ABOUT THE SPEAKER
Joel Selanikio - Health and technology activist
Dr. Joel Selanikio combines technology and data to help solve global health challenges.

Why you should listen

A practicing pediatrician, former Wall Street computer consultant, and former epidemiologist at the Centers for Disease Control, Dr. Joel Selanikio is the CEO of DataDyne, a social business working in fields such as international development and global health.

Selanikio started to experiment with electronic data capture back when the Palm Pilot was cutting edge technology. In the years since then, he has helped to experiment with the growing potential and availability of technology--and the growing ubiquity of the cloud. Combining the two has led to systems such as Magpi mobile data collection software. Previously known as "EpiSurveyor," the service now has over 20,000 users in more than 170 countries.

Selanikio holds a bachelor's degree from Haverford College, a medical degree from Brown University, and he is a graduate of the Epidemic Intelligence Service fellowship of the CDC. He continues to practice clinical pediatrics as an Assistant Professor at Georgetown University and on the Emergency Response Team of the International Rescue Committee.

More profile about the speaker
Joel Selanikio | Speaker | TED.com
TEDxAustin

Joel Selanikio: The big-data revolution in health care

约尔·塞拉尼科: 令人惊讶的医疗保健大数据革新开端

Filmed:
745,046 views

收集关于全球健康的数据本是一个不完美的过程:工作人员徒步穿过村庄去挨家挨户敲门问问题,在纸质表格上写下答案,然后输入数据——然后从这满是漏洞的信息中,各个国家做出重大的决策。数据极客约尔·塞拉尼科谈论了在过去几十年来关于收集医疗健康数据的质的改变——从掌上电脑到Hotmail,现在又转移到云端。(影片拍摄于TEDx奥斯丁)
- Health and technology activist
Dr. Joel Selanikio combines technology and data to help solve global health challenges. Full bio

Double-click the English transcript below to play the video.

00:12
There's an old joke玩笑 about a cop警察 who's谁是 walking步行 his beat击败
0
717
2439
有一个很古老的笑话,
00:15
in the middle中间 of the night,
1
3156
1295
一个警察在深夜里巡逻时
00:16
and he comes across横过 a guy under a street lamp
2
4451
2365
在路灯下遇到了一个男人
00:18
who's谁是 looking at the ground地面 and moving移动 from side to side,
3
6816
2531
他一边盯着地面看一边来回走
00:21
and the cop警察 asks him what he's doing.
4
9347
1859
警察问他在做什么
00:23
The guys says he's looking for his keys按键.
5
11206
1959
那个男人说他正在找他的钥匙
00:25
So the cop警察 takes his time and looks容貌 over
6
13165
2580
所以警察也花了时间仔细查看
00:27
and kind of makes品牌 a little matrix矩阵 and looks容貌
7
15745
1637
并且做下一些小记号之类的,
00:29
for about two, three minutes分钟. No keys按键.
8
17382
3051
经过两三分钟。找不到钥匙。
00:32
The cop警察 says, "Are you sure? Hey buddy伙伴,
9
20433
2966
警察说:“你确定吗?嘿, 朋友,
00:35
are you sure you lost丢失 your keys按键 here?"
10
23399
1880
你确定你在这里丢了你的钥匙吗?”
00:37
And the guy says, "No, no, actually其实 I lost丢失 them
11
25279
1379
然后那个男人说:“不不,实际上我丢了他们
00:38
down at the other end结束 of the street,
12
26658
1525
在街的那一边,
00:40
but the light is better here."
13
28183
5984
但是这里的灯光更亮。”
00:46
There's a concept概念 that people talk about nowadays如今
14
34167
1793
现今,有一个人们谈论的概念
00:47
called big data数据, and what they're talking about
15
35960
2234
叫做大数据,他们谈论的
00:50
is all of the information信息 that we're generating发电
16
38194
2166
是我们产生的所有信息
00:52
through通过 our interaction相互作用 with and over the Internet互联网,
17
40360
2665
在我们通过网络交流的时候
00:55
everything from FacebookFacebook的 and Twitter推特
18
43025
1942
所有东西,从“脸书”和“推特”
00:56
to music音乐 downloads下载, movies电影, streaming, all this kind of stuff东东,
19
44967
4077
到下载音乐,电影,流媒体,所有这种东西,
01:01
the live生活 streaming of TEDTED.
20
49044
1875
TED的直播
01:02
And the folks乡亲 who work with big data数据, for them,
21
50919
2761
对于这些负责处理大数据的人来说
01:05
they talk about that their biggest最大 problem问题 is
22
53680
1771
他们最大的问题是
01:07
we have so much information信息,
23
55451
1912
我们有这么多的信息,
01:09
the biggest最大 problem问题 is, how do we organize组织 all that information信息?
24
57363
3492
我们该怎样组织这所有的信息?
01:12
I can tell you that working加工 in global全球 health健康,
25
60855
2392
我可以告诉你,在全球健康组织工作时,
01:15
that is not our biggest最大 problem问题.
26
63247
2872
这不是我们最大的问题。
01:18
Because for us, even though虽然 the light
27
66119
1570
因为对于我们来说,
01:19
is better on the Internet互联网,
28
67689
3157
即使灯在网络上比较亮
01:22
the data数据 that would help us solve解决 the problems问题
29
70846
2320
即使网上数据会帮助我们解决一些问题
01:25
we're trying to solve解决 is not actually其实 present当下 on the Internet互联网.
30
73166
3386
但我们正在努力解决的实际上并不会呈现在网络上
01:28
So we don't know, for example, how many许多 people
31
76552
1847
所以我们不知,比如说,有多少人
01:30
right now are being存在 affected受影响 by disasters灾害
32
78399
2594
现在正在被疾病困扰着
01:32
or by conflict冲突 situations情况.
33
80993
2336
或者是正处于战争中
01:35
We don't know for really basically基本上 any of the clinics诊所
34
83329
3743
我们不知道现实中一个发展中国家的诊所里
01:39
in the developing发展 world世界, which哪一个 ones那些 have medicines药品
35
87072
2193
哪些有药物
01:41
and which哪一个 ones那些 don't.
36
89265
1460
哪些没有
01:42
We have no idea理念 of what the supply供应 chain is for those clinics诊所.
37
90725
3172
我们完全不知道这些诊所的供应链是怎样的
01:45
We don't know -- and this is really amazing惊人 to me --
38
93897
2860
我们不知道——这真的让我很惊讶——
01:48
we don't know how many许多 children孩子 were born天生,
39
96757
2901
我们不知道有多少孩子出生,
01:51
or how many许多 children孩子 there are in Bolivia玻利维亚
40
99658
2946
或者是有多少孩子,在玻利维亚
01:54
or Botswana博茨瓦纳 or Bhutan不丹.
41
102604
3154
或者博茨瓦纳,或者不丹
01:57
We don't know how many许多 kids孩子 died死亡 last week
42
105758
1922
我们不知道上周有多少小孩夭折
01:59
in any of those countries国家.
43
107680
1401
在这些国家里的任一个。
02:01
We don't know the needs需求 of the elderly老年, the mentally精神上 ill生病.
44
109081
3372
我们不知道老年病人和精神病人的需求。
02:04
For all of these different不同 critically危重 important重要 problems问题
45
112453
3239
对于所有这些种种非常重要的问题
02:07
or critically危重 important重要 areas that we want to solve解决 problems问题 in,
46
115692
3001
或者是我们想解决问题的非常重要的地区
02:10
we basically基本上 know nothing at all.
47
118693
5112
我们基本上一无所知。
02:15
And part部分 of the reason原因 why we don't know anything at all
48
123805
2623
我们一无所知的部分原因
02:18
is that the information信息 technology技术 systems系统
49
126428
2252
是由于当我们在全球健康组织
02:20
that we use in global全球 health健康 to find the data数据
50
128680
3525
用来寻找数据、解决问题
02:24
to solve解决 these problems问题 is what you see here.
51
132205
2945
所用的信息技术系统是你们所见的这个。
02:27
And this is about a 5,000-year-old-岁 technology技术.
52
135150
2258
这是一个大约有5000年历史的技术。
02:29
Some of you may可能 have used it before.
53
137408
1052
你们当中的一些可能以前用过。
02:30
It's kind of on its way out now, but we still use it
54
138460
2320
它现在已经快过时了,可是我们仍在用它
02:32
for 99 percent百分 of our stuff东东.
55
140780
2091
百分之九十九的员工都在用。
02:34
This is a paper form形成, and what you're looking at
56
142871
4009
这是一张纸质表格,你看到的
02:38
is a paper form形成 in the hand of a Ministry of Health健康 nurse护士
57
146880
3366
是健康部护士手中的一张纸质表格
02:42
in Indonesia印度尼西亚 who is tramping流浪 out across横过 the countryside农村
58
150246
3288
她正徒步穿行在印度尼西亚的乡下
02:45
in Indonesia印度尼西亚 on, I'm sure, a very hot and humid湿 day,
59
153534
3581
在印尼,我相信,那是个热而潮湿的一天,
02:49
and she is going to be knocking敲门 on thousands数千 of doors
60
157115
2725
并且她要去敲上千家的门
02:51
over a period of weeks or months个月,
61
159840
1946
在几周或几个月之中,
02:53
knocking敲门 on the doors and saying, "Excuse借口 me,
62
161786
2448
敲开门并且说:“打扰一下,
02:56
we'd星期三 like to ask you some questions问题.
63
164234
2172
我们想问你一些问题。
02:58
Do you have any children孩子? Were your children孩子 vaccinated接种疫苗?"
64
166406
3671
你有孩子吗?你的孩子打疫苗了吗?”
03:02
Because the only way we can actually其实 find out
65
170077
1848
因为实际上这是我们唯一的方法,为了知道
03:03
how many许多 children孩子 were vaccinated接种疫苗 in the country国家 of Indonesia印度尼西亚,
66
171925
2883
在印尼乡下有多少孩子注射过疫苗,
03:06
what percentage百分比 were vaccinated接种疫苗, is actually其实 not
67
174808
2653
注射过疫苗的百分比,实际上
03:09
on the Internet互联网 but by going out and knocking敲门 on doors,
68
177461
2900
不在网络上,而是通过去挨家挨户地敲门,
03:12
sometimes有时 tens of thousands数千 of doors.
69
180361
2871
有时候是成千上万的门。
03:15
Sometimes有时 it takes months个月 to even years年份
70
183232
2376
有时候这要花去数月甚至几年时间
03:17
to do something like this.
71
185608
1726
为了做一些这样的事情
03:19
You know, a census人口调查 of Indonesia印度尼西亚
72
187334
2141
你知道吗?在印尼的一次人口普查
03:21
would probably大概 take two years年份 to accomplish完成.
73
189475
1832
很可能要两年时间才能完成。
03:23
And the problem问题, of course课程, with all of this is that
74
191307
2645
当然,这其中的问题
03:25
with all those paper forms形式 — and I'm telling告诉 you
75
193952
1785
在于所有这些纸质表格——而且我想告诉你们
03:27
we have paper forms形式 for every一切 possible可能 thing.
76
195737
2212
什么事情都有纸质表格。
03:29
We have paper forms形式 for vaccination疫苗接种 surveys调查.
77
197949
2703
注射疫苗统计有纸质表格。
03:32
We have paper forms形式 to track跟踪 people who come into clinics诊所.
78
200652
3374
调查去医院的人计有纸质表格。
03:36
We have paper forms形式 to track跟踪 drug药物 supplies耗材,
79
204026
2795
调查药物和血液供应有纸质表格。
03:38
blood血液 supplies耗材, all these different不同 paper forms形式
80
206821
2804
所有这些不同的纸质表格
03:41
for many许多 different不同 topics主题,
81
209625
1725
关于很多不同主题的,
03:43
they all have a single common共同 endpoint端点,
82
211350
2232
他们都有一个共同的终结点,
03:45
and the common共同 endpoint端点 looks容貌 something like this.
83
213582
2665
那个终结点看起来就像这样。
03:48
And what we're looking at here is a truckfultruckful o'O” data数据.
84
216247
4284
我们现在看到的是一卡车的数据
03:52
This is the data数据 from a single vaccination疫苗接种 coverage覆盖 survey调查
85
220531
4619
这仅仅是一个疫苗注射覆盖范围的调查数据
03:57
in a single district in the country国家 of Zambia赞比亚
86
225150
2215
仅仅是赞比亚乡下的一个地区
03:59
from a few少数 years年份 ago that I participated参加 in.
87
227365
2128
(数据)来自于前几年我参与的一次调查。
04:01
The only thing anyone任何人 was trying to find out
88
229493
2557
我们唯一想知道的事
04:04
is what percentage百分比 of Zambian赞比亚 children孩子 are vaccinated接种疫苗,
89
232050
3103
只是有多少百分比的赞比亚儿童注射过疫苗,
04:07
and this is the data数据, collected on paper over weeks
90
235153
3179
这就是在几周里收集到纸上的数据,
04:10
from a single district, which哪一个 is something like a county
91
238332
2874
仅仅是一个地区,有点像是我们在美国所说的
04:13
in the United联合的 States状态.
92
241206
1340
一个县。
04:14
You can imagine想像 that, for the entire整个 country国家 of Zambia赞比亚,
93
242546
2108
你可以想象一下,对于赞比亚整个国家,
04:16
answering回答 just that single question
94
244654
3574
只是回答那一个问题
04:20
looks容貌 something like this.
95
248228
1948
看起来就像这样。
04:22
Truck卡车 after truck卡车 after truck卡车
96
250176
2655
一车一车又一车
04:24
filled填充 with stack after stack after stack of data数据.
97
252831
3461
装满着一叠一叠又一叠的数据。
04:28
And what makes品牌 it even worse更差 is that
98
256292
1328
并且更糟糕的是
04:29
that's just the beginning开始,
99
257620
1938
这只是开始,
04:31
because once一旦 you've collected all that data数据,
100
259558
1974
因为一旦当你收集了所有那些数据
04:33
of course课程 someone's谁家 going to have to --
101
261532
1593
当然必须有一些人要去——
04:35
some unfortunate不幸的 person is going to have to type类型 that into a computer电脑.
102
263125
3292
要有一些不幸的人不得不去把他们输入到计算机里。
04:38
When I was a graduate毕业 student学生, I actually其实 was
103
266417
2046
当我是研究生的时候,有时候我实际上就是
04:40
that unfortunate不幸的 person sometimes有时.
104
268463
2003
那个不幸的人。
04:42
I can tell you, I often经常 wasn't really paying付款 attention注意.
105
270466
3011
我可以告诉你,我那时经常分心。
04:45
I probably大概 made制作 a lot of mistakes错误 when I did it
106
273477
1818
很可能在输入时犯了很多错误
04:47
that no one ever discovered发现, so data数据 quality质量 goes down.
107
275295
2825
没有人会发现,所以数据质量会下降。
04:50
But eventually终于 that data数据 hopefully希望 gets得到 typed类型 into a computer电脑,
108
278120
3152
但是最终但愿那些数据被输入进了计算机里,
04:53
and someone有人 can begin开始 to analyze分析 it,
109
281272
1767
然后一些人可以开始分析它们,
04:55
and once一旦 they have an analysis分析 and a report报告,
110
283039
2716
一旦他们做出了一份分析和报告,
04:57
hopefully希望 then you can take the results结果 of that data数据 collection采集
111
285755
3299
但愿你能拿着这些数据采集的结果
05:01
and use it to vaccinate接种疫苗 children孩子 better.
112
289054
2147
并且用它们能更好地给孩子们接种疫苗。
05:03
Because if there's anything worse更差
113
291201
2909
因为如果在全球公共健康的范畴,
05:06
in the field领域 of global全球 public上市 health健康,
114
294110
2346
有任何东西错了,
05:08
I don't know what's worse更差 than allowing允许 children孩子 on this planet行星
115
296456
2729
我不知道这世上还有什么比让孩子们
05:11
to die of vaccine-preventable疫苗可预防 diseases疾病,
116
299185
3140
死于原本疫苗可预防的疾病更糟糕的事,
05:14
diseases疾病 for which哪一个 the vaccine疫苗 costs成本 a dollar美元.
117
302325
3510
那些疾病的疫苗只价值一美元。
05:17
And millions百万 of children孩子 die of these diseases疾病 every一切 year.
118
305835
3088
但是每年有数以百万计的儿童死于这些疾病。
05:20
And the fact事实 is, millions百万 is a gross estimate估计 because
119
308923
3462
并且事实是,几百万只是一个粗略的估计因为
05:24
we don't really know how many许多 kids孩子 die each year of this.
120
312385
3005
我们并不真的知道每年有多少小孩死于这些(疾病)。
05:27
What makes品牌 it even more frustrating泄气 is that
121
315390
2352
更加令人沮丧的是,
05:29
the data数据 entry条目 part部分, the part部分 that I used to do as a grad毕业 student学生,
122
317742
3099
数据输入的环节,也就是我作为研究生时曾做过的工作,
05:32
can take sometimes有时 six months个月.
123
320841
1970
有时候会长达六个月之久。
05:34
Sometimes有时 it can take two years年份 to type类型 that information信息
124
322811
2276
有的时候可能需要两年时间把那些信息输入
05:37
into a computer电脑, and sometimes有时, actually其实 not infrequently不常,
125
325087
3336
到计算机里,而且有的时候,实际上这是常事,
05:40
it actually其实 never happens发生.
126
328423
1988
就是(那些数据)根本就没有被输入。
05:42
Now try and wrap your head around that for a second第二.
127
330411
2257
现在试着考虑一下这一点。
05:44
You just had teams球队 of hundreds数以百计 of people.
128
332668
2442
你只有一个几百人的团队。
05:47
They went out into the field领域 to answer回答 a particular特定 question.
129
335110
2366
他们要去实地回答一个特定的问题。
05:49
You probably大概 spent花费 hundreds数以百计 of thousands数千 of dollars美元
130
337476
2467
你很可能花掉了成百上千美元
05:51
on fuel汽油 and photocopying复印 and per diem行乐,
131
339943
3844
在汽油、复印和每日生活上,
05:55
and then for some reason原因, momentum动量 is lost丢失
132
343787
2353
但是之后由于某些原因,没了劲头儿,
05:58
or there's no money left,
133
346140
1311
或者是没钱了,
05:59
and all of that comes to nothing
134
347451
2405
然后所有那些全部就全都白费了
06:01
because no one actually其实 types类型 it into the computer电脑 at all.
135
349856
2647
因为实际上根本没有人把数据输入电脑里。
06:04
The process处理 just stops停止. Happens发生 all the time.
136
352503
3310
进程就中断了。这常常发生。
06:07
This is what we base基础 our decisions决定 on in global全球 health健康:
137
355813
2933
在全球健康组织,我们的决策所基于的就是:
06:10
little data数据, old data数据, no data数据.
138
358746
4898
少数据,旧数据,没数据。
06:15
So back in 1995, I began开始 to think about ways方法
139
363644
2567
所以,回到1995年,我开始思考
06:18
in which哪一个 we could improve提高 this process处理.
140
366211
2154
我们能够改善这种过程的方法。
06:20
Now 1995, obviously明显 that was quite相当 a long time ago.
141
368365
2798
现在说起1995年,很显然已经是很长时间以前了。
06:23
It kind of frightens惊吓 me to think of how long ago that was.
142
371163
2382
想想那是多久以前真的有点吓到我了。
06:25
The top最佳 movie电影 of the year was
143
373545
2194
那年最火的电影是
06:27
"Die Hard with a Vengeance复仇."
144
375739
1182
“龙胆虎威3”。
06:28
As you can see, Bruce布鲁斯 Willis威利斯 had a lot more hair头发 back then.
145
376921
2783
正如你所看到的,布鲁斯·威利斯那时候还有很多头发。
06:31
I was working加工 in the Centers中心 for Disease疾病 Control控制,
146
379704
2384
我那时候正在疾病控制中心工作,
06:34
and I had a lot more hair头发 back then as well.
147
382088
3043
我那时候也有很多头发。
06:37
But to me, the most significant重大 thing that I saw in 1995
148
385131
3342
但是对于我来说,在1995年我看到的最有意义的事
06:40
was this.
149
388473
1454
是这个。
06:41
Hard for us to imagine想像, but in 1995,
150
389927
2641
我们很难想象,但是在1995年,
06:44
this was the ultimate最终 elite原种 mobile移动 device设备.
151
392568
3598
那时候这是当时最高端的移动装置。
06:48
Right? It wasn't an iPhone苹果手机. It wasn't a Galaxy星系 phone电话.
152
396166
2372
对吧?那不是个iPhone,也不是三星Galaxy手机。
06:50
It was a Palm棕榈 Pilot飞行员.
153
398538
1478
它是个掌上电脑。
06:52
And when I saw the Palm棕榈 Pilot飞行员 for the first time, I thought,
154
400016
3564
当我第一次看到掌上电脑的时候,我想:
06:55
why can't we put the forms形式 on these Palm棕榈 Pilots飞行员
155
403580
2527
我们为什么不能把那些表格放到这些掌上电脑里?
06:58
and go out into the field领域 just carrying携带 one Palm棕榈 Pilot飞行员,
156
406107
2872
然后去实地调查时就只带着一个掌上电脑,
07:00
which哪一个 can hold保持 the capacity容量 of tens of thousands数千
157
408979
3117
它可以容载成千上万的
07:04
of paper forms形式? Why don't we try to do that?
158
412096
2181
纸质表格。我们为什么不试着那么做做看?
07:06
Because if we can do that, if we can actually其实 just
159
414277
2748
因为如果我们能那么做,如果我们真的可以
07:09
collect搜集 the data数据 electronically电子, digitally数字,
160
417025
2514
电子化、数字化地收集数据,
07:11
from the very beginning开始,
161
419539
1903
从最最开始,
07:13
we can just put a shortcut捷径 right through通过 that whole整个 process处理
162
421442
3017
我们就在整个过程中走了一个捷径,减省了
07:16
of typing打字,
163
424459
3222
输入(数据的过程),
07:19
of having somebody type类型 that stuff东东 into the computer电脑.
164
427681
1983
或是让某些人去把那些东西输入电脑。
07:21
We can skip跳跃 straight直行 to the analysis分析
165
429664
1959
我们可以直接跳到分析的过程
07:23
and then straight直行 to the use of the data数据 to actually其实 save保存 lives生活.
166
431623
3075
然后直接用这些数据去真真正正地挽救生命。
07:26
So that's actually其实 what I began开始 to do.
167
434698
2515
所以那就是我开始做的事。
07:29
Working加工 at CDCCDC, I began开始 to travel旅行 to different不同 programs程式
168
437213
3334
在疾病防控中心工作时,我开始去到全世界不同的部门
07:32
around the world世界 and to train培养 them in using运用 Palm棕榈 Pilots飞行员
169
440547
4069
并且训练他们用掌上电脑
07:36
to do data数据 collection采集 instead代替 of using运用 paper.
170
444616
2525
收集数据,而不是用纸。
07:39
And it actually其实 worked工作 great.
171
447141
2109
事实上一切都很顺利。
07:41
It worked工作 exactly究竟 as well as anybody任何人 would have predicted预料到的.
172
449250
2665
它就像每个人所预计的那么好。
07:43
What do you know? Digital数字 data数据 collection采集
173
451915
2233
你知道吗?电子数据收集
07:46
is actually其实 more efficient高效 than collecting搜集 on paper.
174
454148
2271
实际上比用纸收集高效得多。
07:48
While I was doing it, my business商业 partner伙伴, Rose玫瑰,
175
456419
2364
当我在做这件事的时候,我的生意伙伴,罗斯,
07:50
who's谁是 here with her husband丈夫, Matthew马修, here in the audience听众,
176
458783
2817
她和他的丈夫,马太,就在观众席里,
07:53
Rose玫瑰 was out doing similar类似 stuff东东 for the American美国 Red Cross交叉.
177
461600
3177
罗斯也去美国红十字会做了同样的事。
07:56
The problem问题 was, after a few少数 years年份 of doing that,
178
464777
2065
问题是,在那几年之后,
07:58
I realized实现 I had doneDONE -- I had been to maybe
179
466842
2740
我意识到我已经办到的——我可能已经去了
08:01
six or seven programs程式, and I thought,
180
469582
2718
六、七个组织,然后我想,
08:04
you know, if I keep this up at this pace步伐,
181
472300
2310
你知道,如果我持续进度的话,
08:06
over my whole整个 career事业, maybe I'm going to go
182
474610
1654
在我的整个工作生涯中,我可能会去
08:08
to maybe 20 or 30 programs程式.
183
476264
2277
大概20到30个组织。
08:10
But the problem问题 is, 20 or 30 programs程式,
184
478541
3229
但是问题是,20到30个组织,
08:13
like, training训练 20 or 30 programs程式 to use this technology技术,
185
481770
2973
好比说,训练20到30个组织用这种技术,
08:16
that is a tiny drop下降 in the bucket.
186
484743
2206
那仍然是杯水车薪。
08:18
The demand需求 for this, the need for data数据 to run better programs程式,
187
486949
4039
这种要让数据更好地运作的需求,
08:22
just within health健康, not to mention提到 all of the other fields领域
188
490988
2736
仅仅是在健康方面,先暂不提其他领域
08:25
in developing发展 countries国家, is enormous巨大.
189
493724
2166
在发展中国家,是巨大的。
08:27
There are millions百万 and millions百万 and millions百万 of programs程式,
190
495890
4010
有成千上万无以计数的组织,
08:31
millions百万 of clinics诊所 that need to track跟踪 drugs毒品,
191
499900
2535
数以百万的医院需要跟踪药物情况,
08:34
millions百万 of vaccine疫苗 programs程式.
192
502435
1299
数以百万的疫苗组织。
08:35
There are schools学校 that need to track跟踪 attendance.
193
503734
2057
有很多学校需要记录出勤率。
08:37
There are all these different不同 things
194
505791
2005
有各种各样这样不同的事情
08:39
for us to get the data数据 that we need to do.
195
507796
2095
要我们取得我们所需要的数据
08:41
And I realized实现, if I kept不停 up the way that I was doing,
196
509891
4526
并且我意识到,如果我继续我以前的方式,
08:46
I was basically基本上 hardly几乎不 going to make any impact碰撞
197
514417
3243
我基本上很难做出什么影响
08:49
by the end结束 of my career事业.
198
517660
1832
在我的职业生涯结束前。
08:51
And so I began开始 to wrack灭亡 my brain
199
519492
2155
之后我开始开动脑筋
08:53
trying to think about, you know,
200
521647
1143
努力思考,像你知道的那样,
08:54
what was the process处理 that I was doing,
201
522790
1518
我之前做是什么样的过程,
08:56
how was I training训练 folks乡亲, and what were the bottlenecks瓶颈
202
524308
2856
我如何训练那些人,遇到的瓶颈是什么
08:59
and what were the obstacles障碍 to doing it faster更快
203
527164
2813
以及是什么妨碍了让这些做到更快
09:01
and to doing it more efficiently有效率的?
204
529977
1520
做到更高效?
09:03
And unfortunately不幸, after thinking思维 about this for some time,
205
531497
3143
但是不幸的是,在考虑了这些一段时间后,
09:06
I realized实现 -- I identified确定 the main主要 obstacle障碍.
206
534640
3452
我意识到——我找到了最大的障碍。
09:10
And the main主要 obstacle障碍, it turned转身 out,
207
538092
1977
这个主要的障碍,它出现了,
09:12
and this is a sad伤心 realization实现,
208
540069
1835
并且这是一个令人沮丧的认识,
09:13
the main主要 obstacle障碍 was me.
209
541904
2268
这主要的障碍就是我自己。
09:16
So what do I mean by that?
210
544172
2196
那么我是什么意思呢?
09:18
I had developed发达 a process处理 whereby因此
211
546368
2488
我已经开发了这个过程
09:20
I was the center中央 of the universe宇宙 of this technology技术.
212
548856
5045
我是这项技术的集结点。
09:25
If you wanted to use this technology技术, you had to get in touch触摸 with me.
213
553901
2989
如果你想用这项技术,你必须要和我取得联系。
09:28
That means手段 you had to know I existed存在.
214
556890
2106
这意味着你必须知道有我在,
09:30
Then you had to find the money to pay工资 for me
215
558996
1474
然后你必须要有钱来付给我
09:32
to fly out to your country国家
216
560470
1486
为了飞到你的国家去
09:33
and the money to pay工资 for my hotel旅馆
217
561956
1548
然后钱用来让我住旅馆
09:35
and my per diem行乐 and my daily日常 rate.
218
563504
2760
和我的每日支出和日常开销
09:38
So you could be talking about 10,000 or 20,000 or 30,000 dollars美元
219
566264
2949
所以你可以说是10,000或20,000或是30,000美元
09:41
if I actually其实 had the time or it fit适合 my schedule时间表
220
569213
2582
如果我真的有时间或者是能把这件事提上日程
09:43
and I wasn't on vacation假期.
221
571795
1947
并且我没有在度假。
09:45
The point is that anything, any system系统 that depends依靠
222
573742
2897
问题是不论任何东西,任何系统,只要是依赖于
09:48
on a single human人的 being存在 or two or three or five human人的 beings众生,
223
576639
2870
一两个或三五个人,
09:51
it just doesn't scale规模.
224
579509
1736
它就不会成规模。
09:53
And this is a problem问题 for which哪一个 we need to scale规模
225
581245
2021
问题就是我们需要传播
09:55
this technology技术 and we need to scale规模 it now.
226
583266
2997
这个技术并且我们现在就需要扩大它的规模。
09:58
And so I began开始 to think of ways方法 in which哪一个 I could basically基本上
227
586263
2222
所以我开始想能让我
10:00
take myself out of the picture图片.
228
588485
2384
把自己脱离出来的方法。
10:02
And, you know, I was thinking思维,
229
590869
4496
并且,如你所知,我在想,
10:07
how could I take myself out of the picture图片
230
595365
2096
怎样能把我自己脱离出来呢?
10:09
for quite相当 some time.
231
597461
1809
想了相当长的一段时间。
10:11
You know, I'd been trained熟练 that the way that
232
599270
2157
如你所知,我已经有了经验,
10:13
you distribute分发 technology技术 within international国际 development发展
233
601427
2722
你在国际发展中传播科技
10:16
is always consultant-based顾问型.
234
604149
2027
常常是基于咨询顾问的。
10:18
It's always guys that look pretty漂亮 much like me
235
606176
2977
常常是有些像我一样的家伙,
10:21
flying飞行 from countries国家 that look pretty漂亮 much like this
236
609153
2301
从一些像这里的国家飞到
10:23
to other countries国家 with people with darker skin皮肤.
237
611454
3106
有着黑皮肤人民的国家。
10:26
And you go out there, and you spend money on airfare机票
238
614560
2445
并且你去到那儿,你要花机票钱
10:29
and you spend time and you spend per diem行乐
239
617005
3510
还要花时间,花钱在你的日常生活上,
10:32
and you spend [on a] hotel旅馆 and you spend all that stuff东东.
240
620515
2112
花钱在住旅馆等等这些东西上。
10:34
As far as I knew知道, that was the only way
241
622627
1851
据我所知,那是唯一的方法
10:36
you could distribute分发 technology技术, and I couldn't不能 figure数字 out a way around it.
242
624478
3269
你可以传播科技,并且我没法找到可以避开它的方法。
10:39
But the miracle奇迹 that happened发生,
243
627747
2671
但是奇迹发生了,
10:42
I'm going to call it HotmailHotmail的 for short.
244
630418
2750
为了简约,我把他叫做Hotmail。
10:45
Now you may可能 not think of HotmailHotmail的 as being存在 miraculous神奇,
245
633168
2181
现在你可能不把Hotmail看做一个奇迹,
10:47
but for me it was miraculous神奇, because I noticed注意到,
246
635349
2913
但是对我来说那是个奇迹,因为我注意到,
10:50
just as I was wrestling摔角 with this problem问题,
247
638262
2566
就当我努力解决这个问题的时候,
10:52
I was working加工 in sub-Saharan撒哈拉以南 Africa非洲 mostly大多 at the time.
248
640828
3414
那时候我大概正在非洲撒哈拉南部工作,
10:56
I noticed注意到 that every一切 sub-Saharan撒哈拉以南 African非洲人 health健康 worker工人
249
644242
2589
我注意到每一个和我一起工作的非洲撒哈拉南部的工作人员
10:58
that I was working加工 with had a HotmailHotmail的 account帐户.
250
646831
4108
都有Hotmail账户。
11:02
And I thought, it struck来袭 me,
251
650939
2144
于是我想,它给了我灵感,
11:05
wait a minute分钟, I know that the HotmailHotmail的 people
252
653083
2615
等一下,我知道Hotmail公司的人
11:07
surely一定 didn't fly to the Ministry of Health健康 of Kenya肯尼亚
253
655698
2716
肯定不需要飞到肯尼亚健康部去
11:10
to train培养 people in how to use HotmailHotmail的.
254
658414
2711
教人们怎么用Hotmail。
11:13
So these guys are distributing分布 technology技术.
255
661125
2487
所以这些人正在传播技术
11:15
They're getting得到 software软件 capacity容量 out there
256
663612
2004
他们让软件技术传播到那里,
11:17
but they're not actually其实 flying飞行 around the world世界.
257
665616
2009
但是他们没有真的在世界到处飞。
11:19
I need to think about this some more.
258
667625
1560
我需要在多多考虑一下这个。
11:21
While I was thinking思维 about it, people started开始 using运用
259
669185
2173
当我正在想这个的时候,人们开始使用
11:23
even more things just like this, just as we were.
260
671358
3200
甚至更多的这种东西,就像我们也在用。
11:26
They started开始 using运用 LinkedInLinkedIn and FlickrFlickr的
261
674558
1210
他们开始用Linkedln和Flickr
11:27
and GmailGmail的 and Google谷歌 Maps地图, all these things.
262
675768
2761
谷歌邮箱和谷歌地图,所有的这些东西。
11:30
Of course课程, all of these things are cloud-based基于云
263
678529
2726
当然,所有的这些东西都是基于云端技术
11:33
and don't require要求 any training训练.
264
681255
2206
并且不需要任何训练。
11:35
They don't require要求 any programmers程序员.
265
683461
1600
他们不需要任何程序员。
11:37
They don't require要求 any consultants顾问, because
266
685061
1709
他们不需要任何咨询师,因为
11:38
the business商业 model模型 for all these businesses企业
267
686770
2394
所有这些公司的商业模式
11:41
requires要求 that something be so simple简单 we can use it ourselves我们自己
268
689164
2997
需要的东西简单到我们可以自己使用它
11:44
with little or no training训练.
269
692161
1185
几乎不需要训练。
11:45
You just have to hear about it and go to the website网站.
270
693346
2614
你只需要听说它然后登陆网站。
11:47
And so I thought, what would happen发生 if we built内置 software软件
271
695960
4365
因此我想,如果我们开发软件来做我做咨询的事
11:52
to do what I'd been consulting咨询 in?
272
700325
2011
会发生什么呢?
11:54
Instead代替 of training训练 people how
273
702336
1434
而不是训练人们如何
11:55
to put forms形式 onto mobile移动 devices设备,
274
703770
2850
把表格植入移动设备,
11:58
let's create创建 software软件 that lets让我们 them do it themselves他们自己
275
706620
2284
让我们发明一些软件来让人们自己做这件事
12:00
with no training训练 and without me being存在 involved参与?
276
708904
1890
不需要训练,也不需要我的参与
12:02
And that's exactly究竟 what we did.
277
710794
1804
那就是我们所做的
12:04
So we created创建 software软件 called MagpiMAGPI,
278
712598
3684
所以我们发明了一种叫Magpi的软件,
12:08
which哪一个 has an online线上 form形成 creator创造者.
279
716282
1877
它有一个网上表格生成器。
12:10
No one has to speak说话 to me.
280
718159
1151
不需要有人来和我说话了。
12:11
You just have to hear about it and go to the website网站.
281
719310
2694
你只需要听说它然后登陆那个网站。
12:14
You can create创建 forms形式, and once一旦 you've created创建 the forms形式,
282
722004
2747
你可以生成表格,并且一旦你生成了表格,
12:16
you push them to a variety品种 of common共同 mobile移动 phones手机.
283
724751
2340
你可以把它推送到许多普通的手机。
12:19
Obviously明显 nowadays如今, we've我们已经 moved移动 past过去 Palm棕榈 Pilots飞行员
284
727091
2475
当然了,现在我们已经把过去的掌上电脑换成了
12:21
to mobile移动 phones手机.
285
729566
1328
手机。
12:22
And it doesn't have to be a smartphone手机.
286
730894
1132
而且不需要是智能手机。
12:24
It can be a basic基本 phone电话 like the phone电话 on the right there,
287
732026
2707
他可以是一个非智能手机,像右边的这个手机一样,
12:26
you know, the basic基本 kind of Symbian塞班 phone电话
288
734733
1336
你知道,这种非智能的塞班手机
12:28
that's very common共同 in developing发展 countries国家.
289
736069
2466
在发展中国家是非常普遍的。
12:30
And the great part部分 about this is, it's just like HotmailHotmail的.
290
738535
3999
并且它最棒的部分是它就像Hotmail一样。
12:34
It's cloud-based基于云, and it doesn't require要求 any training训练,
291
742534
2334
它基于云端技术,并且不需要任何训练,
12:36
programming程序设计, consultants顾问.
292
744868
2040
编程,顾问咨询。
12:38
But there are some additional额外 benefits好处 as well.
293
746908
1936
而且还有一些更大的益处。
12:40
Now we knew知道, when we built内置 this system系统,
294
748844
1955
现在我们知道,当我们建立了这个系统,
12:42
the whole整个 point of it, just like with the Palm棕榈 Pilots飞行员,
295
750799
2293
就像用掌上电脑的时候,最重要的一点
12:45
was that you'd have to, you'd be able能够 to
296
753092
2604
是你不得不并且必须能够
12:47
collect搜集 the data数据 and immediately立即 upload上载 the data数据 and get your data数据 set.
297
755696
3191
采集数据并且立即上传数据以获得你的数据库。
12:50
But what we found发现, of course课程, since以来 it's already已经 on a computer电脑,
298
758887
2437
但是我们发现,当然了,因为数据已经在计算机中了,
12:53
we can deliver交付 instant瞬间 maps地图 and analysis分析 and graphing制图.
299
761324
3188
我们可以产生即时图像并且分析画图。
12:56
We can take a process处理 that took two years年份
300
764512
2251
我们可以把一个需要花两年时间的过程
12:58
and compress压缩 that down to the space空间 of five minutes分钟.
301
766763
3222
压缩到只要五分钟的时间。
13:01
Unbelievable难以置信的 improvements改进 in efficiency效率.
302
769985
2506
难以置信的效率提升。
13:04
Cloud-based基于云, no training训练, no consultants顾问, no me.
303
772491
4766
基于云端的,不需要训练,不需要咨询,不需要我。
13:09
And I told you that in the first few少数 years年份
304
777257
2323
并且我告诉过你们,在刚开始的几年
13:11
of trying to do this the old-fashioned过时 way,
305
779580
1827
用老方法做这个的时候,
13:13
going out to each country国家,
306
781407
1292
到每个国家去,
13:14
we reached到达 about, I don't know,
307
782699
3054
我们达到了大约,我不确定,
13:17
probably大概 trained熟练 about 1,000 people.
308
785753
2118
可能是训练了1000人左右。
13:19
What happened发生 after we did this?
309
787871
1803
我们在做了这些之后发生了什么呢?
13:21
In the second第二 three years年份, we had 14,000 people
310
789674
2506
在第二个三年中,我们有14000个人
13:24
find the website网站, sign标志 up, and start开始 using运用 it to collect搜集 data数据,
311
792180
3193
找到了网站,注册,并且开始用它收集数据,
13:27
data数据 for disaster灾害 response响应,
312
795373
1502
疾病反馈的数据,
13:28
Canadian加拿大 pig farmers农民 tracking追踪 pig disease疾病 and pig herds牛群,
313
796875
4748
加拿大的养猪户用来跟踪记录猪的疾病和猪饲料,
13:33
people tracking追踪 drug药物 supplies耗材.
314
801623
2415
人们跟踪记录药品供应。
13:36
One of my favorite喜爱 examples例子, the IRCIRC,
315
804038
1942
我最喜欢的例子之一,是IRC
13:37
International国际 Rescue拯救 Committee委员会,
316
805980
1629
国际救援委员会,
13:39
they have a program程序 where semi-literate半文盲 midwives助产士
317
807609
3237
他们的程序,能让半文盲的产婆们
13:42
using运用 $10 mobile移动 phones手机
318
810846
2427
用10美元的手机
13:45
send发送 a text文本 message信息 using运用 our software软件
319
813273
2209
通过我们的软件每周发送一次短信息
13:47
once一旦 a week with the number of births出生
320
815482
2209
出生的数量
13:49
and the number of deaths死亡, which哪一个 gives IRCIRC
321
817691
2313
死亡的数量,
13:52
something that no one in global全球 health健康 has ever had:
322
820004
2599
这是在全球健康组织都不曾有过的东西:
13:54
a near real-time即时的 system系统 of counting数数 babies婴儿,
323
822603
3637
一个近乎实时的记录新生儿的系统,
13:58
of knowing会心 how many许多 kids孩子 are born天生,
324
826240
1492
能知道有多少婴儿出生了,
13:59
of knowing会心 how many许多 children孩子 there are
325
827732
1676
能知道儿童的数量是多少
14:01
in Sierra内华达 Leone塞拉利昂, which哪一个 is the country国家 where this is happening事件,
326
829408
2782
在塞拉利昂,人们就正在使用它,
14:04
and knowing会心 how many许多 children孩子 die.
327
832190
3204
并且知道有多少孩子死去。
14:07
Physicians医生 for Human人的 Rights --
328
835394
1597
人权团体的内科医生
14:08
this is moving移动 a little bit outside the health健康 field领域
329
836991
2479
现在我们说的有点超出了健康的领域—
14:11
they are gathering搜集, they're basically基本上 training训练 people
330
839470
2865
他们正聚集在一起,在刚果训练人们
14:14
to do rape强奸 exams考试 in Congo刚果, where this is an epidemic疫情,
331
842335
3364
做关于强奸的测验,在刚果这是一种盛行,
14:17
a horrible可怕 epidemic疫情,
332
845699
1748
一个非常可怕的盛行,
14:19
and they're using运用 our software软件 to document文件
333
847447
2171
并且他们正在用我们的软件记录
14:21
the evidence证据 they find, including包含 photographically照相,
334
849618
2972
他们找到的证据,包括图像上的,
14:24
so that they can bring带来 the perpetrators肇事者 to justice正义.
335
852590
4152
这样他们能够致以罪犯法律制裁。
14:28
CamfedCamfed, another另一个 charity慈善机构 based基于 out of the U.K.,
336
856742
3683
Camfed,在英国的另一个慈善机构,
14:32
CamfedCamfed pays支付 girls'女孩 families家庭 to keep them in school学校.
337
860425
3748
Camfed付给女孩子们家里钱好让她们能上学。
14:36
They understand理解 this is the most significant重大 intervention介入
338
864173
1873
他们明白这是他们能做的最有意义的干预。
14:38
they can make. They used to track跟踪 the dispersementsdispersements,
339
866046
3284
他们过去在纸上跟踪支出,
14:41
the attendance, the grades等级, on paper.
340
869330
1986
出勤,成绩。
14:43
The turnaround回转 time between之间 a teacher老师
341
871316
1608
这是一个转折点,从一个老师
14:44
writing写作 down grades等级 or attendance
342
872924
1726
写下成绩或出勤率
14:46
and getting得到 that into a report报告 was about two to three years年份.
343
874650
2610
然后在大约两三年后得出报告。
14:49
Now it's real真实 time, and because this is such这样
344
877260
2230
现在这是一个实时系统,并且因为这是如此
14:51
a low-cost低成本 system系统 and based基于 in the cloud, it costs成本,
345
879490
2940
一个低花费的系统,基于云端,它的花费
14:54
for the entire整个 five countries国家 that CamfedCamfed runs运行 this in
346
882430
3434
对于Camfed资助的五个国家
14:57
with tens of thousands数千 of girls女孩,
347
885864
1932
千千万万的女孩子们,
14:59
the whole整个 cost成本 combined结合 is 10,000 dollars美元 a year.
348
887796
3358
所有花费每年只要10000美元。
15:03
That's less than I used to get
349
891154
1801
那比我原来
15:04
just traveling旅行 out for two weeks to do a consultation会诊.
350
892955
5071
出去两周做一次咨询
15:10
So I told you before that
351
898026
2136
所以我之前告诉过你
15:12
when we were doing it the old-fashioned过时 way, I realized实现
352
900162
2192
当我们用老式方法做这些的时候,我意识到
15:14
all of our work was really adding加入 up to just a drop下降 in the bucket --
353
902354
2898
所有这些工作加起来也不过是滴水之于长河
15:17
10, 20, 30 different不同 programs程式.
354
905252
2226
10个,20个,30个不同的程序。
15:19
We've我们已经 made制作 a lot of progress进展, but I recognize认识
355
907478
2275
我们已经做出了很多进展,但是我意识到
15:21
that right now, even the work that we've我们已经 doneDONE
356
909753
2157
现在,虽然我们所的工作
15:23
with 14,000 people using运用 this,
357
911910
2404
有14000的人在用它,
15:26
is still a drop下降 in the bucket. But something's什么是 changed.
358
914314
2946
这仍然是滴水之于长河。但是已经发生了一些改变。
15:29
And I think it should be obvious明显.
359
917260
1216
并且我觉得它应该很明显。
15:30
What's changed now is,
360
918476
2091
现在所发生的改变是,
15:32
instead代替 of having a program程序 in which哪一个 we're scaling缩放 at such这样 a slow rate
361
920567
3578
我们过去用的低效率的方式已经被取代
15:36
that we can never reach达到 all the people who need us,
362
924145
3198
我们可以再也不用到需要我们的人那里去,
15:39
we've我们已经 made制作 it unnecessary不必要 for people to get reached到达 by us.
363
927343
3659
我们已经做到不需要有人来找我们。
15:43
We've我们已经 created创建 a tool工具 that lets让我们 programs程式
364
931002
3076
我们已经发明了一个工具,可以让组织部门
15:46
keep kids孩子 in school学校, track跟踪 the number of babies婴儿
365
934078
3155
记录在学校的孩子,跟踪新生儿的数量
15:49
that are born天生 and the number of babies婴儿 that die,
366
937233
2804
和婴儿的死亡数量,
15:52
to catch抓住 criminals罪犯 and successfully顺利 prosecute起诉 them,
367
940037
3623
用来逮捕罪犯并且成功诉讼他们,
15:55
to do all these different不同 things to learn学习 more
368
943660
2690
来做所有这些不同的事情从而知道的更多
15:58
about what's going on, to understand理解 more, to see more,
369
946350
5117
关于正在发生什么,以便能理解的更多,看得更多,
16:03
and to save保存 lives生活 and improve提高 lives生活.
370
951467
3971
来挽救生命并改善生活。
16:07
Thank you.
371
955438
1997
谢谢大家。
16:09
(Applause掌声)
372
957435
3987
(掌声)

▲Back to top

ABOUT THE SPEAKER
Joel Selanikio - Health and technology activist
Dr. Joel Selanikio combines technology and data to help solve global health challenges.

Why you should listen

A practicing pediatrician, former Wall Street computer consultant, and former epidemiologist at the Centers for Disease Control, Dr. Joel Selanikio is the CEO of DataDyne, a social business working in fields such as international development and global health.

Selanikio started to experiment with electronic data capture back when the Palm Pilot was cutting edge technology. In the years since then, he has helped to experiment with the growing potential and availability of technology--and the growing ubiquity of the cloud. Combining the two has led to systems such as Magpi mobile data collection software. Previously known as "EpiSurveyor," the service now has over 20,000 users in more than 170 countries.

Selanikio holds a bachelor's degree from Haverford College, a medical degree from Brown University, and he is a graduate of the Epidemic Intelligence Service fellowship of the CDC. He continues to practice clinical pediatrics as an Assistant Professor at Georgetown University and on the Emergency Response Team of the International Rescue Committee.

More profile about the speaker
Joel Selanikio | Speaker | TED.com

Data provided by TED.

This site was created in May 2015 and the last update was on January 12, 2020. It will no longer be updated.

We are currently creating a new site called "eng.lish.video" and would be grateful if you could access it.

If you have any questions or suggestions, please feel free to write comments in your language on the contact form.

Privacy Policy

Developer's Blog

Buy Me A Coffee