ABOUT THE SPEAKER
Rodney Brooks - Roboticist
Rodney Brooks builds robots based on biological principles of movement and reasoning. The goal: a robot who can figure things out.

Why you should listen

Former MIT professor Rodney Brooks studies and engineers robot intelligence, looking for the holy grail of robotics: the AGI, or artificial general intelligence. For decades, we've been building robots to do highly specific tasks -- welding, riveting, delivering interoffice mail -- but what we all want, really, is a robot that can figure things out on its own, the way we humans do.

Brooks realized that a top-down approach -- just building the biggest brain possible and teaching it everything we could think of -- would never work. What would work is a robot who learns like we do, by trial and error, and with many separate parts that learn separate jobs. The thesis of his work which was captured in Fast, Cheap and Out of Control,went on to become the title of the great Errol Morris documentary.

A founder of iRobot, makers of the Roomba vacuum, Brooks is now founder and CTO of Rethink Robotics, whose mission is to apply advanced robotic intelligence to manufacturing and physical labor. Its first robots: the versatile two-armed Baxter and one-armed Sawyer. Brooks is the former director of CSAIL, MIT's Computers Science and Artificial Intelligence Laboratory.

 
More profile about the speaker
Rodney Brooks | Speaker | TED.com
TED2013

Rodney Brooks: Why we will rely on robots

羅德尼.布鲁克斯: 為什麼我們將依靠機器人

Filmed:
1,424,847 views

危言聳聽者總說機器人將奪走人們的工作。事實上,它們將變成我們至關重要的合作伙伴。它們的出現使我們可以更多的去挑戰那些不刻板繁瑣的工作。羅德尼.布鲁克斯指出在這個工作年齡的成年人日趨減少,而退休人員日趨增加的時代,機器人對我們的重要性。他向我們介紹了 Baxter。它是一個眼睛可以活動,手臂可以對觸碰做出反應的機器人。Baxter 可以與老齡化人口一起合作,並學習在日常生活中幫助他們。
- Roboticist
Rodney Brooks builds robots based on biological principles of movement and reasoning. The goal: a robot who can figure things out. Full bio

Double-click the English transcript below to play the video.

00:13
Well, Arthur亞瑟 C. Clarke克拉克,
0
1010
1300
亞瑟·查理斯·克拉克
00:14
a famous著名 science科學 fiction小說 writer作家 from the 1950s,
1
2310
3195
上世紀50年代著名的科幻小說家
00:17
said that, "We overestimate估計過高 technology技術 in the short term術語,
2
5505
4022
曾說過:“從短期看來,我們高估了科技;
00:21
and we underestimate低估 it in the long term術語."
3
9527
2800
但從長期而言,我們卻低估了它”
00:24
And I think that's some of the fear恐懼 that we see
4
12327
2417
隨著人工智能和機器人技術的發展
00:26
about jobs工作 disappearing消失 from artificial人造 intelligence情報 and robots機器人.
5
14744
4582
我們開始害怕某些工作將被取代
00:31
That we're overestimating高估 the technology技術 in the short term術語.
6
19326
2667
正是我們高估科技短期影響的一種代表
00:33
But I am worried擔心 whether是否 we're going to get the technology技術 we need in the long term術語.
7
21993
5378
但我擔心的是從長遠看,
我們能否達到所需要的科技水平
00:39
Because the demographics人口統計學 are really going to leave離開 us with lots of jobs工作 that need doing
8
27371
5714
人口的增長讓我們需要更多人手
00:45
and that we, our society社會, is going to have to be built內置 on the shoulders肩膀 of steel of robots機器人 in the future未來.
9
33085
5375
我們的社會將不得不建立在這些鋼鐵機器的肩膀上。
00:50
So I'm scared害怕 we won't慣於 have enough足夠 robots機器人.
10
38460
2826
所以,我擔心的是我們沒有足夠的機器人
00:53
But fear恐懼 of losing失去 jobs工作 to technology技術 has been around for a long time.
11
41286
4639
科技會導致失業的想法其實由來已久
00:57
Back in 1957, there was a Spencer斯賓塞 Tracy特雷西, Katharine凱瑟琳 Hepburn赫本 movie電影.
12
45925
3952
1975年,史賓塞·屈賽 和 凯瑟琳·赫本主演主演過一部電影
01:01
So you know how it ended結束 up,
13
49877
1448
你知道最後最後結局如何嗎?
01:03
Spencer斯賓塞 Tracy特雷西 brought a computer電腦, a mainframe大型機 computer電腦 of 1957, in
14
51325
4086
史賓塞·屈賽 弄來了一台電腦,一台1957年的大型機
01:07
to help the librarians圖書館.
15
55411
1900
幫助那些圖書管理員
01:09
The librarians圖書館 in the company公司 would do things like answer回答 for the executives高管,
16
57311
3477
公司的圖書管理員需要負責回答高官們的問題。例如,
01:12
"What are the names of Santa's聖誕老人的 reindeer馴鹿?"
17
60788
3837
“聖誕老人的馴鹿叫什麼名字?”
01:16
And they would look that up.
18
64625
1185
圖書管理員們就回去把答案找出來。
01:17
And this mainframe大型機 computer電腦 was going to help them with that job工作.
19
65810
2433
這些大型計算機就會幫助他們
01:20
Well of course課程 a mainframe大型機 computer電腦 in 1957 wasn't much use for that job工作.
20
68243
4083
當然,一台1957年的大型機也不見得對這工作有多大幫助
01:24
The librarians圖書館 were afraid害怕 their jobs工作 were going to disappear消失.
21
72326
3150
然而圖書管理員們依舊害怕他們會失業
01:27
But that's not what happened發生 in fact事實.
22
75476
1649
但事實上事情並非如此。
01:29
The number of jobs工作 for librarians圖書館 increased增加 for a long time after 1957.
23
77125
5255
在1957年之後很長的一段時間裡,
圖書管理員的數量反而增長了
01:34
It wasn't until直到 the Internet互聯網 came來了 into play,
24
82380
3114
直到互聯網出現,
01:37
the web捲筒紙 came來了 into play and search搜索 engines引擎 came來了 into play
25
85494
2533
網絡出現,搜索引擎出現
01:40
that the need for librarians圖書館 went down.
26
88027
2649
對圖書管理員的需求才開始下降。
01:42
And I think everyone大家 from 1957 totally完全 underestimated低估
27
90676
4207
同時,我認為在1957年所有人都完完全全低估了
01:46
the level水平 of technology技術 we would all carry攜帶 around in our hands and in our pockets口袋 today今天.
28
94883
4760
我們今天握在手中以及裝在口袋中的這些東西的科技含量
01:51
And we can just ask: "What are the names of Santa's聖誕老人的 reindeer馴鹿?" and be told instantly即刻 --
29
99643
5717
只需一瞬間,我們就可以知道聖誕老人的馴鹿的名字,
01:57
or anything else其他 we want to ask.
30
105360
1751
抑或是任何我們想問的
01:59
By the way, the wages工資 for librarians圖書館 went up faster更快
31
107111
5599
順帶一提,圖書管理員的工資增速
02:04
than the wages工資 for other jobs工作 in the U.S. over that same相同 time period,
32
112710
2999
曾在一段時間內高過了全美其他崗位的工資水平,
02:07
because librarians圖書館 became成為 partners夥伴 of computers電腦.
33
115709
3568
因為圖書管理員成為了電腦的同夥
02:11
Computers電腦 became成為 tools工具, and they got more tools工具 that they could use
34
119277
2883
電腦成為了他們的工具,
同時他們也獲取了更多其他可用的工具
02:14
and become成為 more effective有效 during that time.
35
122160
2292
讓效率變得更高。
02:16
Same相同 thing happened發生 in offices辦事處.
36
124452
1792
同樣的事情也發生在辦公室裡
02:18
Back in the old days, people used spreadsheets電子表格.
37
126244
2298
以前,人們處理報表的方式是
02:20
Spreadsheets電子表格 were spread傳播 sheets床單 of paper,
38
128542
2334
把數據寫在許多不同的紙張
02:22
and they calculated計算 by hand.
39
130876
2150
一一用手計算。
02:25
But here was an interesting有趣 thing that came來了 along沿.
40
133026
2367
但是有趣的事情發生了。
02:27
With the revolution革命 around 1980 of P.C.'s,
41
135393
2290
隨著1980年的電腦革命,
02:29
the spreadsheet電子表格 programs程式 were tuned調整 for office辦公室 workers工人,
42
137683
4742
空白表格程式沒有取代辦公族,
02:34
not to replace更換 office辦公室 workers工人,
43
142425
1652
反而受到他們的青睞
02:36
but it respected尊敬 office辦公室 workers工人 as being存在 capable of being存在 programmers程序員.
44
144077
4666
辦公族變身成為程式設計師,
02:40
So office辦公室 workers工人 became成為 programmers程序員 of spreadsheets電子表格.
45
148743
3128
當他們成為空白表格的程式設計師
02:43
It increased增加 their capabilities功能.
46
151871
2091
他們的工作更有效率了。
02:45
They no longer had to do the mundane平凡 computations計算,
47
153962
2579
他們不用再做那些繁瑣的計算,
02:48
but they could do something much more.
48
156541
2935
他們可以做更多其他工作。
02:51
Now today今天, we're starting開始 to see robots機器人 in our lives生活.
49
159476
3258
今天,我們在日常生活中也能見到機器人的身影。
02:54
On the left there is the PackBotPackBot機器人 from iRobot我是機器人.
50
162734
2309
左邊是一台 iRobot 公司產的軍用機械人 PackBot
02:57
When soldiers士兵 came來了 across橫過 roadside路邊 bombs炸彈 in Iraq伊拉克 and Afghanistan阿富汗,
51
165043
3432
當士兵們穿越伊拉克和阿富汗戰場的雷區時,
03:00
instead代替 of putting on a bomb炸彈 suit適合 and going out and poking with a stick,
52
168475
4149
他們不再像 2002 年之前那樣,
03:04
as they used to do up until直到 about 2002,
53
172624
2319
穿著防彈背心拿著探棒到處戳,
03:06
they now send發送 the robot機器人 out.
54
174943
1408
現在他們派機器人去
03:08
So the robot機器人 takes over the dangerous危險 jobs工作.
55
176351
2143
讓機器人負責這些危險的工作
03:10
On the right are some TUGs拖船 from a company公司 called AethonAethon in Pittsburgh匹茲堡.
56
178494
4518
在右邊是匹玆堡的一家名為 Aethon 的公司
生產的 TUG 機器人。
03:15
These are in hundreds數以百計 of hospitals醫院 across橫過 the U.S.
57
183012
2297
全美近百家醫院正在使用這些機器人
03:17
And they take the dirty sheets床單 down to the laundry洗衣店.
58
185309
2740
它們把床單送去洗衣房。
03:20
They take the dirty dishes碗碟 back to the kitchen廚房.
59
188049
1876
把髒盤子送回廚房
03:21
They bring帶來 the medicines藥品 up from the pharmacy藥店.
60
189925
2085
從藥房取藥送給病人
03:24
And it frees的FreeS up the nurses護士 and the nurse's護士 aides助手
61
192010
2945
這使得護士和他們的助手
03:26
from doing that mundane平凡 work of just mechanically機械 pushing推動 stuff東東 around
62
194955
3665
從那些到處搬東西的機械化勞動中解放,
03:30
to spend more time with patients耐心.
63
198620
2073
花更多的時間的陪患者。
03:32
In fact事實, robots機器人 have become成為 sort分類 of ubiquitous普及 in our lives生活 in many許多 ways方法.
64
200693
4699
事實上,機器人已經普及在我們生活的很多層次。
03:37
But I think when it comes to factory robots機器人, people are sort分類 of afraid害怕,
65
205392
5268
但是如果談及工業機器人,人們可能還是會有些害怕的,
03:42
because factory robots機器人 are dangerous危險 to be around.
66
210660
4107
因為工業機器人有可能會傷及周圍的人。
03:46
In order訂購 to program程序 them, you have to understand理解 six-dimensional六維 vectors矢量 and quaternions四元.
67
214767
4825
如果要為它們設計程序,你需要理解六維向量和四元空間。
03:51
And ordinary普通 people can't interact相互作用 with them.
68
219592
3150
一般人無法和它們溝通。
03:54
And I think it's the sort分類 of technology技術 that's gone走了 wrong錯誤.
69
222742
2619
我認為一旦科技完全取代了原本的工人
03:57
It's displaced流離失所 the worker工人 from the technology技術.
70
225361
3633
這樣的科技就有問題了
04:00
And I think we really have to look at technologies技術
71
228994
3099
我們確實需要思考一下如何讓工人
04:04
that ordinary普通 workers工人 can interact相互作用 with.
72
232093
2102
可以和這些高科技產物相互合作。
04:06
And so I want to tell you today今天 about Baxter巴克斯特, which哪一個 we've我們已經 been talking about.
73
234195
3680
所以今天我想聊聊我們曾經談到過的 Baxter 機器人。
04:09
And Baxter巴克斯特, I see, as a way -- a first wave of robot機器人
74
237875
4245
Baxter 在我看來是第一批
04:14
that ordinary普通 people can interact相互作用 with in an industrial產業 setting設置.
75
242120
4290
通過一些工業設定就可以和普通人互相溝通的機器人
04:18
So Baxter巴克斯特 is up here.
76
246410
1533
讓我們來看看 Baxter。
04:19
This is Chris克里斯 Harbert哈伯特 from Rethink反思 Robotics機器人.
77
247943
2816
這位是 Rethink Robotics 的克里斯·哈伯特
04:22
We've我們已經 got a conveyor輸送帶 there.
78
250759
1536
在這裡我們有一個輸送帶
04:24
And if the lighting燈光 isn't too extreme極端 --
79
252295
2851
如果亮度不是過高的話
04:27
Ah, ah! There it is. It's picked採摘的 up the object目的 off the conveyor輸送帶.
80
255146
4046
對了,對了。Baxter 從輸送帶上拿起了零件。
04:31
It's going to come bring帶來 it over here and put it down.
81
259192
2850
接著它把零件拿過來放下。
04:34
And then it'll它會 go back, reach達到 for another另一個 object目的.
82
262042
3299
然後再回去取下一個零件。
04:37
The interesting有趣 thing is Baxter巴克斯特 has some basic基本 common共同 sense.
83
265341
3848
有趣的是,Baxter 也具備一些基本的常識。
04:41
By the way, what's going on with the eyes眼睛?
84
269189
2221
順帶一提,它的眼睛去哪兒了?
04:43
The eyes眼睛 are on the screen屏幕 there.
85
271410
1500
眼睛在那邊的螢幕上。
04:44
The eyes眼睛 look ahead where the robot's機器人 going to move移動.
86
272910
2749
它會看著機器人要移動的方向。
04:47
So a person that's interacting互動 with the robot機器人
87
275659
1868
因此和機器人一起工作的人
04:49
understands理解 where it's going to reach達到 and isn't surprised詫異 by its motions運動.
88
277527
3566
可以明白機器人要移向哪裡
而不會被他的動向嚇到。
04:53
Here Chris克里斯 took the object目的 out of its hand,
89
281093
2817
現在克里斯從它手裡拿走一個零件,
04:55
and Baxter巴克斯特 didn't go and try to put it down;
90
283910
2232
這時 Baxter 不會繼續嘗試將那零件移過去放下;
04:58
it went back and realized實現 it had to get another另一個 one.
91
286142
2352
它會返回原位,因為它意識到自己要去取下一個零件。
05:00
It's got a little bit of basic基本 common共同 sense, goes and picks精選 the objects對象.
92
288494
3167
在拿取和移動零件上Baxter已有了一些常識。
05:03
And Baxter's巴克斯特 safe安全 to interact相互作用 with.
93
291661
1793
同時與 Baxter 一起工作也是很安全的。
05:05
You wouldn't不會 want to do this with a current當前 industrial產業 robot機器人.
94
293454
2765
你也許不會想和現在市面上的工業機器人一起工作。
05:08
But with Baxter巴克斯特 it doesn't hurt傷害.
95
296219
2192
但是和Baxter一起是安全的
05:10
It feels感覺 the force, understands理解 that Chris克里斯 is there
96
298411
3898
它能夠感覺阻力,從而明白克里斯在那裡。
05:14
and doesn't push through通過 him and hurt傷害 him.
97
302309
2852
它不會推他導致傷到他
05:17
But I think the most interesting有趣 thing about Baxter巴克斯特 is the user用戶 interface接口.
98
305161
3295
但是我認為 Baxter 最有意思的還是它的用戶界面。
05:20
And so Chris克里斯 is going to come and grab the other arm now.
99
308456
3346
現在克里斯要過去抓住它另一只手臂
05:23
And when he grabs爭奪 an arm, it goes into zero-force零力 gravity-compensated重力補償 mode模式
100
311802
5414
當他抓住一只手的時候,
Baxter 就進入了無動力重力補償模式,
05:29
and graphics圖像 come up on the screen屏幕.
101
317216
2076
同時這樣的圖像出現在螢幕上
05:31
You can see some icons圖標 on the left of the screen屏幕 there for what was about its right arm.
102
319292
4534
你可以看到一些圖標出現在螢幕的右邊,
它們代表了 Baxter 的右臂。
05:35
He's going to put something in its hand, he's going to bring帶來 it over here,
103
323826
2794
他打算把那些東西放到這裡來,
05:38
press a button按鍵 and let go of that thing in the hand.
104
326620
5022
按下一個按鈕,然後讓它放下手裡的東西。
05:43
And the robot機器人 figures人物 out, ah, he must必須 mean I want to put stuff東東 down.
105
331642
4568
然後機器人明白了,“嗯,他一定是要我把這個東西放下”
05:48
It puts看跌期權 a little icon圖標 there.
106
336210
1700
它在需要放零件的地方標了個圖標。
05:49
He comes over here, and he gets得到 the fingers手指 to grasp把握 together一起,
107
337910
5911
它把機器手移到這裡,併起它的手指,
05:55
and the robot機器人 infers推斷, ah, you want an object目的 for me to pick up.
108
343821
3922
機器人明白克里斯要它撿起一個零件
05:59
That puts看跌期權 the green綠色 icon圖標 there.
109
347743
1799
在那邊標一個綠色的圖標。
06:01
He's going to map地圖 out an area of where the robot機器人 should pick up the object目的 from.
110
349542
4995
克里斯現在要劃出一塊區域,
讓機器人從這塊區域裡取零件。
06:06
It just moves移動 it around, and the robot機器人 figures人物 out that was an area search搜索.
111
354537
4790
他只是把機械手臂到處移動,
機器人就明白這是一塊搜索區域。
06:11
He didn't have to select選擇 that from a menu菜單.
112
359327
1876
他不用在選單中選擇。
06:13
And now he's going to go off and train培養 the visual視覺 appearance出現 of that object目的
113
361203
3157
他現在要離開一會兒,去教會機器人識別零件。
06:16
while we continue繼續 talking.
114
364360
1716
現在我們繼續聊。
06:18
So as we continue繼續 here,
115
366076
2212
說到這裡,
06:20
I want to tell you about what this is like in factories工廠.
116
368288
2171
我先要告訴你們這些機器人在工廠裡是怎麼工作的。
06:22
These robots機器人 we're shipping運輸 every一切 day.
117
370459
1484
這些每天運出的這些機器人,
06:23
They go to factories工廠 around the country國家.
118
371943
1550
被送往遍佈全美的工廠。
06:25
This is Mildred米爾德里德.
119
373493
1182
這位是米爾德里德。
06:26
Mildred's米爾德里德的 a factory worker工人 in Connecticut康涅狄格.
120
374675
1566
米爾德里德是康涅狄格的一名工人。
06:28
She's worked工作 on the line for over 20 years年份.
121
376241
2379
她在生產線上工作了20多年。
06:30
One hour小時 after she saw her first industrial產業 robot機器人,
122
378620
3343
就在她見到她生平的第一個工業機器人的一個小時以後,
06:33
she had programmed程序 it to do some tasks任務 in the factory.
123
381963
3060
她就已經教會了這台機器人一些工廠裡的工作。
06:37
She decided決定 she really liked喜歡 robots機器人.
124
385023
2431
她確實非常喜歡機器人。
06:39
And it was doing the simple簡單 repetitive重複 tasks任務 that she had had to do beforehand預先.
125
387454
4670
機器人正在做那些她之前不得不做的重複性工作。
06:44
Now she's got the robot機器人 doing it.
126
392124
1838
現在機器人代替她做這些。
06:45
When we first went out to talk to people in factories工廠
127
393962
2564
在我們最開始走到工廠裡與那裡的人們談論
06:48
about how we could get robots機器人 to interact相互作用 with them better,
128
396526
2834
我們如何更好的讓機器人和他們合作時,
06:51
one of the questions問題 we asked them was,
129
399360
1566
我們問的其中一個問題是,
06:52
"Do you want your children孩子 to work in a factory?"
130
400926
2445
“你想讓你的孩子在工廠工作嗎?”
06:55
The universal普遍 answer回答 was "No, I want a better job工作 than that for my children孩子."
131
403371
4372
所有答案都是,“不,我想我孩子有個更好的工作。”
06:59
And as a result結果 of that, Mildred米爾德里德 is very typical典型
132
407743
3377
其結果是,米爾德里德就是現在美國一個很典型的
07:03
of today's今天的 factory workers工人 in the U.S.
133
411120
1855
工廠工人。
07:04
They're older舊的, and they're getting得到 older舊的 and older舊的.
134
412975
2185
他們都比較年長,並在不斷走向衰老。
07:07
There aren't many許多 young年輕 people coming未來 into factory work.
135
415160
2565
很少有年輕人願意在工廠工作。
07:09
And as their tasks任務 become成為 more onerous繁重的 on them,
136
417725
3316
隨著他們肩負的工作變得日益繁重,
07:13
we need to give them tools工具 that they can collaborate合作 with,
137
421041
3093
我們需要提供他們一些可以幫助他們的工具,
07:16
so that they can be part部分 of the solution,
138
424134
1810
使他們可以成為解決方案的一部分,
07:17
so that they can continue繼續 to work and we can continue繼續 to produce生產 in the U.S.
139
425944
4851
使他們可以繼續留在工作崗位上,
也是美國的製造業得以持續。
07:22
And so our vision視力 is that Mildred米爾德里德 who's誰是 the line worker工人
140
430795
4065
所以我們期望米爾德里德可以從一個流水線工人
07:26
becomes Mildred米爾德里德 the robot機器人 trainer訓練者.
141
434860
2917
轉變為一個機器人教練。
07:29
She lifts升降機 her game遊戲,
142
437777
1145
她改變了她的工作性質,
07:30
like the office辦公室 workers工人 of the 1980s lifted取消 their game遊戲 of what they could do.
143
438922
4587
就如同上世紀 80 年代的辦公室一族一樣
07:35
We're not giving them tools工具 that they have to go and study研究 for years年份 and years年份 in order訂購 to use.
144
443509
4084
我們不會提供他們那些需要花好幾年才能學會使用的工具。
07:39
They're tools工具 that they can just learn學習 how to operate操作 in a few少數 minutes分鐘.
145
447593
3444
我們提供的工具只需幾分鐘就可以學會操作。
07:43
There's two great forces軍隊 that are both volitional意願 but inevitable必然.
146
451037
4789
這世界上有兩種必須出現、無法避免的力量
07:47
That's climate氣候 change更改 and demographics人口統計學.
147
455826
2377
那就是氣候變遷和人口變化
07:50
Demographics人口統計學 is really going to change更改 our world世界.
148
458203
2667
人口的轉變將確確實實的改變我們的世界。
07:52
This is the percentage百分比 of adults成年人 who are working加工 age年齡.
149
460870
3962
這是處於工作年齡的成年人佔整體成年人數的百分比。
07:56
And it's gone走了 down slightly over the last 40 years年份.
150
464832
1963
在過去的40年中輕微的下跌
07:58
But over the next下一個 40 years年份, it's going to change更改 dramatically顯著, even in China中國.
151
466795
3880
但是在未來的40年,它將有顯著的變化,即便是在中國。
08:02
The percentage百分比 of adults成年人 who are working加工 age年齡 drops滴劑 dramatically顯著.
152
470675
5327
處於工作年齡的成年人比例將顯著下降。
08:08
And turned轉身 up the other way, the people who are retirement退休 age年齡 goes up very, very fast快速,
153
476002
5090
另一方面,隨著嬰兒潮一代逐步步入退休年齡,
08:13
as the baby寶寶 boomers get to retirement退休 age年齡.
154
481092
4337
處於退休年齡的人將越來越多。
08:17
That means手段 there will be more people with fewer social社會 security安全 dollars美元
155
485429
3548
那意味著將有更多的人需要服務
08:20
competing競爭 for services服務.
156
488977
2633
社會福利的資金卻會減少
08:23
But more than that, as we get older舊的 we get more frail脆弱
157
491610
4051
不止如此,隨著年齡的增長,我們將變得更加脆弱
08:27
and we can't do all the tasks任務 we used to do.
158
495661
2249
以至於我們沒辦法完成那些我們曾經可以做到的事情。
08:29
If we look at the statistics統計 on the ages年齡 of caregivers護理人員,
159
497910
3713
如果我們看一下社工的年齡統計數據,
08:33
before our eyes眼睛 those caregivers護理人員 are getting得到 older舊的 and older舊的.
160
501623
4470
我們所看到的是這些社工正變得越來越年長。
08:38
That's happening事件 statistically統計學 right now.
161
506093
1999
而統計結果也正表明了這一點。
08:40
And as the number of people who are older舊的, above以上 retirement退休 age年齡 and getting得到 older舊的, as they increase增加,
162
508092
5938
隨著那些越發年邁的退休者的數量的增加,
08:46
there will be less people to take care關心 of them.
163
514030
2027
能夠照顧他們的人缺日趨減少。
08:48
And I think we're really going to have to have robots機器人 to help us.
164
516057
2619
所以我們真切的感受到
我們不得不讓機器人去幫助他們。
08:50
And I don't mean robots機器人 in terms條款 of companions同伴.
165
518676
3235
我並不是在說機器人伴侶。
08:53
I mean robots機器人 doing the things that we normally一般 do for ourselves我們自己
166
521911
3281
我指的是有機器人來做一些
一般我們可以自己完成
08:57
but get harder更難 as we get older舊的.
167
525192
1669
但隨著年齡增長變得艱難的日常瑣事。
08:58
Getting入門 the groceries雜貨 in from the car汽車, up the stairs樓梯, into the kitchen廚房.
168
526861
2865
例如將食物從車裡搬出來,上樓搬進廚房。
09:01
Or even, as we get very much older舊的,
169
529726
2395
或者,等我們再老一點,
09:04
driving主動 our cars汽車 to go visit訪問 people.
170
532121
3088
開著車去見朋友。
09:07
And I think robotics機器人 gives people a chance機會 to have dignity尊嚴 as they get older舊的
171
535209
6367
我認為通過控制機器人解決問題
09:13
by having control控制 of the robotic機器人 solution.
172
541576
3549
那些年邁的人將獲得更多尊嚴。
09:17
So they don't have to rely依靠 on people that are getting得到 scarcer稀缺 to help them.
173
545125
3385
因此他們不用在依靠那些日漸稀缺的人們去幫助他們。
09:20
And so I really think that we're going to be spending開支 more time
174
548510
6892
我相信我們將與 Baxter 這樣的機器人
09:27
with robots機器人 like Baxter巴克斯特
175
555402
2301
一起度過更多的時間
09:29
and working加工 with robots機器人 like Baxter巴克斯特 in our daily日常 lives生活. And that we will --
176
557703
6694
並在日常生活中與像 Baxter 這樣的機器人合作。
09:36
Here, Baxter巴克斯特, it's good.
177
564397
2480
看,Baxter,它很不錯。
09:38
And that we will all come to rely依靠 on robots機器人 over the next下一個 40 years年份
178
566877
4244
在接下來的40年中
我們都會需要依賴機器人
09:43
as part部分 of our everyday每天 lives生活.
179
571121
2166
它將成為我們日常生活的一部分
09:45
Thanks謝謝 very much.
180
573287
1294
謝謝各位
09:46
(Applause掌聲)
181
574581
2995
(掌聲)
Translated by Weichen Cai
Reviewed by Nan-Kun Wu

▲Back to top

ABOUT THE SPEAKER
Rodney Brooks - Roboticist
Rodney Brooks builds robots based on biological principles of movement and reasoning. The goal: a robot who can figure things out.

Why you should listen

Former MIT professor Rodney Brooks studies and engineers robot intelligence, looking for the holy grail of robotics: the AGI, or artificial general intelligence. For decades, we've been building robots to do highly specific tasks -- welding, riveting, delivering interoffice mail -- but what we all want, really, is a robot that can figure things out on its own, the way we humans do.

Brooks realized that a top-down approach -- just building the biggest brain possible and teaching it everything we could think of -- would never work. What would work is a robot who learns like we do, by trial and error, and with many separate parts that learn separate jobs. The thesis of his work which was captured in Fast, Cheap and Out of Control,went on to become the title of the great Errol Morris documentary.

A founder of iRobot, makers of the Roomba vacuum, Brooks is now founder and CTO of Rethink Robotics, whose mission is to apply advanced robotic intelligence to manufacturing and physical labor. Its first robots: the versatile two-armed Baxter and one-armed Sawyer. Brooks is the former director of CSAIL, MIT's Computers Science and Artificial Intelligence Laboratory.

 
More profile about the speaker
Rodney Brooks | Speaker | TED.com

Data provided by TED.

This site was created in May 2015 and the last update was on January 12, 2020. It will no longer be updated.

We are currently creating a new site called "eng.lish.video" and would be grateful if you could access it.

If you have any questions or suggestions, please feel free to write comments in your language on the contact form.

Privacy Policy

Developer's Blog

Buy Me A Coffee