
謝謝你們
10:22
(Applause掌聲)
206
610326
3380
(掌聲)
Translated by Vanessa Leung
Reviewed by 小隻 羊

▲Back to top

ABOUT THE SPEAKER
Dao Nguyen - Media analytics expert
As Publisher of BuzzFeed, Dao Nguyen thinks about how media spreads online and the technology and data that publishers can use to understand why.

Why you should listen

Dao Nguyen is the Publisher of BuzzFeed, a reinvention of the traditional title in which she oversees the company’s tech, product, data and publishing platform, as well as ad product, pricing, and distribution. Nguyen joined BuzzFeed in 2012 and has been instrumental in its rapid growth as the largest independent digital media company in the world. Prior to joining BuzzFeed, Nguyen oversaw product for a financial careers venture within Dow Jones. She also previously served as Chief Executive Officer of Le Monde Interactif, publisher of the leading news site lemonde.fr. Before moving to France, she was Executive Producer at Concrete Media, a small web agency, and a consultant at Andersen Consulting (now Accenture). She has a degree in Applied Mathematics / Computer Science from Harvard and is based in New York City.

More profile about the speaker
Dao Nguyen | Speaker | TED.com

Data provided by TED.

This site was created in May 2015 and the last update was on January 12, 2020. It will no longer be updated.

We are currently creating a new site called "eng.lish.video" and would be grateful if you could access it.

If you have any questions or suggestions, please feel free to write comments in your language on the contact form.

Privacy Policy

Developer's Blog

Buy Me A Coffee