Tricia Wang: The human insights missing from big data
Tricia Wang: Le intuizioni umane che mancano nei big data
With astronaut eyes and ethnographer curiosity, Tricia Wang helps corporations grow by discovering the unknown about their customers. Full bio
Double-click the English transcript below to play the video.
poets and politicians,
poeta o politico,
on life's most important questions,
importante per la propria vita,
advance into this territory?"
avanzare in questo territorio?"
and you would get on your knees,
ci si inginocchiava,
she would come out of it,
what's going to happen next.
to make the right decision.
prendere la giusta decisione.
knowing that we can make a decision
or "deep learning" or "neural net."
"apprendimento profondo" o "rete neurale".
we ask of our oracle now,
che poniamo all'oracolo,
to ship these phones
per trasportare questi telefoni
with a genetic disorder?"
una malattia genetica?"
we can predict for this product?"
prevediamo per questo prodotto?
and she hates the rain.
e odia la pioggia.
to untrain her.
per riabilitarla.
an oracle, called Dark Sky,
chiamato Dark Sky,
in the next 10 minutes.
accurate per i successivi dieci minuti.
our oracle is a $122 billion industry.
da 122 miliardi di euro.
aren't even profitable,
con i big data non sono redditizi
coming up to me saying,
in sistemi big data,
better decisions.
decisioni migliori.
with more breakthrough ideas."
le idee più innovative."
della tecnologia.
alle aziende
of how people use technology,
usano la tecnologia,
not helping us make better decisions,
a prendere decisioni migliori,
who have all these resources
che hanno queste risorse
a research position with Nokia.
da una posizione di ricerca alla Nokia.
cell phone companies in the world,
aziende di telecomunicazioni,
like China, Mexico and India --
come la Cina, il Messico, l'India --
a lot of research
avevo fatto molta ricerca
usano la tecnologia.
as a street vendor
il venditore ambulante
ai lavoratori edili.
in internet cafés,
negli internet point
so I could understand
per capire
games and mobile phones
e i telefonini
from the rural areas to the cities.
dalla campagna alle città.
that I was gathering,
che raccoglievo,
among low-income Chinese people.
dal reddito basso.
by advertisements for luxury products
da pubblicità di prodotti di lusso
who wouldn't want one? --
chi non ne vorrebbe una? --
the actually enticed them the most
che interessavano di più
into this high-tech life.
nella nuova vita high-tech.
in urban slums like this one,
nei bassifondi urbani,
over half of their monthly income
metà dei loro redditi
of iPhones and other brands.
degli iPhone o altri telefoni.
with migrants and working with them
e lavorando con loro,
that they were doing,
che loro facevano,
all these data points together --
tutti questi dati --
like me selling dumplings,
come vendere i fagottini di mele,
on their cell phone bills.
del loro traffico telefonico.
this much more holistic picture
un'immagine più olistica
would want a smartphone,
volevano uno smartphone,
to get their hands on one.
per averne uno.
appena usciti nel 2009,
looking like iPhones.
a somigliare agli iPhone.
and realistic people said,
e realistiche dicevano,
these heavy things
queste cose pesanti
and they break every time you drop them?"
e che si rompono appena cadono?"
about my insights,
to share them with Nokia.
di condividerle con la Nokia.
millions of data points,
of anyone wanting to buy a smartphone,
che la gente comprerà smartphone.
as diverse as it is, is too weak
anche se vario, è troppo debole
assuming that people don't know
che la gente non sappia
to get any data back
a smartphone in two years.
uno smartphone tra due anni.
have been designed
sono stati creati
un modello di business esistente
at these emergent human dynamics
dinamiche umane emergenti
dalle dinamiche del mercato
of missing something.
del perdersi qualcosa.
throwing out data all the time
ignorare dati importanti
da un modello quantitativo
it's our responsibility.
è responsabilità nostra.
very specific environments,
ambienti specifici
or delivery logistics or genetic code,
o il codice genetico,
that are more or less contained.
che sono più o meno limitati.
are as neatly contained.
sono così facilmente contenibili.
and systems are more dynamic,
sistemi più dinamici,
that involve human beings,
che coinvolgono le persone,
e imprevedibilità,
that we don't know how to model so well.
che non sappiamo rappresentare bene.
about human behavior,
qualche comportamento umano,
are constantly changing.
cambiano di continuo.
enters the picture.
entra in scena.
on big data alone
solo i big data
that we'll miss something,
di perdersi qualcosa,
that we already know everything.
di sapere tutto.
to see this paradox
difficile da vedere
that I call the quantification bias,
un pregiudizio della quantificazione,
of valuing the measurable
di preferire il misurabile
colleagues who are like this,
che la pensano così,
company may be like this,
so fixated on that number,
ossessionate da quel numero,
outside of it,
al di fuori di esso,
right in front of their face.
l'evidenza dei fatti.
wrong with quantifying;
nel quantificare;
from looking at an Excel spreadsheet,
guardando un foglio di Excel,
Everything is under control."
Va tutto bene. Tutto è sotto controllo."
to kind of keep that in check,
che ne controlli l'uso,
as a numerical value.
con valori numerici.
into silver-bullet thinking,
col credere nei miracoli
for any organization,
per qualunque azienda,
the future we need to predict --
che dobbiamo prevedere
that's bearing down on us
che sta arrivando su di noi
the wrong decisions.
la decisione sbagliata.
qualcosa d'importante.
of ancient Greece
that shows us the path forward.
che ci mostra la strada.
hanno dimostrato
where the most famous oracle sat,
dove sedeva l'oracolo più famoso,
over two earthquake faults.
these petrochemical fumes
right above these faults,
sopra questa faglia,
of ethylene gas, these fissures.
babble and hallucinate
che la faceva farfugliare
any useful advice out of her
ricevere consigli utili da lei
surrounding the oracle?
on your left-hand side
with the oracle.
con l'oracolo.
and get on their knees,
e si inginocchiavano
would get to work,
follow-up questions,
this prophecy? Who are you?
questa profezia? Chi sei?
with this information?"
di questa informazione?"
this more ethnographic,
raccoglievano queste informazioni
are huffing ethylene gas,
emettano gas etilene,
invalid predictions.
that the oracle needed her temple guides,
aveva bisogno delle guide del tempio,
di big data ne hanno.
and user researchers
come gli etnografi
i cosiddetti 'dati densi'.
that cannot be quantified.
che non possono essere quantificate.
that I collected for Nokia
che ho raccolto per Nokia
of a very small sample size,
di un campione molto piccolo,
profondità di significato.
the human narrative.
le storie che contengono.
what's missing in our models.
cosa manca nei nostri modelli.
in human questions,
economiche in questioni umane,
big and thick data
i big data con i dati densi
insights at scale
su larga scala
of machine intelligence,
l'intelligenza artificiale,
rescue the context loss
a sopperire alla mancanza di contesto
utilizzabili i big data
of human intelligence.
that's when things get really fun,
è l'inizio del divertimento,
just working with data
più solo con i dati
that hasn't been collected.
che non hai raccolto.
to transform their business.
di trasformare il proprio business.
recommendation algorithm,
algoritmo di raccomandazione,
for anyone who could improve it.
a chiunque riuscisse a migliorarlo.
the improvements were only incremental.
erano solo incrementali.
cosa stava succedendo,
Grant McCracken,
Grant McCracken,
that they hadn't seen initially
che non aveva notato prima
to binge-watch.
le scorpacciate di TV
feel guilty about it.
"Oh. This is a new insight."
che era una buona intuizione.
this big data insight
and validated it,
very simple but impactful.
di semplice ma significativo.
the same show from different genres
lo stesso programma per generi diversi
from similar users,
per utenti simili,
in maggiore quantità.
for you to binge-watch.
scorpacciate di TV."
viewer experience,
dei suoi utenti,
for whole weekends at a time,
scompaiono per interi weekend,
like "Master of None."
"Master of None".
they not only improved their business,
non solo ha raggiunto risultati migliori,
il modo in cui usiamo i media.
to double in the next few years.
nei prossimi anni.
watching more videos
di guardare più video
insights into the algorithm
nell'algoritmo
police departments are using big data
di polizia usano i big data
e per raccomandazioni di sentenze
and sentencing recommendations
i pregiudizi attuali.
per l'apprendimento automatico
of thousands of civilians in Pakistan
migliaia di civili in Pakistan
dei telefoni cellulari.
sempre più automatizzate,
or to employment,
alle assicurazioni sanitarie
by the quantification bias.
dei pregiudizi quantitativi.
is that we've come a long way
che è passato tanto tempo
to make predictions.
per le predizioni.
so let's just use them better.
per cui usiamoli meglio.
with the thick data.
with the oracles,
all'oracolo,
in companies or nonprofits
nelle aziende o nelle ONG,
we're collectively committed
è che siamo vincolati collettivamente
missing that something.
quel qualcosa.
ABOUT THE SPEAKER
Tricia Wang - Technology ethnographerWith astronaut eyes and ethnographer curiosity, Tricia Wang helps corporations grow by discovering the unknown about their customers.
Why you should listen
For Tricia Wang, human behavior generates some of the most perplexing questions of our times. She has taught global organizations how to identify new customers and markets hidden behind their data, amplified IDEO's design thinking practice as an expert-in-residence, researched the social evolution of the Chinese internet, and written about the "elastic self," an emergent form of interaction in a virtual world. Wang is the co-founder of Sudden Compass, a consulting firm that helps companies unlock new growth opportunities by putting customer obsession into practice.
Wang's work has been featured in The Atlantic, Al Jazeera, and The Guardian. Fast Company spotlighted her work in China: "What Twitter Can Learn From Weibo: Field Notes From Global Tech Ethnographer Tricia Wang." In her latest op-ed on Slate, she discusses how attempts to stop terrorists on social media can harm our privacy and anonymity. Her Medium post, "Why Big Data Needs Thick Data," is a frequently cited industry piece on the importance of an integrated data approach. One of her favorite essays documents her day in the life of working as a street vendor in China.
Known for her lively presentations that are grounded in her research and observations about human behavior and data, Wang has spoken at organizations such as Proctor & Gamble, Nike, Wrigley, 21st Century Fox and Tumblr. Her most recent talk at Enterprise UX delved into why corporate innovation usually doesn’t work and what to do about it. She delivered the opening keynote at The Conference to a crowd of marketers and creatives, delving into the wild history of linear perspective and its influence on how we think and form organizations.
Wang holds affiliate positions at Data & Society, Harvard University's Berkman Klein Center for Internet Studies and New York University's Interactive Telecommunication Program. She oversees Ethnography Matters, a site that publishes articles about applied ethnography and technology. She co-started a Slack community for anyone who uses ethnographic methods in industry.
Wang began her career as a documentary filmmaker at NASA, an HIV/AIDS activist, and an educator specializing in culturally responsive pedagogy. She is also proud to have co-founded the first national hip-hop education initiative, which turned into the Hip Hop Education Center at New York University, and to have built after-school technology and arts programs for low-income youth at New York City public schools and the Queens Museum of Arts. Her life philosophy is that you have to go to the edge to discover what’s really happening. She's the proud companion of her internet famous dog, #ellethedog.
Tricia Wang | Speaker | TED.com