Aaswath Raman: How we can turn the cold of outer space into a renewable resource
Aaswath Raman: Hogyan alakíthatjuk a világűr hidegét megújuló energiává?
Aaswath Raman is a scientist passionate about harnessing new sources of energy, mitigating climate change and more intelligently understanding the world around us -- by better manipulating light and heat using nanoscale materials. Full bio
Double-click the English transcript below to play the video.
to visit my grandparents,
are pretty mild at best --
or 72 degrees Fahrenheit
and not too hot.
is a hot and humid place
or 90s Fahrenheit.
or sleep in such weather?"
vagy aludni ilyen időben?"
didn't have an air conditioner.
nem volt légkondicionálójuk.
to persuade them to get one.
hogy szerezzenek be egyet.
collectively account for 17 percent
17 százalékát jelenleg
from the air conditioners
during my summer vacations,
nyári szünidőim idején,
that keep our food safe and cold for us
that keep our data centers operational.
tartó ipari léptékű rendszerekig.
account for eight percent
kibocsátásának 8%-át adják.
might grow sixfold by the year 2050,
2050-re a hatszorosára nőhet,
in Asian and African countries.
országok fokozott fölhasználása okoz.
in and around my grandmother's place
and productivity
egészsége, jó közérzete
alarming things about climate change
a legriasztóbb következmény,
cooling systems --
hűtőrendszerekre,
emitters of greenhouse gas emissions.
üvegházhatású gázt bocsátanak ki.
to cause a feedback loop,
of greenhouse gases
legnagyobb forrásává
kilowatt-hours of electricity every year,
villamos energiára lesz szükség,
fölhasználásunk fele.
to an amazing opportunity.
in the efficiency of every cooling system
10-20%-os javítása
on our greenhouse gas emissions,
that worst-case feedback loop.
visszacsatolási hurok kialakulását.
about light and heat.
a fényről és a hőről.
allow us to alter the flow
miként teszik lehetővé
áramlásának megváltoztatását
once thought impossible.
the value of cooling
working on this problem
intellektuális rejtély ösztökélt,
that I came across about six years ago.
able to make ice in desert climates?
csinálniuk sivatagi körülmények között?
located in the southwest of Iran.
of such structures throughout Iran,
throughout the rest of the Middle East
a Közel-Kelet többi részén,
this ice house many centuries ago,
a jégvermekkel foglalkozók
in the pool you see on the left
as the sun set.
might be above freezing,
meghaladta a fagypontot,
or 41 degrees Fahrenheit,
in the early morning hours
you see on the right,
something very similar at play
on the ground on a clear night,
talajon képződő zúzmarát,
is well above freezing.
jóval fagypont fölötti volt is.
if the air temperature is above freezing?
fagypont fölötti hőmérsékleten?
cause the water to become ice.
cooling on a window sill.
hűlő süteményre.
its heat needs to flow somewhere cooler.
hűvösebb helyre kell távoznia.
is actually flowing to the cold of space.
a hideg világűrbe távozik.
like most natural materials,
akár a többi természetes anyag –
known as thermal radiation.
as infrared light right now,
alakjában sugározzuk ki hőnket
with thermal cameras
like the ones I'm showing you right now.
amiket itt mutatok.
is sending out its heat
és visszasugározzák.
that's responsible for climate change.
eredményező üvegházhatás.
to understand.
all of that heat.
on a much warmer planet.
melegebb bolygón élnénk.
eight and 13 microns,
as a transmission window.
that goes up as infrared light
carrying away that pool's heat.
terjedő hő a medencéből.
that is much, much colder.
as minus 270 degrees Celsius,
to send out more heat to the sky
sugároz az atmoszférába,
below its surroundings' temperature.
known as night-sky cooling
by climate scientists and meteorologists
természeti jelenségnek tartották.
of my PhD at Stanford.
a doktorim vége felé jártam.
simplicity as a cooling method,
egyszerű hűtési módszer,
had investigated this idea
at least one big problem.
cooling for a reason.
that's doing the cooling,
something cold the most,
you're going to look up to the sun.
this cooling effect.
spend a lot of our time
we can structure materials
az anyagszerkezetet,
new and useful things with light --
műveljen a fénnyel –
than the wavelength of light itself.
mint magáé a fényé.
or metamaterials research,
to make this possible during the day
hogy létezik módszer,
a multilayer optical material
optikai anyagot terveztünk,
than a typical human hair.
több mint 40-szer vékonyabb.
two things simultaneously.
lets that heat out the best.
is it avoids getting heated up by the sun.
was on a rooftop in Stanford
and counterintuitive this is:
és a józan észnek ellentmondó ez:
out of the shade,
from our very first experiment,
more than five degrees Celsius,
than the air temperature,
alatt tartottuk,
was shining directly on it.
to actually make this material
do we make something cool,
klasszat hoztunk létre,
to do something real and make it useful.
energia ezzel az ötlettel?
save energy with this idea?
to save energy with this technology
legközvetlenebb módja,
and refrigeration systems.
fluid cooling panels,
to solar water heaters,
ellentétes: passzívan hűti a vizet
they cool the water, passively,
be integrated with a component
hűtőrendszerben meglévő alkatrésszel,
called a condenser,
underlying efficiency.
in Davis, California, shown right here.
Davisben folytatott terepkísérletét.
improve the efficiency
as much as 12 percent in the field.
to its first commercial-scale pilots
and refrigeration space.
mind a mélyhűtők terén elindul.
to integrate these kinds of panels
ezeket a lapokat
building cooling systems
usage by two-thirds.
2/3-ával csökkenthetjük.
be able to build a cooling system
együtt bemutattuk,
actually maintain
below the air temperature
hőmérsékletet is fenntarthatunk
on a hot summer's day.
a nyári rekkenő hőségben.
about all we can do for cooling,
amit a hűtés érdekében tehetünk,
to a more profound opportunity
folyamat hatékonysága növelésére
process here on earth.
I'd like to highlight are solar cells.
the hotter they are.
annál kisebb a hatásfokuk.
with deliberate kinds of microstructures
hogy a napelem felületén lévő
of this cooling effect
at a lower temperature.
alacsony hőmérsékleten tartsuk.
to operate more efficiently.
of opportunities further.
az efféle megoldásokkal.
we can use the cold of space
a világűr hidegét
energiatermelésben.
generate power with this cold.
termelhetünk ezzel a hideggel.
between us here on earth
something called a heat engine
power-generation device
energiatermelő berendezést,
villamos energia állítható elő,
amounts of electricity
is being able to manage
a köröttünk lévő hősugárzást.
that's all around us.
the flows of heat and energy
a hő- és energiaáramlást,
with the cold darkness of space,
a világűr hideg sötétjével,
where we, as a civilization,
ahol mi civilizációként
our thermal energy footprint
menedzselni hőenergiai lábnyomunkat
this ability in our toolkit
eszközként alkalmazva
you're walking around outside,
is essential to life on earth itself,
a Nap a földi élethez,
has something to offer us as well.
része is tartogat nekünk valamit.
ABOUT THE SPEAKER
Aaswath Raman - Applied physicist, engineerAaswath Raman is a scientist passionate about harnessing new sources of energy, mitigating climate change and more intelligently understanding the world around us -- by better manipulating light and heat using nanoscale materials.
Why you should listen
Aaswath Raman is an assistant professor of electrical and systems engineering at the University of Pennsylvania. He is also co-founder of a clean energy startup, SkyCool Systems, where he is its chief scientific officer. He initiated and led the development of radiative sky cooling, a technology that he originated as a research associate at Stanford University, beginning in 2012.
Raman is deeply interested in the intersection of science, technology and development work, and he has previously collaborated on projects to redesign refugee camps with UNHCR and to rethink governance in rural Sierra Leone. In recognition of his breakthroughs in developing radiative sky cooling, in 2015 he was named one of MIT Technology Review's "Innovators Under 35."
Aaswath Raman | Speaker | TED.com