ABOUT THE SPEAKER
Ray Kurzweil - Inventor, futurist
Ray Kurzweil is an engineer who has radically advanced the fields of speech, text and audio technology. He's revered for his dizzying -- yet convincing -- writing on the advance of technology, the limits of biology and the future of the human species.

Why you should listen

Inventor, entrepreneur, visionary, Ray Kurzweil's accomplishments read as a startling series of firsts -- a litany of technological breakthroughs we've come to take for granted. Kurzweil invented the first optical character recognition (OCR) software for transforming the written word into data, the first print-to-speech software for the blind, the first text-to-speech synthesizer, and the first music synthesizer capable of recreating the grand piano and other orchestral instruments, and the first commercially marketed large-vocabulary speech recognition.

Yet his impact as a futurist and philosopher is no less significant. In his best-selling books, which include How to Create a Mind, The Age of Spiritual Machines, The Singularity Is Near: When Humans Transcend Biology, Kurzweil depicts in detail a portrait of the human condition over the next few decades, as accelerating technologies forever blur the line between human and machine.

In 2009, he unveiled Singularity University, an institution that aims to "assemble, educate and inspire leaders who strive to understand and facilitate the development of exponentially advancing technologies." He is a Director of Engineering at Google, where he heads up a team developing machine intelligence and natural language comprehension.

More profile about the speaker
Ray Kurzweil | Speaker | TED.com
TED2009

Ray Kurzweil: A university for the coming singularity

雷·库兹韦尔:奇点大学

Filmed:
1,025,725 views

雷·库兹韦尔的最新图表展示了科技发展只会向前进,完全与经济的衰退或繁荣无关。他同时揭开了“奇点大学”的神秘面纱。“奇点大学”是为研究接踵而来的科技和使之造福人类而建的。
- Inventor, futurist
Ray Kurzweil is an engineer who has radically advanced the fields of speech, text and audio technology. He's revered for his dizzying -- yet convincing -- writing on the advance of technology, the limits of biology and the future of the human species. Full bio

Double-click the English transcript below to play the video.

00:13
Information信息 technology技术 grows成长 in an exponential指数 manner方式.
0
1000
3000
信息技术正以指数幅度发展。
00:16
It's not linear线性. And our intuition直觉 is linear线性.
1
4000
4000
它并不是线性的。而对我们来说,直觉却是线性的。
00:20
When we walked through通过 the savanna稀树草原 a thousand years年份 ago
2
8000
2000
千年前,当我们的祖先经过热带草原时,
00:22
we made制作 linear线性 predictions预测 where that animal动物 would be,
3
10000
2000
他们常常会线性预测(根据直觉找寻)野兽的踪迹。
00:24
and that worked工作 fine. It's hardwired硬线 in our brains大脑.
4
12000
3000
这的确行得通。因为这些是我们与生俱来的本能。
00:27
But the pace步伐 of exponential指数 growth发展
5
15000
3000
然而信息技术当下的发展速度
00:30
is really what describes介绍 information信息 technologies技术.
6
18000
3000
只能用指数发展来形容。
00:33
And it's not just computation计算.
7
21000
3000
这两者的差异不仅仅局限于数值。
00:36
There is a big difference区别 between之间 linear线性 and exponential指数 growth发展.
8
24000
2000
它们是天差地别的。
00:38
If I take 30 steps脚步 linearly线性 -- one, two, three, four, five --
9
26000
4000
假如我直走30步,一、二、三、四、五,
00:42
I get to 30.
10
30000
2000
我会一直走到30。
00:44
If I take 30 steps脚步 exponentially成倍 -- two, four, eight, 16 --
11
32000
3000
可是假如我以指数方式走三十步,二、四、八、16,
00:47
I get to a billion十亿.
12
35000
2000
我会到达十亿多。
00:49
It makes品牌 a huge巨大 difference区别.
13
37000
2000
这之间差了十万八千里啊。
00:51
And that really describes介绍 information信息 technology技术.
14
39000
2000
偏偏指数增长正确描述了当今的信息技术发展。
00:53
When I was a student学生 at MITMIT,
15
41000
2000
当我尚是一位麻省理工的学生时,
00:55
we all shared共享 one computer电脑 that took up a whole整个 building建造.
16
43000
2000
我们班共用一台占据了整栋房子的电脑。
00:57
The computer电脑 in your cellphone手机 today今天 is a million百万 times cheaper便宜,
17
45000
3000
不过现在的手机芯片比那台电脑便宜一百万倍
01:00
a million百万 times smaller,
18
48000
2000
体型也小了一百万倍,
01:02
a thousand times more powerful强大.
19
50000
2000
但功能却强大了千倍。
01:04
That's a billion-fold十亿倍 increase增加 in capability能力 per dollar美元
20
52000
3000
这就相当于一美元有亿倍的增长能力
01:07
that we've我们已经 actually其实 experienced有经验的 since以来 I was a student学生.
21
55000
2000
从我尚是一名学生到现在,这就是我所经历的。
01:09
And we're going to do it again in the next下一个 25 years年份.
22
57000
3000
这样的快速发展还会保持25年。
01:12
Information信息 technology技术 progresses进展
23
60000
2000
信息技术通过一系列
01:14
through通过 a series系列 of S-curvesS曲线
24
62000
2000
S-曲线的考验后
01:16
where each one is a different不同 paradigm范例.
25
64000
2000
将可以到达不同的模式。
01:18
So people say, "What's going to happen发生 when Moore's摩尔定律 Law comes to an end结束?"
26
66000
3000
因此有人问:”当摩尔定律效尽时,这世界将会如何?“
01:21
Which哪一个 will happen发生 around 2020.
27
69000
2000
我相信这大概会在2020年发生。
01:23
We'll then go to the next下一个 paradigm范例.
28
71000
2000
我们将会进入一新纪元。
01:25
And Moore's摩尔定律 Law was not the first paradigm范例
29
73000
2000
摩尔定律并不是第一个
01:27
to bring带来 exponential指数 growth发展 to computing计算.
30
75000
2000
导致信息技术进行指数增长的范式。
01:29
The exponential指数 growth发展 of computing计算 started开始
31
77000
2000
信息技术的指数增长发生于
01:31
decades几十年 before Gordon戈登 Moore穆尔 was even born天生.
32
79000
2000
戈登·摩尔出生的十几年前。
01:33
And it doesn't just apply应用 to computation计算.
33
81000
4000
它不仅仅局限于信息技术。
01:37
It's really any technology技术 where we can measure测量
34
85000
2000
而且包含了我们
01:39
the underlying底层 information信息 properties性能.
35
87000
3000
所知的所有科技中。
01:42
Here we have 49 famous著名 computers电脑. I put them in a logarithmic对数的 graph图形.
36
90000
4000
我将49台不同年代的电脑整理进一幅对数图。
01:46
The logarithmic对数的 scale规模 hides the scale规模 of the increase增加,
37
94000
4000
对数的大小遮掩住真正增长的比率。
01:50
because this represents代表 trillions-fold万亿倍 increase增加
38
98000
2000
因为这些代表着自1890年以来,
01:52
since以来 the 1890 census人口调查.
39
100000
3000
科技的万亿倍增长。
01:55
In 1950s they were shrinking萎缩 vacuum真空 tubes,
40
103000
2000
在50年代,工程师们都为尽可能地
01:57
making制造 them smaller and smaller. They finally最后 hit击中 a wall;
41
105000
3000
缩小真空管而努力。但最终碰了壁。
02:00
they couldn't不能 shrink收缩 the vacuum真空 tube any more and keep the vacuum真空.
42
108000
2000
他们无法继续缩小真空管并同时保持着真空的状态。
02:02
And that was the end结束 of the shrinking萎缩 of vacuum真空 tubes,
43
110000
3000
这就是真空管缩小事件的结果。
02:05
but it was not the end结束 of the exponential指数 growth发展 of computing计算.
44
113000
3000
却不是信息技术的指数增长的停滞。
02:08
We went to the fourth第四 paradigm范例, transistors晶体管,
45
116000
2000
于是我们进入到第四种模式,晶体管,
02:10
and finally最后 integrated集成 circuits电路.
46
118000
2000
然后来到集成电路。
02:12
When that comes to an end结束 we'll go to the sixth第六 paradigm范例;
47
120000
2000
当上述过程结束后,我们将会迈进第六种模式,
02:14
three-dimensional三维 self-organizing自组织 molecular分子 circuits电路.
48
122000
4000
三维自组分子电路。
02:18
But what's even more amazing惊人, really, than this
49
126000
3000
但更惊人的是,
02:21
fantastic奇妙 scale规模 of progress进展,
50
129000
2000
比这神奇的过程更惊人的是,
02:23
is that -- look at how predictable可预测 this is.
51
131000
2000
预测科技发展的简单性。
02:25
I mean this went through通过 thick and thin,
52
133000
2000
科技发展是经历了所有时期,
02:27
through通过 war战争 and peace和平, through通过 boom繁荣 times and recessions经济衰退.
53
135000
3000
如战争期与和平期、繁荣期与衰退期。
02:30
The Great Depression萧条 made制作 not a dent凹痕 in this exponential指数 progression级数.
54
138000
4000
大萧条根本没有影响科技发展的指数增长。
02:34
We'll see the same相同 thing in the economic经济 recession不景气 we're having now.
55
142000
4000
我相信我们会在这次金融危机中见到同样的东西。
02:38
At least最小 the exponential指数 growth发展 of information信息 technology技术 capability能力
56
146000
3000
至少信息技术的指数增长能力
02:41
will continue继续 unabated不减.
57
149000
3000
将不会减弱。
02:44
And I just updated更新 these graphs.
58
152000
2000
这些图是我刚刚更新过的。
02:46
Because I had them through通过 2002 in my book, "The Singularity奇异 is Near."
59
154000
3000
于我所著的书《奇点将至》中,这些数据只更新到2002年。
02:49
So we updated更新 them,
60
157000
2000
所以我将它们
02:51
so I could present当下 it here, to 2007.
61
159000
3000
更新至2007年。
02:54
And I was asked, "Well aren't you nervous紧张?
62
162000
2000
很多问我:”你不紧张么?
02:56
Maybe it kind of didn't stay on this exponential指数 progression级数."
63
164000
4000
或许它们并不能证明指数增长的说法。”
03:00
I was a little nervous紧张
64
168000
2000
我的确有点紧张,
03:02
because maybe the data数据 wouldn't不会 be right,
65
170000
2000
因为这些数据有可能是错误的,
03:04
but I've doneDONE this now for 30 years年份,
66
172000
2000
但我在这行里干了30多年,
03:06
and it has stayed on this exponential指数 progression级数.
67
174000
3000
而且这行的发展趋势的确遵照指数增长的规律。
03:09
Look at this graph图形 here.You could buy购买 one transistor晶体管 for a dollar美元 in 1968.
68
177000
3000
看,在1968年,一件晶体管需要一美元。
03:12
You can buy购买 half a billion十亿 today今天,
69
180000
2000
现在,你则可以买五亿件。
03:14
and they are actually其实 better, because they are faster更快.
70
182000
2000
实际上,现在的晶体管质量更好。
03:16
But look at how predictable可预测 this is.
71
184000
2000
看看科技发展是多么好预测的。
03:18
And I'd say this knowledge知识 is over-fitting过度拟合 to past过去 data数据.
72
186000
3000
只是我会说这些资讯是过去式的了。
03:21
I've been making制造 these forward-looking前瞻 predictions预测 for about 30 years年份.
73
189000
4000
我已经做过30年的前瞻性预测了。
03:25
And the cost成本 of a transistor晶体管 cycle周期,
74
193000
2000
晶体管的费用
03:27
which哪一个 is a measure测量 of the price价钱 performance性能 of electronics电子产品,
75
195000
2000
相应地呈现了电子市场的价格水准,
03:29
comes down about every一切 year.
76
197000
2000
这每年都在下降。
03:31
That's a 50 percent百分 deflation放气 rate.
77
199000
2000
那说明了百分之50的下降率。
03:33
And it's also true真正 of other examples例子,
78
201000
2000
这也适用于其他例子
03:35
like DNA脱氧核糖核酸 data数据 or brain data数据.
79
203000
2000
如DNA数据或大脑数据。
03:37
But we more than make up for that.
80
205000
2000
不过社会发展的更快。
03:39
We actually其实 ship more than twice两次 as much
81
207000
2000
事实上,我们的生产力比
03:41
of every一切 form形成 of information信息 technology技术.
82
209000
2000
同等的科技要高两倍。
03:43
We've我们已经 had 18 percent百分 growth发展 in constant不变 dollars美元
83
211000
3000
这半个世纪里,每样科技的价值
03:46
in every一切 form形成 of information信息 technology技术 for the last half-century半个世纪,
84
214000
3000
都增长了百分之18。
03:49
despite尽管 the fact事实 that you can get twice两次 as much of it each year.
85
217000
4000
尽管你每年可以收获两次回报,
03:53
This is a completely全然 different不同 example.
86
221000
2000
这是一全新的例子。
03:55
This is not Moore's摩尔定律 Law.
87
223000
2000
这并不是摩尔定律。
03:57
The amount of DNA脱氧核糖核酸 data数据
88
225000
2000
我们每年都可以获得
03:59
we've我们已经 sequenced测序 has doubled翻倍 every一切 year.
89
227000
2000
增加了一倍以上的DNA数据。
04:01
The cost成本 has come down by half every一切 year.
90
229000
3000
费用却每年减少一半。
04:04
And this has been a smooth光滑 progression级数
91
232000
2000
自从人类基因定序计划以来,
04:06
since以来 the beginning开始 of the genome基因组 project项目.
92
234000
2000
这已成为一持续的发展定律。
04:08
And halfway through通过 the project项目, skeptics怀疑论者 said,
93
236000
2000
当计划进行至一半时,
04:10
"Well, this is not working加工 out. You're halfway through通过 the genome基因组 project项目
94
238000
3000
怀疑者们说:“这不会成功的。计划时间已过了一半,
04:13
and you've finished one percent百分 of the project项目."
95
241000
2000
而你们只完成了百分之一的工作。”
04:15
But that was really right on schedule时间表.
96
243000
2000
但按照时间表来说,这是可行的。
04:17
Because if you double one percent百分 seven more times,
97
245000
2000
假如你将百分之一用而乘七次,
04:19
which哪一个 is exactly究竟 what happened发生,
98
247000
2000
这就是实际上会发生的,
04:21
you get 100 percent百分. And the project项目 was finished on time.
99
249000
3000
那就是百分之百。计划也按时完成了。
04:24
Communication通讯 technologies技术:
100
252000
2000
通信技术有
04:26
50 different不同 ways方法 to measure测量 this,
101
254000
2000
50种不同的方式来评量。
04:28
the number of bits being存在 moved移动 around, the size尺寸 of the Internet互联网.
102
256000
3000
如移动的位元数目和网络的大小。
04:31
But this has progressed进展 at an exponential指数 pace步伐.
103
259000
2000
但科技正以指数步伐前进。
04:33
This is deeply democratizing民主化.
104
261000
2000
这是强烈地民主化。
04:35
I wrote, over 20 years年份 ago in "The Age年龄 of Intelligent智能 Machines,"
105
263000
3000
20年前,我在《智能简史》中写到,
04:38
when the Soviet苏联 Union联盟 was going strong强大, that it would be swept风靡 away
106
266000
3000
随着苏联的扩张,它将会被增长的
04:41
by this growth发展 of decentralized分散 communication通讯.
107
269000
4000
通信势力所瓦解。
04:45
And we will have plenty丰富 of computation计算 as we go through通过 the 21stST century世纪
108
273000
3000
当我们走过21世纪时,我们将会拥有新技术
04:48
to do things like simulate模拟 regions地区 of the human人的 brain.
109
276000
4000
来协助我们进行模拟大脑区域等实验。
04:52
But where will we get the software软件?
110
280000
2000
但我们从哪里得到这些技术?
04:54
Some critics批评者 say, "Oh, well software软件 is stuck卡住 in the mud."
111
282000
3000
一些评论家说:“哦,科技还没到那种地步呢。”
04:57
But we are learning学习 more and more about the human人的 brain.
112
285000
2000
岂知我们正逐步了解大脑。
04:59
Spatial空间的 resolution解析度 of brain scanning扫描 is doubling加倍 every一切 year.
113
287000
3000
大脑扫描的空间分辨率,每年都有一倍地提高。
05:02
The amount of data数据 we're getting得到 about the brain is doubling加倍 every一切 year.
114
290000
3000
相关的数据,也随之一倍增长。
05:05
And we're showing展示 that we can actually其实 turn this data数据
115
293000
3000
我们正在证明我们可以转化这些数据
05:08
into working加工 models楷模 and simulations模拟 of brain regions地区.
116
296000
3000
为大脑区域的模型和模拟实验。
05:11
There is about 20 regions地区 of the brain that have been modeled仿照,
117
299000
2000
我们目前已模拟和测试了
05:13
simulated模拟 and tested测试:
118
301000
2000
20个大脑区域:
05:15
the auditory听觉 cortex皮质, regions地区 of the visual视觉 cortex皮质;
119
303000
3000
听觉和视觉皮层,
05:18
cerebellum小脑, where we do our skill技能 formation编队;
120
306000
2000
小脑,我们身体的协调器,
05:20
slices of the cerebral颅内 cortex皮质, where we do our rational合理的 thinking思维.
121
308000
4000
部分大脑皮层,我们进行理性思考的部分。
05:24
And all of this has fueled燃料
122
312000
2000
这些发现都非常平稳
05:26
an increase增加, very smooth光滑 and predictable可预测, of productivity生产率.
123
314000
3000
和在预料之中帮助和增长了生产力。
05:29
We've我们已经 gone走了 from 30 dollars美元 to 130 dollars美元
124
317000
2000
我们的小时工资已从
05:31
in constant不变 dollars美元 in the value of an average平均 hour小时 of human人的 labor劳动,
125
319000
4000
30美元增长至130美元了,
05:35
fueled燃料 by this information信息 technology技术.
126
323000
3000
这就是因信息技术的进步。
05:38
And we're all concerned关心 about energy能源 and the environment环境.
127
326000
3000
这还只是对能源和环境的影响。
05:41
Well this is a logarithmic对数的 graph图形.
128
329000
2000
这里又是一幅对数图。
05:43
This represents代表 a smooth光滑 doubling加倍,
129
331000
2000
我们所利用的太阳能
05:45
every一切 two years年份, of the amount of solar太阳能 energy能源 we're creating创建,
130
333000
4000
每两年都增长一倍。
05:49
particularly尤其 as we're now applying应用 nanotechnology纳米技术,
131
337000
2000
正是由于现时的纳米技术,
05:51
a form形成 of information信息 technology技术, to solar太阳能 panels面板.
132
339000
3000
这是一种信息技术。
05:54
And we're only eight doublings倍增 away
133
342000
2000
我们只要再经历八次双倍增长,
05:56
from it meeting会议 100 percent百分 of our energy能源 needs需求.
134
344000
2000
我们就可以百分之百地利用太阳能。
05:58
And there is 10 thousand times more sunlight阳光 than we need.
135
346000
4000
而这些能力将会是万倍多于我们所需的。
06:02
We ultimately最终 will merge合并 with this technology技术. It's already已经 very close to us.
136
350000
5000
我们会最终接受这项技术。它的脚步已近了。
06:07
When I was a student学生 it was across横过 campus校园, now it's in our pockets口袋.
137
355000
3000
当我尚是一名学生时,电脑有整个校园那么大,而现在却可以装进口袋里。
06:10
What used to take up a building建造 now fits适合 in our pockets口袋.
138
358000
3000
以前需求整栋大楼的资源却被现时的口袋替代了。
06:13
What now fits适合 in our pockets口袋 would fit适合 in a blood血液 cell细胞 in 25 years年份.
139
361000
3000
哪知25年后,这些将可以装进我们的红血球里。
06:16
And we will begin开始 to actually其实 deeply influence影响
140
364000
4000
当我们迈向这项技术时,
06:20
our health健康 and our intelligence情报,
141
368000
2000
它将会真正左右
06:22
as we get closer接近 and closer接近 to this technology技术.
142
370000
4000
我们的健康和智慧。
06:26
Based基于 on that we are announcing宣布, here at TEDTED,
143
374000
3000
根据TED的传统,
06:29
in true真正 TEDTED tradition传统, Singularity奇异 University大学.
144
377000
3000
我将在此公布,奇点大学。
06:32
It's a new university大学
145
380000
2000
这是一所全新的大学,
06:34
that's founded成立 by Peter彼得 Diamandis迪曼蒂斯, who is here in the audience听众,
146
382000
2000
由我和台下的彼得·迪曼蒂斯先生
06:36
and myself.
147
384000
2000
共同创立。
06:38
It's backed已备份 by NASANASA and Google谷歌,
148
386000
2000
它还获得美国太空总署和谷歌的赞助,
06:40
and other leaders领导者 in the high-tech高科技 and science科学 community社区.
149
388000
4000
以及其他高科领域的领袖们的支持。
06:44
And our goal目标 was to assemble集合 the leaders领导者,
150
392000
3000
我们的目标是召集领袖们,
06:47
both teachers教师 and students学生们,
151
395000
2000
不管是学生还是老师,
06:49
in these exponentially成倍 growing生长 information信息 technologies技术,
152
397000
2000
来共同研究正在指数增长的信息技术和
06:51
and their application应用.
153
399000
2000
它的应用。
06:53
But Larry拉里 Page made制作 an impassioned激切 speech言语
154
401000
2000
拉里·佩奇先生在我们的内部会议上
06:55
at our organizing组织 meeting会议,
155
403000
2000
发表了以慷慨激昂的演讲,
06:57
saying we should devote奉献 this study研究
156
405000
5000
他说我们应致力研究
07:02
to actually其实 addressing解决 some of the major重大的 challenges挑战 facing面对 humanity人性.
157
410000
4000
如何真正解决人类面临的一些重大挑战。
07:06
And if we did that, then Google谷歌 would back this.
158
414000
2000
假使我们这样做,谷歌定会资助我们。
07:08
And so that's what we've我们已经 doneDONE.
159
416000
2000
这就是我们所做的改变。
07:10
The last third第三 of the nine-week九周 intensive集约 summer夏季 session会议
160
418000
4000
在紧张的九周暑假学营的最后三周里,
07:14
will be devoted忠诚 to a group project项目 to address地址
161
422000
2000
我们将会投身于研究
07:16
some major重大的 challenge挑战 of humanity人性.
162
424000
2000
一些现实社会里的重大问题。
07:18
Like for example, applying应用 the Internet互联网,
163
426000
2000
如将网络普及至
07:20
which哪一个 is now ubiquitous普及, in the rural乡村 areas of China中国 or in Africa非洲,
164
428000
5000
中国和非洲的乡村地区,
07:25
to bringing使 health健康 information信息
165
433000
2000
从而将健康资讯
07:27
to developing发展 areas of the world世界.
166
435000
3000
传播至世界的每个角落。
07:30
And these projects项目 will continue继续 past过去 these sessions会议,
167
438000
3000
这项计划将会延伸至学营外,
07:33
using运用 collaborative共同 interactive互动 communication通讯.
168
441000
3000
通过协作来讨论。
07:36
All the intellectual知识分子 property属性 that is created创建 and taught
169
444000
4000
而这些讨论所催生的智慧财产
07:40
will be online线上 and available可得到,
170
448000
2000
将会在网络上公开
07:42
and developed发达 online线上 in a collaborative共同 fashion时尚.
171
450000
3000
并在网络上进一步深入。
07:45
Here is our founding创建 meeting会议.
172
453000
2000
这是创校会议的照片。
07:47
But this is being存在 announced公布 today今天.
173
455000
2000
我今天将在这宣布。
07:49
It will be permanently永久 headquartered总部设 in Silicon Valley,
174
457000
3000
奇点大学会永久设置于硅谷里的
07:52
at the NASANASA Ames埃姆斯 research研究 center中央.
175
460000
2000
美国太空总署的埃米斯研究所。
07:54
There are different不同 programs程式 for graduate毕业 students学生们,
176
462000
2000
研究生和公司的主管们将会
07:56
for executives高管 at different不同 companies公司.
177
464000
3000
被提供不同的课程。
07:59
The first six tracks轨道 here -- artificial人造 intelligence情报,
178
467000
2000
主要的方面将会是,人工智能,
08:01
advanced高级 computing计算 technologies技术, biotechnology生物技术, nanotechnology纳米技术 --
179
469000
3000
先进的电脑技术,生物技术,纳米技术,
08:04
are the different不同 core核心 areas of information信息 technology技术.
180
472000
4000
这些都是信息技术里不同的核心领域。
08:08
Then we are going to apply应用 them to the other areas,
181
476000
2000
然后我们将会将他们应用至其它领域,
08:10
like energy能源, ecology生态,
182
478000
3000
如能源,生态环境,
08:13
policy政策 law and ethics伦理, entrepreneurship创业,
183
481000
2000
政策法律,道德和企业等,
08:15
so that people can bring带来 these new technologies技术 to the world世界.
184
483000
4000
因此学员们可以将这些新技术带给全世界。
08:19
So we're very appreciative欣赏的 of the support支持 we've我们已经 gotten得到
185
487000
5000
我们非常感谢那些帮过我们的人,
08:24
from both the intellectual知识分子 leaders领导者, the high-tech高科技 leaders领导者,
186
492000
2000
不管是学者领袖,还是高科领域的领袖,
08:26
particularly尤其 Google谷歌 and NASANASA.
187
494000
2000
特别感谢谷歌和美国太空总署。
08:28
This is an exciting扣人心弦 new venture冒险.
188
496000
2000
这是一次崭新的刺激冒险。
08:30
And we invite邀请 you to participate参加. Thank you very much.
189
498000
3000
我们邀请你们来参加。非常感谢。
08:33
(Applause掌声)
190
501000
3000
(鼓掌)
Translated by Chaoran Yu
Reviewed by Yvonne Fu

▲Back to top

ABOUT THE SPEAKER
Ray Kurzweil - Inventor, futurist
Ray Kurzweil is an engineer who has radically advanced the fields of speech, text and audio technology. He's revered for his dizzying -- yet convincing -- writing on the advance of technology, the limits of biology and the future of the human species.

Why you should listen

Inventor, entrepreneur, visionary, Ray Kurzweil's accomplishments read as a startling series of firsts -- a litany of technological breakthroughs we've come to take for granted. Kurzweil invented the first optical character recognition (OCR) software for transforming the written word into data, the first print-to-speech software for the blind, the first text-to-speech synthesizer, and the first music synthesizer capable of recreating the grand piano and other orchestral instruments, and the first commercially marketed large-vocabulary speech recognition.

Yet his impact as a futurist and philosopher is no less significant. In his best-selling books, which include How to Create a Mind, The Age of Spiritual Machines, The Singularity Is Near: When Humans Transcend Biology, Kurzweil depicts in detail a portrait of the human condition over the next few decades, as accelerating technologies forever blur the line between human and machine.

In 2009, he unveiled Singularity University, an institution that aims to "assemble, educate and inspire leaders who strive to understand and facilitate the development of exponentially advancing technologies." He is a Director of Engineering at Google, where he heads up a team developing machine intelligence and natural language comprehension.

More profile about the speaker
Ray Kurzweil | Speaker | TED.com

Data provided by TED.

This site was created in May 2015 and the last update was on January 12, 2020. It will no longer be updated.

We are currently creating a new site called "eng.lish.video" and would be grateful if you could access it.

If you have any questions or suggestions, please feel free to write comments in your language on the contact form.

Privacy Policy

Developer's Blog

Buy Me A Coffee