Tricia Wang: The human insights missing from big data
Tricia Wang: La perspectiva humana que hace falta en big data
With astronaut eyes and ethnographer curiosity, Tricia Wang helps corporations grow by discovering the unknown about their customers. Full bio
Double-click the English transcript below to play the video.
poets and politicians,
poetas y políticos,
sobre las preguntas más importantes,
on life's most important questions,
advance into this territory?"
avanzar a este territorio?"
and you would get on your knees,
she would come out of it,
de la antigua China
a los calendarios mayas,
what's going to happen next.
queremos tomar la decisión correcta.
to make the right decision.
saber que podemos decidir
knowing that we can make a decision
or "deep learning" or "neural net."
o "aprendizaje profundo" o "red neural".
a nuestro oráculo ahora,
we ask of our oracle now,
to ship these phones
de enviar estos teléfonos
with a genetic disorder?"
con un problema genético?"
we can predict for this product?"
proyectar para este producto?"
y odia la lluvia.
and she hates the rain.
to untrain her.
an oracle, called Dark Sky,
que se llama Cielos Oscuros,
in the next 10 minutes.
para los próximos diez minutos.
de oráculos es de USD 122 000 millones.
our oracle is a $122 billion industry.
sorprendentemente bajos.
de big data no son rentables,
aren't even profitable,
coming up to me saying,
better decisions.
mejores decisiones.
with more breakthrough ideas."
ideas innovadoras".
of how people use technology,
es el análisis de datos.
not helping us make better decisions,
mejores decisiones,
todos los recursos
who have all these resources
sistemas de big data?
nuevas estrategias?
de investigadora en Nokia.
a research position with Nokia.
cell phone companies in the world,
más grandes del mundo,
como China, México e India...
like China, Mexico and India --
a lot of research
investigado bastante
de perfiles de bajos ingresos.
informal.
as a street vendor
in internet cafés,
so I could understand
para entender
los videojuegos y móviles.
games and mobile phones
del campo a las ciudades.
from the rural areas to the cities.
that I was gathering,
que estaba coleccionando,
among low-income Chinese people.
entre los pobres de China.
by advertisements for luxury products
para productos de lujo,
-- ¿quién no quiere uno? --
who wouldn't want one? --
the actually enticed them the most
que realmente les interesaban
into this high-tech life.
esta vida de alta tecnología.
en barriadas como esta,
in urban slums like this one,
over half of their monthly income
la mitad de su sueldo mensual
of iPhones and other brands.
de iPhones y otras marcas.
con inmigrantes y trabajar con ellos,
with migrants and working with them
ellos hacían,
that they were doing,
all these data points together --
al azar como yo vendiendo comida,
like me selling dumplings,
on their cell phone bills.
en las cuentas de móviles.
más completa,
this much more holistic picture
iban a querer un teléfono inteligente,
would want a smartphone,
to get their hands on one.
por conseguir uno.
era el 2009,
looking like iPhones.
a los iPhones.
and realistic people said,
y realista dijo:
son una moda pasajera.
these heavy things
esas cosas pesadas
se rompen cada vez que se te caen?"
and they break every time you drop them?"
about my insights,
to share them with Nokia.
en compartirlas con Nokia.
millions of data points,
of anyone wanting to buy a smartphone,
quiera comprar teléfonos inteligentes,
as diverse as it is, is too weak
aún siendo diversa, es muy débil
suponiendo que la gente no sabe
assuming that people don't know
to get any data back
a obtener ningún resultado
a smartphone in two years.
have been designed
han sido diseñados
empresarial existente,
at these emergent human dynamics
humanas emergentes,
of missing something.
datos todo el tiempo
throwing out data all the time
grandes volúmenes de datos.
nosotros somos los responsables.
it's our responsibility.
very specific environments,
en ambientes bastante específicos,
or delivery logistics or genetic code,
distribución, o códigos genéticos,
that are more or less contained.
es de sistemas contenidos.
son contenidos tan organizadamente.
are as neatly contained.
and systems are more dynamic,
sistemas más dinámicos,
that involve human beings,
que conciernen a seres humanos,
that we don't know how to model so well.
sobre la conducta humana,
about human behavior,
are constantly changing.
cambian constantemente.
y aparece algo nuevo.
enters the picture.
on big data alone
de no ver algo,
that we'll miss something,
that we already know everything.
de saberlo todo.
esta contradicción,
to see this paradox
that I call the quantification bias,
predisposición cuantitativa
valoramos más lo que podemos medir
of valuing the measurable
esta experiencia en el trabajo.
colleagues who are like this,
company may be like this,
so fixated on that number,
fijación con un número,
outside of it,
en la punta de la nariz.
right in front of their face.
wrong with quantifying;
from looking at an Excel spreadsheet,
una hoja de cálculo Excel,
está bien. Todo está bajo control".
Everything is under control."
to kind of keep that in check,
as a numerical value.
into silver-bullet thinking,
para cualquier organización,
for any organization,
the future we need to predict --
predecimos
that's bearing down on us
the wrong decisions.
que vayamos por ese camino.
de la antigua Grecia
of ancient Greece
that shows us the path forward.
enseñarnos el camino hacia adelante.
han demostrado
where the most famous oracle sat,
donde estaba el oráculo más famoso,
over two earthquake faults.
these petrochemical fumes
petroquímicos
right above these faults,
sentado sobre estas fallas,
of ethylene gas, these fissures.
gas etileno, por estas grietas.
la hacía balbucear, alucinar,
babble and hallucinate
any useful advice out of her
al oráculo?
surrounding the oracle?
on your left-hand side
está a su izquierda,
with the oracle.
con el oráculo.
y se arrodillaban,
and get on their knees,
would get to work,
follow-up questions,
esta profecía? ¿Quién eres?
this prophecy? Who are you?
with this information?"
información, más etnográfica,
this more ethnographic,
del oráculo.
los sistemas de big data.
de big data estén inhalando gas
are huffing ethylene gas,
invalid predictions.
that the oracle needed her temple guides,
necesitaba los guías de templo,
también los necesitan.
and user researchers
yo llamo "datos densos".
que no se pueden cuantificar.
that cannot be quantified.
that I collected for Nokia
para Nokia,
of a very small sample size,
y sustancioso,
la narrativa humana.
the human narrative.
what's missing in our models.
falta en nuestros modelos.
in human questions,
preguntas de negocios en preguntas humanas
big data y "datos densos"
big and thick data
insights at scale
nos ofrecen ideas en escala,
of machine intelligence,
la inteligencia artificial
ayudan a rescatar el contexto perdido
rescue the context loss
de la inteligencia humana.
of human intelligence.
that's when things get really fun,
la cosa se pone divertida,
just working with data
que nunca ha recolectado.
that hasn't been collected.
to transform their business.
de transformar su negocio.
recommendation algorithm,
algoritmo de recomendaciones,
for anyone who could improve it.
para cualquiera que lo pudiera mejorar.
eran solo graduales.
the improvements were only incremental.
de lo que pasaba,
Grant McCracken,
Grant McCracken,
de "datos densos".
that they hadn't seen initially
que no vieron inicialmente
le encanta mirar de una sentada.
to binge-watch.
feel guilty about it.
ni se sentían culpables.
"Oh. This is a new insight."
this big data insight
de los datos densos
and validated it,
very simple but impactful.
simple pero con mucho impacto.
series de diferentes géneros
the same show from different genres
a usuarios similares,
from similar users,
ver series de una sentada.
for you to binge-watch.
viewer experience,
completa de los espectadores,
for whole weekends at a time,
se desaparecen por fines de semanas,
like "Master of None."
Dueño de nadie.
they not only improved their business,
no solo mejoraron su negocio,
de consumo de la audiencia.
to double in the next few years.
de sus acciones en los próximos años.
de cómo consumimos programación,
watching more videos
insights into the algorithm
de "datos densos" a los algoritmos
están usando big data
police departments are using big data
and sentencing recommendations
y las sentencias
prejuicios existentes.
Agencia Nacional de Seguridad
of thousands of civilians in Pakistan
miles de muertes de civiles
metadatos de aparatos móviles.
seguro médico o empleo,
or to employment,
by the quantification bias.
hacia la cuantificación.
hemos progresado mucho
is that we've come a long way
to make predictions.
para hacer predicciones.
so let's just use them better.
o sea que usémoslas mejor.
con los "datos densos",
with the thick data.
con los oráculos,
with the oracles,
in companies or nonprofits
u organizaciones sin fines de lucro
estamos comprometidos
we're collectively committed
missing that something.
ABOUT THE SPEAKER
Tricia Wang - Technology ethnographerWith astronaut eyes and ethnographer curiosity, Tricia Wang helps corporations grow by discovering the unknown about their customers.
Why you should listen
For Tricia Wang, human behavior generates some of the most perplexing questions of our times. She has taught global organizations how to identify new customers and markets hidden behind their data, amplified IDEO's design thinking practice as an expert-in-residence, researched the social evolution of the Chinese internet, and written about the "elastic self," an emergent form of interaction in a virtual world. Wang is the co-founder of Sudden Compass, a consulting firm that helps companies unlock new growth opportunities by putting customer obsession into practice.
Wang's work has been featured in The Atlantic, Al Jazeera, and The Guardian. Fast Company spotlighted her work in China: "What Twitter Can Learn From Weibo: Field Notes From Global Tech Ethnographer Tricia Wang." In her latest op-ed on Slate, she discusses how attempts to stop terrorists on social media can harm our privacy and anonymity. Her Medium post, "Why Big Data Needs Thick Data," is a frequently cited industry piece on the importance of an integrated data approach. One of her favorite essays documents her day in the life of working as a street vendor in China.
Known for her lively presentations that are grounded in her research and observations about human behavior and data, Wang has spoken at organizations such as Proctor & Gamble, Nike, Wrigley, 21st Century Fox and Tumblr. Her most recent talk at Enterprise UX delved into why corporate innovation usually doesn’t work and what to do about it. She delivered the opening keynote at The Conference to a crowd of marketers and creatives, delving into the wild history of linear perspective and its influence on how we think and form organizations.
Wang holds affiliate positions at Data & Society, Harvard University's Berkman Klein Center for Internet Studies and New York University's Interactive Telecommunication Program. She oversees Ethnography Matters, a site that publishes articles about applied ethnography and technology. She co-started a Slack community for anyone who uses ethnographic methods in industry.
Wang began her career as a documentary filmmaker at NASA, an HIV/AIDS activist, and an educator specializing in culturally responsive pedagogy. She is also proud to have co-founded the first national hip-hop education initiative, which turned into the Hip Hop Education Center at New York University, and to have built after-school technology and arts programs for low-income youth at New York City public schools and the Queens Museum of Arts. Her life philosophy is that you have to go to the edge to discover what’s really happening. She's the proud companion of her internet famous dog, #ellethedog.
Tricia Wang | Speaker | TED.com