ABOUT THE SPEAKERS
Jean-Baptiste Michel - Data researcher
Jean-Baptiste Michel looks at how we can use large volumes of data to better understand our world.

Why you should listen

Jean-Baptiste Michel holds joint academic appointments at Harvard (FQEB Fellow) and Google (Visiting Faculty). His research focusses on using large volumes of data as tools that help better understand the world around us -- from the way diseases progress in patients over years, to the way cultures change in human societies over centuries. With his colleague Erez Lieberman Aiden, Jean-Baptiste is a Founding Director of Harvard's Cultural Observatory, where their research team pioneers the use of quantitative methods for the study of human culture, language and history. His research was featured on the covers of Science and Nature, on the front pages of the New York Times and the Boston Globe, in The Economist, Wired and many other venues. The online tool he helped create -- ngrams.googlelabs.com -- was used millions of times to browse cultural trends. Jean-Baptiste is an Engineer from Ecole Polytechnique (Paris), and holds an MS in Applied Mathematics and a PhD in Systems Biology from Harvard.

More profile about the speaker
Jean-Baptiste Michel | Speaker | TED.com
Erez Lieberman Aiden - Researcher
Erez Lieberman Aiden pursues a broad range of research interests, spanning genomics, linguistics, mathematics ...

Why you should listen

Erez Lieberman Aiden is a fellow at the Harvard Society of Fellows and Visiting Faculty at Google. His research spans many disciplines and has won numerous awards, including recognition for one of the top 20 "Biotech Breakthroughs that will Change Medicine", by Popular Mechanics; the Lemelson-MIT prize for the best student inventor at MIT; the American Physical Society's Award for the Best Doctoral Dissertation in Biological Physics; and membership in Technology Review's 2009 TR35, recognizing the top 35 innovators under 35. His last three papers -- two with JB Michel -- have all appeared on the cover of Nature and Science.

More profile about the speaker
Erez Lieberman Aiden | Speaker | TED.com
TEDxBoston 2011

Jean-Baptiste Michel + Erez Lieberman Aiden: What we learned from 5 million books

Šta smo naučili iz 5 miliona knjiga

Filmed:
2,049,453 views

Jeste li isprobali Google-ov Labs' Ngram Viewer? To je zarazna alatka koja vam omogućava da tražite riječi i ideje u bazi od 5 miliona knjiga iz različitih stoljeća. Erez Lieberman Aiden and Jean-Baptiste Michel nam pokazuju kako funkcioniše, i nekoliko začuđujućih stvari koje možemo naučiti iz 500 milijardi riječi.
- Data researcher
Jean-Baptiste Michel looks at how we can use large volumes of data to better understand our world. Full bio - Researcher
Erez Lieberman Aiden pursues a broad range of research interests, spanning genomics, linguistics, mathematics ... Full bio

Double-click the English transcript below to play the video.

00:15
ErezErez LiebermanLiberman AidenAiden: EveryoneSvi knowszna
0
0
2000
Erez Lieberman Aide: Svako zna
00:17
that a pictureslika is worthvrijedi a thousandhiljadu wordsriječi.
1
2000
3000
da jedna slika vrijedi hiljadu riječi.
00:22
But we at HarvardHarvard
2
7000
2000
Ali mi na Harvardu
00:24
were wonderingpitajući se if this was really trueistinito.
3
9000
3000
smo se pitali da li je ovo stvarno tačno.
00:27
(LaughterSmijeh)
4
12000
2000
(Smijeh)
00:29
So we assembledmontirani a teamtim of expertsstručnjaci,
5
14000
4000
Stoga smo skupili tim eksperata,
00:33
spanningspanning HarvardHarvard, MITMIT,
6
18000
2000
iz Harvarda, MIT-a,
00:35
The AmericanAmerički HeritageBaština DictionaryRječnik, The EncyclopediaEnciklopedija BritannicaBritannica
7
20000
3000
The American Heritage Dictionary, Enciklopedije Britannica,
00:38
and even our proudponosan sponsorssponzori,
8
23000
2000
i naših ponosnih sponzora,
00:40
the GoogleGoogle.
9
25000
3000
Googlea.
00:43
And we cogitatedcogitated about this
10
28000
2000
Razmišljali smo o tome
00:45
for about fourčetiri yearsgodine.
11
30000
2000
oko 4 godine.
00:47
And we camedošao to a startlingZapanjujuće conclusionzaključak.
12
32000
5000
I došli smo do zapanjujućeg zaključka.
00:52
LadiesDame and gentlemengospodo, a pictureslika is not worthvrijedi a thousandhiljadu wordsriječi.
13
37000
3000
Dame i gospodo, slika ne vrijedi hiljadu riječi.
00:55
In factčinjenica, we foundpronađeno some picturesslike
14
40000
2000
Zapravo, našli smo neke slike
00:57
that are worthvrijedi 500 billionmilijardu wordsriječi.
15
42000
5000
koje vrijede 500 milijardi riječi.
01:02
Jean-BaptisteJean-Baptiste MichelMichel: So how did we get to this conclusionzaključak?
16
47000
2000
Jean-Baptiste Michel: Kako smo došli do ovog zaključka?
01:04
So ErezErez and I were thinkingrazmišljanje about waysnačina
17
49000
2000
Erez i ja smo razmišljali kako da pronađemo načine
01:06
to get a bigveliki pictureslika of humančovjek culturekultura
18
51000
2000
da napravimo sliku ljudske kulture
01:08
and humančovjek historyistorija: changepromjena over time.
19
53000
3000
i ljudske historije: promjenu tokom vremena.
01:11
So manymnogi booksknjige actuallyzapravo have been writtennapisano over the yearsgodine.
20
56000
2000
Mnoštvo knjiga je napisano tokom godina.
01:13
So we were thinkingrazmišljanje, well the bestnajbolje way to learnuči from them
21
58000
2000
Pa smo razmišljali da je najbolji način da se iz njih uči
01:15
is to readpročitajte all of these millionsmiliona of booksknjige.
22
60000
2000
jeste da pročitamo sve ove knjige.
01:17
Now of coursekurs, if there's a scaleskala for how awesomesuper that is,
23
62000
3000
Naravno, ako postoji skala fenomenalnosti,
01:20
that has to rankRang extremelyekstremno, extremelyekstremno highvisoka.
24
65000
3000
mora biti jako, jako visoko.
01:23
Now the problemproblem is there's an X-axisX-osi for that,
25
68000
2000
Problem je što za to postoji X-osa,
01:25
whichšto is the practicalpraktično axisosa.
26
70000
2000
stvarna osa.
01:27
This is very, very lownisko.
27
72000
2000
Koja je veoma, veoma nisko.
01:29
(ApplausePljesak)
28
74000
3000
(Aplauz)
01:32
Now people tendtendencija to use an alternativealternativa approachpristup,
29
77000
3000
Ljudi obično koriste drugi pristup,
01:35
whichšto is to take a fewnekoliko sourcesizvori and readpročitajte them very carefullypažljivo.
30
80000
2000
uzmu par izvora i pažljivo ih čitaju.
01:37
This is extremelyekstremno practicalpraktično, but not so awesomesuper.
31
82000
2000
Ovo je veoma praktično, ali nije tako fenomenalno.
01:39
What you really want to do
32
84000
3000
Ono što zapravo želite postići
01:42
is to get to the awesomesuper yetjoš uvek practicalpraktično partdeo of this spaceprostor.
33
87000
3000
jeste fenomenalno, ali praktični dio ovog prostora.
01:45
So it turnsokreće se out there was a companykompanija acrosspreko the riverreka calledpozvana GoogleGoogle
34
90000
3000
Postoji kompanija koja se zove Google
01:48
who had startedzapočet a digitizationdigitalizacija projectprojekat a fewnekoliko yearsgodine back
35
93000
2000
i koja je prije nekoliko godina krenula sa digitalizacijom
01:50
that mightMožda just enableomogućiti this approachpristup.
36
95000
2000
koja bi pomogla ovom pristupu.
01:52
They have digitizeddigitalizirani millionsmiliona of booksknjige.
37
97000
2000
Digitalizirali su milione knjiga.
01:54
So what that meansznači is, one could use computationalračunarski methodsmetode
38
99000
3000
To znači da možemo kompjuterski
01:57
to readpročitajte all of the booksknjige in a clickkliknite of a buttondugme.
39
102000
2000
pročitati sve knjige u samo jednom kliku.
01:59
That's very practicalpraktično and extremelyekstremno awesomesuper.
40
104000
3000
To je veoma praktično i fenomenalno.
02:03
ELAELA: Let me tell you a little bitbit about where booksknjige come from.
41
108000
2000
ELA: Dozvolite mi da nešto kažem o tome odakle su potjekle knjige.
02:05
SinceOd time immemorialdosadan, there have been authorsautori.
42
110000
3000
Od prastarih vremena, postojali su autori.
02:08
These authorsautori have been strivingstremljenje to writepisati booksknjige.
43
113000
3000
Ovi autori su težili da pišu knjige.
02:11
And this becamepostao considerablyznatno easierlakše
44
116000
2000
Ovo je postalo znatno lakše
02:13
with the developmentrazvoj of the printingštampanje presspritisnite some centuriesvekovima agopre.
45
118000
2000
od kada se, prije nekoliko stoljeća, pojavila mašina za štampanje.
02:15
SinceOd then, the authorsautori have wonpobedio
46
120000
3000
Od tada, autori su
02:18
on 129 millionmiliona distinctposeban occasionsprilike,
47
123000
2000
objavili oko 129 miliona
02:20
publishingobjavljivanje booksknjige.
48
125000
2000
knjiga.
02:22
Now if those booksknjige are not lostizgubljeno to historyistorija,
49
127000
2000
Ako se ove knjige nisu izgubile u prošlosti,
02:24
then they are somewherenegde in a librarybiblioteka,
50
129000
2000
onda su negdje u knjižari,
02:26
and manymnogi of those booksknjige have been gettingdobivanje retrievedpopravljanje from the librariesbiblioteke
51
131000
3000
a mnoge knjige su podizane iz bibilioteka
02:29
and digitizeddigitalizirani by GoogleGoogle,
52
134000
2000
i digitalizovane od strane Goolgea,
02:31
whichšto has scannedskeniran 15 millionmiliona booksknjige to datedatum.
53
136000
2000
koji je do sada skenirao 15 miliona knjiga.
02:33
Now when GoogleGoogle digitizesdigitalizira a bookknjiga, they put it into a really nicelepo formatformatu.
54
138000
3000
Kada Google digitalizuje knjigu, stave je u veoma dobar format.
02:36
Now we'vemi smo got the datapodaci, plusplus we have metadatametapodataka.
55
141000
2000
Sada imamo podatke i meta-podatke.
02:38
We have informationinformacije about things like where was it publishedobjavljen,
56
143000
3000
Imamo podatke o tome gdje je objavljena,
02:41
who was the authorautor, when was it publishedobjavljen.
57
146000
2000
ko je autor, kada je objavljena.
02:43
And what we do is go throughkroz all of those recordszapisi
58
148000
3000
I mi prelazimo sve ove podatke
02:46
and excludeisključiti everything that's not the highestnajviše qualitykvaliteta datapodaci.
59
151000
4000
i izbacujemo sve one podatke koji nisu kvalitetni.
02:50
What we're left with
60
155000
2000
Ono što nam preostaje je
02:52
is a collectionkolekcija of fivepet millionmiliona booksknjige,
61
157000
3000
kolekcija od 5 miliona knjiga,
02:55
500 billionmilijardu wordsriječi,
62
160000
3000
500 milijardi riječi,
02:58
a stringstring of characterskaraktera a thousandhiljadu timesputa longerduže
63
163000
2000
i niz slova, 1000 puta duži od
03:00
than the humančovjek genomegenom --
64
165000
3000
ljudskog genoma --
03:03
a texttekst whichšto, when writtennapisano out,
65
168000
2000
tekst koji, kada se ispiše,
03:05
would stretchrastezanje from here to the MoonMjesec and back
66
170000
2000
bi se protezao do Mjeseca i nazad
03:07
10 timesputa over --
67
172000
2000
10 puta --
03:09
a veritableistinski shardkrhotina of our culturalkulturno genomegenom.
68
174000
4000
prava krhotina našeg kulturnog genoma.
03:13
Of coursekurs what we did
69
178000
2000
Naravno,
03:15
when facedsuočena with suchtakve outrageousodvratno hyperbolehiperbola ...
70
180000
3000
kada smo se suočili sa ovakvom nečuvenom hiperbolom...
03:18
(LaughterSmijeh)
71
183000
2000
(Smijeh)
03:20
was what any self-respectingSelf-Poštujući researchersistraživači
72
185000
3000
uradili smo ono
03:23
would have donezavršeno.
73
188000
3000
što bi svaki istraživač uradio.
03:26
We tookuzela a pagestranica out of XKCDXKCD,
74
191000
2000
Uzeli smo stranicu iz XKCD,
03:28
and we said, "StandPostolje back.
75
193000
2000
i rekli, "Odmaknite se.
03:30
We're going to try sciencenauka."
76
195000
2000
Isprobat ćemo nauku."
03:32
(LaughterSmijeh)
77
197000
2000
(Smijeh)
03:34
JMJM: Now of coursekurs, we were thinkingrazmišljanje,
78
199000
2000
JM: Naravno, mislili smo,
03:36
well let's just first put the datapodaci out there
79
201000
2000
hajmo prvo ubaciti podatke
03:38
for people to do sciencenauka to it.
80
203000
2000
koji bi ih iskoristili u nauci.
03:40
Now we're thinkingrazmišljanje, what datapodaci can we releasepustiti?
81
205000
2000
Razmišljali smo, koje podatke možemo obajaviti?
03:42
Well of coursekurs, you want to take the booksknjige
82
207000
2000
Naravno, želite objaviti
03:44
and releasepustiti the fullpun texttekst of these fivepet millionmiliona booksknjige.
83
209000
2000
cijeli tekst ovih 5 miliona knjiga.
03:46
Now GoogleGoogle, and JonJon OrwantOrwant in particularposebno,
84
211000
2000
Google, a posebno Jon Orwant,
03:48
told us a little equationjednačina that we should learnuči.
85
213000
2000
nam je pokazao jednu jednačinu koju trebamo znati.
03:50
So you have fivepet millionmiliona, that is, fivepet millionmiliona authorsautori
86
215000
3000
Ako imate 5 miliona, tj., 5 miliona autora,
03:53
and fivepet millionmiliona plaintiffstužiteljima is a massivemasivni lawsuittužba.
87
218000
3000
to znači 5 miliona tužilaca.
03:56
So, althoughiako that would be really, really awesomesuper,
88
221000
2000
Iako bi to bilo veoma, veoma fenomenalno,
03:58
again, that's extremelyekstremno, extremelyekstremno impracticalnepraktično.
89
223000
3000
ipak je jako nepraktično.
04:01
(LaughterSmijeh)
90
226000
2000
(Smijeh)
04:03
Now again, we kindkind of cavedpokleknuo in,
91
228000
2000
Nekako smo popustili,
04:05
and we did the very practicalpraktično approachpristup, whichšto was a bitbit lessmanje awesomesuper.
92
230000
3000
i krenuli smo praktični pristup, koji je bio malo manje fenomenalan.
04:08
We said, well insteadumjesto toga of releasingispuštanje the fullpun texttekst,
93
233000
2000
Umjesto da objavljujemo cijeli tekst,
04:10
we're going to releasepustiti statisticsstatistike about the booksknjige.
94
235000
2000
objavit ćemo statistiku o knjigama.
04:12
So take for instanceprimer "A gleamsjaj of happinesssreća."
95
237000
2000
Uzmite naprimjer "Tračak sreće."
04:14
It's fourčetiri wordsriječi; we call that a four-gramčetiri grama.
96
239000
2000
Ima četiri riječi; zovemo je četiri-grama.
04:16
We're going to tell you how manymnogi timesputa a particularposebno four-gramčetiri grama
97
241000
2000
Pokazat ćemo vam koliko puta se ona
04:18
appearedse pojavila in booksknjige in 1801, 1802, 1803,
98
243000
2000
pojavila u knjigama u 1801, 1802, 1803,
04:20
all the way up to 2008.
99
245000
2000
sve do 2008.
04:22
That givesdaje us a time seriesserije
100
247000
2000
Tako znamo
04:24
of how frequentlyčesto this particularposebno sentencekazna was used over time.
101
249000
2000
koliko često se neka rečenica ponavljala tokom vremena.
04:26
We do that for all the wordsriječi and phrasesfraze that appearpojaviti in those booksknjige,
102
251000
3000
Uradili smo to za sve riječi i fraze koje se pojavljuju u ovim knjigama,
04:29
and that givesdaje us a bigveliki tablestol of two billionmilijardu lineslinije
103
254000
3000
i tako imamo tabelu od 2 milijarde redova
04:32
that tell us about the way culturekultura has been changingmenja se.
104
257000
2000
koji nam govore kako se kultura mijenjala.
04:34
ELAELA: So those two billionmilijardu lineslinije,
105
259000
2000
ELA: Te redove
04:36
we call them two billionmilijardu n-gramsn grama.
106
261000
2000
zovemo 2 milijarde n-grama.
04:38
What do they tell us?
107
263000
2000
Šta nam oni govore?
04:40
Well the individualindividualno n-gramsn grama measuremjeru culturalkulturno trendstrendovi.
108
265000
2000
Pojedinačni n-grami određuju kulturalne trendove.
04:42
Let me give you an exampleprimer.
109
267000
2000
Evo primjera.
04:44
Let's supposePretpostavimo that I am thrivinguspješan,
110
269000
2000
Pretpostavimo da napredujem,
04:46
then tomorrowsutra I want to tell you about how well I did.
111
271000
2000
i sutra vam želim ispričati kako sam uradio.
04:48
And so I mightMožda say, "YesterdayJučer, I throvethrove."
112
273000
3000
Mogu reći, "Jučer sam napredovao."
04:51
AlternativelyAlternativno, I could say, "YesterdayJučer, I thrivedrazvijalo."
113
276000
3000
Umjesto toga, mogu reći, "Jučer napredovah."
04:54
Well whichšto one should I use?
114
279000
3000
Koju riječ da koristim?
04:57
How to know?
115
282000
2000
Kako da znam?
04:59
As of about sixšest monthsmjeseci agopre,
116
284000
2000
Od prije šest mjeseci,
05:01
the statestanje of the artart in this fieldpolje
117
286000
2000
stanje u ovom području je takvo
05:03
is that you would, for instanceprimer,
118
288000
2000
da biste mogli, naprimjer,
05:05
go up to the followingsledeće psychologistpsiholog with fabulousfantastično hairkosa,
119
290000
2000
otići psihologu sa odličnom kosom,
05:07
and you'dti bi say,
120
292000
2000
i reći,
05:09
"SteveSteve, you're an expertstručnjak on the irregularnepravilan verbsglagoli.
121
294000
3000
"Steve, ti si ekspert u nepravilnim glagolima.
05:12
What should I do?"
122
297000
2000
Šta trebam uraditi?"
05:14
And he'don bi tell you, "Well mostnajviše people say thrivedrazvijalo,
123
299000
2000
A on bi ti rekao, "Većina ljudi kaže napredova,
05:16
but some people say throvethrove."
124
301000
3000
ali neki kažu napredovah."
05:19
And you alsotakođe knewznao je, more or lessmanje,
125
304000
2000
Takođe ste znali, manje ili više,
05:21
that if you were to go back in time 200 yearsgodine
126
306000
3000
da ako se vratite 200 godina unazad
05:24
and askpitajte the followingsledeće statesmandržavnik with equallypodjednako fabulousfantastično hairkosa,
127
309000
3000
i pitate državnika sa jednako dobrom kosom
05:27
(LaughterSmijeh)
128
312000
3000
(Smijeh)
05:30
"TomTom, what should I say?"
129
315000
2000
"Tom, šta da kažem?"
05:32
He'dOn bi say, "Well, in my day, mostnajviše people throvethrove,
130
317000
2000
On bi rekao, "Pa, u moje vrijeme, većina ljudi kaže napredovao,
05:34
but some thrivedrazvijalo."
131
319000
3000
a neki kažu napredovah."
05:37
So now what I'm just going to showshow you is rawsirovo datapodaci.
132
322000
2000
Sada ću vam pokazati nepripremljene podatke.
05:39
Two rowsredaka from this tablestol of two billionmilijardu entriesunose.
133
324000
4000
Dvije kolone u tabeli sa 2 milijarde unosa.
05:43
What you're seeingvidjeti is yeargodina by yeargodina frequencyfrekvencija
134
328000
2000
Možete vidjeti frekvenciju godinu za godinom
05:45
of "thrivedrazvijalo" and "throvethrove" over time.
135
330000
3000
za riječi "napredovao" i "napredovah".
05:49
Now this is just two
136
334000
2000
Ovo je samo 2
05:51
out of two billionmilijardu rowsredaka.
137
336000
3000
od 2 milijarde kolona.
05:54
So the entirecijeli datapodaci setset
138
339000
2000
Čitav set podataka
05:56
is a billionmilijardu timesputa more awesomesuper than this slideslajd.
139
341000
3000
je milijardu puta fenomenalniji od ovog slajda.
05:59
(LaughterSmijeh)
140
344000
2000
(Smijeh)
06:01
(ApplausePljesak)
141
346000
4000
(Aplauz)
06:05
JMJM: Now there are manymnogi other picturesslike that are worthvrijedi 500 billionmilijardu wordsriječi.
142
350000
2000
JM: Ima drugih slika koje vrijede 500 milijardi riječi.
06:07
For instanceprimer, this one.
143
352000
2000
Naprimjer, ova.
06:09
If you just take influenzagripa,
144
354000
2000
Ako uzmemo gripu,
06:11
you will see peaksvrhovi at the time where you knewznao je
145
356000
2000
vidjećete razdoblja kada je poznato
06:13
bigveliki flugripa epidemicsepidemije were killingubistvo people around the globeglobus.
146
358000
3000
da je epidemija gripe ubijala ljude širom planete.
06:16
ELAELA: If you were not yetjoš uvek convinceduveren,
147
361000
3000
ELA: Ako još niste uvjereni,
06:19
seamore levelsnivoa are risingraste,
148
364000
2000
nivo mora se povećava,
06:21
so is atmosphericatmosferski COCO2 and globalglobalno temperaturetemperatura.
149
366000
3000
kao i nivo CO2 u atmosferi i globalna temperatura.
06:24
JMJM: You mightMožda alsotakođe want to have a look at this particularposebno n-gramn-gram,
150
369000
3000
JM: Pogledajte ovaj n-gram,
06:27
and that's to tell NietzscheNietzsche that God is not deadsmrt,
151
372000
3000
koji pokazuje Nietzscheu da Bog nije mrtav,
06:30
althoughiako you mightMožda agreeslažem se that he mightMožda need a better publicistpublicista.
152
375000
3000
iako se morate složiti da on bi mu dobro došao bolji publicist.
06:33
(LaughterSmijeh)
153
378000
2000
(Smijeh)
06:35
ELAELA: You can get at some prettylepo abstractapstraktno conceptskoncepte with this sortsortiraj of thing.
154
380000
3000
ELA: Možete posmatrati neke vrlo abstraktne koncepte.
06:38
For instanceprimer, let me tell you the historyistorija
155
383000
2000
Naprimjer, dopustite da vam kažem nešto
06:40
of the yeargodina 1950.
156
385000
2000
o godini 1950-toj.
06:42
Prettylijep much for the vastogromno majorityvećina of historyistorija,
157
387000
2000
Tokom čitave prošlosti, poprilično
06:44
no one gavedala a damnProkletstvo about 1950.
158
389000
2000
nikome nije bilo stalo do godine 1950.
06:46
In 1700, in 1800, in 1900,
159
391000
2000
U 1700, 1800, i 1900.
06:48
no one caredbrinula.
160
393000
3000
nikome nije bilo stalo.
06:52
ThroughKroz the 30s and 40s,
161
397000
2000
Kroz 30-te i 40-te,
06:54
no one caredbrinula.
162
399000
2000
nikome nije bilo stalo.
06:56
SuddenlyOdjednom, in the mid-mid-40s,
163
401000
2000
Najednom, sredinom 40-tih,
06:58
there startedzapočet to be a buzzBuzz.
164
403000
2000
počela je galama.
07:00
People realizedrealizovan that 1950 was going to happenda se desi,
165
405000
2000
Ljudi su shvatili da će se desiti 1950 godina,
07:02
and it could be bigveliki.
166
407000
2000
i da bi mogla biti važna.
07:04
(LaughterSmijeh)
167
409000
3000
(Smijeh)
07:07
But nothing got people interestedzainteresovan in 1950
168
412000
3000
Ali nikada se ljudi nisu više zainteresirali za godinu 1950.
07:10
like the yeargodina 1950.
169
415000
3000
kao u godini 1950.
07:13
(LaughterSmijeh)
170
418000
3000
(Smijeh)
07:16
People were walkinghodanje around obsessedopsednut.
171
421000
2000
Ljudi su opsjednuto hodali uokolo.
07:18
They couldn'tnije mogao stop talkingpričaju
172
423000
2000
Nisu mogli prestati pričati
07:20
about all the things they did in 1950,
173
425000
3000
o stvarima koje su radili godine 1050.,
07:23
all the things they were planningplaniranje to do in 1950,
174
428000
3000
i o stvarima koje su planirali raditi godine 1950.
07:26
all the dreamssnove of what they wanted to accomplishpostići in 1950.
175
431000
5000
o snovima koje su htjeli ostvariti godine 1950.
07:31
In factčinjenica, 1950 was so fascinatingfascinantno
176
436000
2000
Zapravo, godina 1950 bila je tako fascinantna
07:33
that for yearsgodine thereafterNakon toga,
177
438000
2000
da su godinama nakon,
07:35
people just keptčuva talkingpričaju about all the amazingNeverovatno things that happeneddogodilo se,
178
440000
3000
ljudi nastavili pričati o svim zapanjujućim stvarima koje su se desile,
07:38
in '51, '52, '53.
179
443000
2000
godine 1951, '52, '53.
07:40
FinallyKonačno in 1954,
180
445000
2000
Napokon 1954.,
07:42
someoneneko wokeprobudio se up and realizedrealizovan
181
447000
2000
neko je shvatio
07:44
that 1950 had gottengotten somewhatdonekle passprolazé.
182
449000
4000
da je 1950. nekako zastarijela.
07:48
(LaughterSmijeh)
183
453000
2000
(Smijeh)
07:50
And just like that, the bubblebalon burstburst.
184
455000
2000
I samo tako, balon je pukao.
07:52
(LaughterSmijeh)
185
457000
2000
(Smijeh)
07:54
And the storypriča of 1950
186
459000
2000
Priča o godini 1950.
07:56
is the storypriča of everysvaki yeargodina that we have on recordzapis,
187
461000
2000
je priča o svakoj godini koju smo zabilježili,
07:58
with a little twistpreokret, because now we'vemi smo got these nicelepo chartskarte.
188
463000
3000
a malim preokretom, jer sada imamo ove lijepe grafikone.
08:01
And because we have these nicelepo chartskarte, we can measuremjeru things.
189
466000
3000
I zbog toga što imamo ove grafikone, možemo da mjerimo stvari.
08:04
We can say, "Well how fastbrzo does the bubblebalon burstburst?"
190
469000
2000
Možemo reći, "Kako brzo balon može da pukne?"
08:06
And it turnsokreće se out that we can measuremjeru that very preciselyprecizno.
191
471000
3000
Ispostavilo se da to možemo veoma precizno da izmjerimo.
08:09
EquationsJednadžbe were derivedderived, graphsgrafikoni were producedproizvedeno,
192
474000
3000
Jednačine su izvedene, grafikoni su napravljeni,
08:12
and the netnet resultrezultat
193
477000
2000
i jednostavan rezultat
08:14
is that we find that the bubblebalon burstsizboji fasterbrže and fasterbrže
194
479000
3000
je taj da balon buca sve brže
08:17
with eachsvaki passingprolazak yeargodina.
195
482000
2000
kako godine prolaze.
08:19
We are losinggubljenje interestinteresovanje in the pastprošlost more rapidlybrzo.
196
484000
5000
Sve brže gubimo interes za prošlost.
08:24
JMJM: Now a little piecekomad of careerkarijera advicesavet.
197
489000
2000
JM: Sada ću vam dati jedan mali savjet u vezi odabira karijere.
08:26
So for those of you who seektražiti to be famouspoznat,
198
491000
2000
Za one koji žele postati poznati,
08:28
we can learnuči from the 25 mostnajviše famouspoznat politicalpolitički figuresfigure,
199
493000
2000
saznali smo od 25 najpoznatijih političkih figura,
08:30
authorsautori, actorsglumci and so on.
200
495000
2000
pisaca, glumaca i tako dalje.
08:32
So if you want to becomepostati famouspoznat earlyrano on, you should be an actorglumac,
201
497000
3000
Ako želite rano postati poznat, trebali ste biti glumac,
08:35
because then famepoznat startspočinje risingraste by the endkraj of your 20s --
202
500000
2000
jer u tom slučaju slava počinje da raste krajem vaših 20-tih godina --
08:37
you're still youngmladi, it's really great.
203
502000
2000
još uvijek ste mladi, što je sjajno.
08:39
Now if you can wait a little bitbit, you should be an authorautor,
204
504000
2000
Ako možete čekati još malo, onda bi ste trebali biti pisac,
08:41
because then you risepodići to very great heightsvisine,
205
506000
2000
jer onda slava doseže velike visine,
08:43
like MarkMark TwainTwain, for instanceprimer: extremelyekstremno famouspoznat.
206
508000
2000
kao Mark Twain, naprimjer: on je veoma poznat.
08:45
But if you want to reachdostignuti the very topvrh,
207
510000
2000
Ali ako želite doseći sam vrh,
08:47
you should delaykašnjenje gratificationzadovoljstvo
208
512000
2000
trebali bi ste odgoditi slavu
08:49
and, of coursekurs, becomepostati a politicianpolitičar.
209
514000
2000
i, naravno, postati političar.
08:51
So here you will becomepostati famouspoznat by the endkraj of your 50s,
210
516000
2000
Ovako ćete postati popularni krajem vaših 50-tih godina,
08:53
and becomepostati very, very famouspoznat afterwardnakon toga.
211
518000
2000
i ostati veoma, veoma, poznati i nakon.
08:55
So scientistsnaučnici alsotakođe tendtendencija to get famouspoznat when they're much olderstariji.
212
520000
3000
I naučnici postaju slavni kako stare.
08:58
Like for instanceprimer, biologistsbiolozi and physicsfizika
213
523000
2000
Naprimejr, biolozi i fizičari
09:00
tendtendencija to be almostgotovo as famouspoznat as actorsglumci.
214
525000
2000
su obično poznati kao i glumci.
09:02
One mistakegreška you should not do is becomepostati a mathematicianmatematičar.
215
527000
3000
Jedina greška koju ne smijete napraviti jeste da postanete matematičar.
09:05
(LaughterSmijeh)
216
530000
2000
(Smijeh)
09:07
If you do that,
217
532000
2000
Ako to uradite,
09:09
you mightMožda think, "Oh great. I'm going to do my bestnajbolje work when I'm in my 20s."
218
534000
3000
možete pomisliti, "Super. Objavit ću najbolji rad u svojim 20-tim."
09:12
But guesspretpostavite what, nobodyniko will really carenegu.
219
537000
2000
Ali pogodite, nikome zaista neće biti stalo.
09:14
(LaughterSmijeh)
220
539000
3000
(Smijeh)
09:17
ELAELA: There are more soberingodrezivanje notesbeleške
221
542000
2000
ELA: Ima i nešto trezvenih bilješki
09:19
amongmeđu the n-gramsn grama.
222
544000
2000
mešu n-gramima.
09:21
For instanceprimer, here'sevo the trajectoryputanja of MarcMarc ChagallChagall,
223
546000
2000
Naprimjer, ovo je put Marca Chagalla,
09:23
an artistumjetnik bornrođen in 1887.
224
548000
2000
umjetnika rođenog 1887.
09:25
And this looksizgleda like the normalnormalno trajectoryputanja of a famouspoznat personosoba.
225
550000
3000
I ovo izgleda kao normalan put poznate osobe.
09:28
He getsdobiva more and more and more famouspoznat,
226
553000
4000
On postaje sve poznatiji,
09:32
exceptosim if you look in Germannjemački.
227
557000
2000
osim ako gledate na njemačkom.
09:34
If you look in Germannjemački, you see something completelypotpuno bizarrebizarno,
228
559000
2000
Na njemačkom, postoji nešto veoma bizarno,
09:36
something you prettylepo much never see,
229
561000
2000
nešto što se skoro nikada ne može vidjeti,
09:38
whichšto is he becomespostaje extremelyekstremno famouspoznat
230
563000
2000
a to je da on postaje strašno poznat
09:40
and then all of a suddeniznenada plummetsolova,
231
565000
2000
i onda najednom njegova popularnost snažno se penje,
09:42
going throughkroz a nadirnadir betweenizmeđu 1933 and 1945,
232
567000
3000
i doseže nebeske visine između 1933 i 1945.,
09:45
before reboundingskokova afterwardnakon toga.
233
570000
3000
prije se ponovo vraća.
09:48
And of coursekurs, what we're seeingvidjeti
234
573000
2000
Naravno, vidimo
09:50
is the factčinjenica MarcMarc ChagallChagall was a JewishŽidovski artistumjetnik
235
575000
3000
da je Marc Chagall bio jevrejski umjetnih
09:53
in NaziNacističke GermanyNjemačka.
236
578000
2000
u nacističkoj Njemačkoj.
09:55
Now these signalssignalima
237
580000
2000
Ovi signali
09:57
are actuallyzapravo so strongjak
238
582000
2000
su zapravo tako jaki
09:59
that we don't need to know that someoneneko was censoredcenzurirani.
239
584000
3000
da ne moramo znati da je neko cenzurisan.
10:02
We can actuallyzapravo figurefigura it out
240
587000
2000
Možemo zapravo shvatiti
10:04
usingkoristeći really basicosnovni signalsignal processingobrada.
241
589000
2000
procesuirajući jednostavne signale.
10:06
Here'sOvdje je a simplejednostavno way to do it.
242
591000
2000
Evo jednostavnog načina za to.
10:08
Well, a reasonablerazumno expectationočekivanje
243
593000
2000
Logično je očekivati
10:10
is that somebody'sNeko je famepoznat in a givendat periodperiod of time
244
595000
2000
da nečija slava u datom preiodu
10:12
should be roughlygrubo the averageprosek of theirnjihova famepoznat before
245
597000
2000
bi trebala otprilike biti prosjek njihove slave prije
10:14
and theirnjihova famepoznat after.
246
599000
2000
i slave poslije.
10:16
So that's sortsortiraj of what we expectocekujem.
247
601000
2000
Takvo nešto mi očekujemo.
10:18
And we compareuporedite that to the famepoznat that we observepromatrati.
248
603000
3000
I poredimo to sa slavom koju mi posmatramo.
10:21
And we just dividepodelite one by the other
249
606000
2000
I jednostavno podijelimo jedno sa drugim
10:23
to produceproizvesti something we call a suppressionsuzbijanje indexindeks.
250
608000
2000
da bismo dobili nešto što nazivamo indeks zabrane.
10:25
If the suppressionsuzbijanje indexindeks is very, very, very smallmali,
251
610000
3000
Ako je indeks veoma, veoma, veoma mali,
10:28
then you very well mightMožda be beingbiće suppressedpotisnut.
252
613000
2000
onda možda ste zabranjeni.
10:30
If it's very largeveliko, maybe you're benefitingu korist from propagandapropagande.
253
615000
3000
Ako je veoma veliki, onda možda imate korist od propagande.
10:34
JMJM: Now you can actuallyzapravo look at
254
619000
2000
JM: Možete zapravo posmatrati
10:36
the distributiondistribucija of suppressionsuzbijanje indexesindekse over wholecjelina populationspopulacije.
255
621000
3000
distribuciju indeksa zabrane čitave populacije.
10:39
So for instanceprimer, here --
256
624000
2000
Naprimjer, ovdje --
10:41
this suppressionsuzbijanje indexindeks is for 5,000 people
257
626000
2000
indeks zabrane za 5,000 ljudi
10:43
pickedizabrali in Englishengleski booksknjige where there's no knownpoznato suppressionsuzbijanje --
258
628000
2000
odabranih iz engleskih udžbenika gdje nema zabrana --
10:45
it would be like this, basicallyu suštini tightlyčvrsto centeredcentrirano on one.
259
630000
2000
izgledalo bi ovako, usko centrirani na jedan.
10:47
What you expectocekujem is basicallyu suštini what you observepromatrati.
260
632000
2000
Ono što očekujete je jednostavno ono što posmatrate.
10:49
This is distributiondistribucija as seenviđeni in GermanyNjemačka --
261
634000
2000
Ovo je rasprostranjenost posmatrana u Njemačkoj --
10:51
very differentdrugačiji, it's shiftedpremešteno to the left.
262
636000
2000
veoma različita, pomjerena u lijevo.
10:53
People talkedpričao about it twicedva puta lessmanje as it should have been.
263
638000
3000
Ljudi su o tome govorili dva puta manje nego što je trebalo.
10:56
But much more importantlyvažno, the distributiondistribucija is much wideršire.
264
641000
2000
Ali što je najvažnije, rasprostranjenost je mnogo šira.
10:58
There are manymnogi people who endkraj up on the fardaleko left on this distributiondistribucija
265
643000
3000
Mnogo je ljudi koji završe na krajnje lijevoj tački rasprostranjenosti
11:01
who are talkedpričao about 10 timesputa fewermanje than they should have been.
266
646000
3000
o kojima se govori 10 puta manje nego što bi trebalo.
11:04
But then alsotakođe manymnogi people on the fardaleko right
267
649000
2000
Ali i mnogi ljudi na krajnje desnoj tački
11:06
who seemizgleda to benefitkorist from propagandapropagande.
268
651000
2000
očigledno imaju korist od propadande.
11:08
This pictureslika is the hallmarkzaštitni znak of censorshipcenzura in the bookknjiga recordzapis.
269
653000
3000
Ova slika je znak cenzure.
11:11
ELAELA: So culturomicsculturomics
270
656000
2000
ELA: Kulturomija
11:13
is what we call this methodmetoda.
271
658000
2000
je naziv ove naše metode.
11:15
It's kindkind of like genomicsgenomika.
272
660000
2000
Nešto je nalik genomiji.
11:17
ExceptOsim genomicsgenomika is a lensobjektiv on biologybiologija
273
662000
2000
Osim što je genomija uvid u bilogiju
11:19
throughkroz the windowprozor of the sequencesekvenca of basesbaze in the humančovjek genomegenom.
274
664000
3000
kroz prozor slijeda baza u ljudskom genomu.
11:22
CulturomicsCulturomics is similarSlično.
275
667000
2000
Kulturomija je slična.
11:24
It's the applicationaplikacija of massive-scalemasovno datapodaci collectionkolekcija analysisanaliza
276
669000
3000
To je primjena skupljanja podataka velikog uzorka
11:27
to the studystudija of humančovjek culturekultura.
277
672000
2000
na ljudsku kulturu.
11:29
Here, insteadumjesto toga of throughkroz the lensobjektiv of a genomegenom,
278
674000
2000
Umjesto kroz ljudski genom,
11:31
throughkroz the lensobjektiv of digitizeddigitalizirani pieceskomadi of the historicalistorijski recordzapis.
279
676000
3000
gleda se kroz digitalizirane historijske zapise.
11:34
The great thing about culturomicsculturomics
280
679000
2000
Odlična stvar u vezi kulturonomije
11:36
is that everyonesvi can do it.
281
681000
2000
je da svako to može uraditi.
11:38
Why can everyonesvi do it?
282
683000
2000
Zašto je dostupna svima?
11:40
EveryoneSvi can do it because threetri guys,
283
685000
2000
Zato što su tri čovjeka,
11:42
JonJon OrwantOrwant, MattMatt GraySiva and Will BrockmanBROCKMAN over at GoogleGoogle,
284
687000
3000
Jon Orwant, Matt Gray i Will Brockman iz Googlea,
11:45
saw the prototypeprototip of the NgramNgram ViewerPreglednik,
285
690000
2000
su vidjeli prototip Ngram VIewera,
11:47
and they said, "This is so funzabava.
286
692000
2000
i rekli su, "Ovo je tako zabavno.
11:49
We have to make this availabledostupan for people."
287
694000
3000
Moramo ovo pružiti ljudima."
11:52
So in two weeksnedelje flatstan -- the two weeksnedelje before our paperpapir camedošao out --
288
697000
2000
Za ravno dvije sedmice -- dvije sedmice prije nego naš rad objavljen --
11:54
they codedkodirani up a versionverzija of the NgramNgram ViewerPreglednik for the generalgeneralno publicjavno.
289
699000
3000
napravili su verziju Ngram Viewera za javnost.
11:57
And so you too can typetip in any wordriječ or phrasefraza that you're interestedzainteresovan in
290
702000
3000
Tako da sada možete ukucati bilo koju riječ ili frazu koja vas zanima
12:00
and see its n-gramn-gram immediatelyodmah --
291
705000
2000
i odmah vidjeti njen n-gram --
12:02
alsotakođe browsePregledaj examplesprimjeri of all the variousrazni booksknjige
292
707000
2000
i naći primjere iz ranih knjiga
12:04
in whichšto your n-gramn-gram appearsPojavljuje se.
293
709000
2000
u kojima se vaš n-gram spominje.
12:06
JMJM: Now this was used over a millionmiliona timesputa on the first day,
294
711000
2000
JM: Ngram Viewer
12:08
and this is really the bestnajbolje of all the queriesupiti.
295
713000
2000
i ovo je najbolje od svih upita.
12:10
So people want to be theirnjihova bestnajbolje, put theirnjihova bestnajbolje footstopalo forwardnapred.
296
715000
3000
Ljudi žele najbolje, da urade najbolje što mogu.
12:13
But it turnsokreće se out in the 18thth centuryvek, people didn't really carenegu about that at all.
297
718000
3000
Ali izgleda da ljudi u 18-tom stoljeću o tome nisu marili.
12:16
They didn't want to be theirnjihova bestnajbolje, they wanted to be theirnjihova beftbeft.
298
721000
3000
Nisu željeli uraditi najbolje, željeli su najbolje.
12:19
So what happeneddogodilo se is, of coursekurs, this is just a mistakegreška.
299
724000
3000
Desilo se, naravno, ovo je samo pogreška.
12:22
It's not that strovetrudio for mediocritymediocrity,
300
727000
2000
Nije da su težili prosjećnosti,
12:24
it's just that the S used to be writtennapisano differentlydrugačije, kindkind of like an F.
301
729000
3000
već se S pisalo drugačije, slično F.
12:27
Now of coursekurs, GoogleGoogle didn't pickpick this up at the time,
302
732000
3000
Naravno, Google nije ovo izdvojio,
12:30
so we reportedprijavili this in the sciencenauka articlečlanak that we wrotenapisao je.
303
735000
3000
tako da smo ovo naveli u naučnom članku.
12:33
But it turnsokreće se out this is just a reminderpodsjetnik
304
738000
2000
Ali ovo je ispalo kao podsjetnik
12:35
that, althoughiako this is a lot of funzabava,
305
740000
2000
da, iako je ovo veoma zabavno,
12:37
when you interpretinterpretirati these graphsgrafikoni, you have to be very carefulpažljiv,
306
742000
2000
kada tumačite ove grafikone, morate biti veoma pažljivi,
12:39
and you have to adoptusvojiti the basebazu standardsstandarde in the sciencesnauke.
307
744000
3000
i morati primijeniti ove standarde u nauci.
12:42
ELAELA: People have been usingkoristeći this for all kindsvrste of funzabava purposessvrhe.
308
747000
3000
ELA: Ljudi ovo koriste za razne zabavne svrhe.
12:45
(LaughterSmijeh)
309
750000
7000
(Smijeh)
12:52
ActuallyZapravo, we're not going to have to talk,
310
757000
2000
Zapravo, ne moramo pričati,
12:54
we're just going to showshow you all the slidesslajdove and remainostaje silenttiho.
311
759000
3000
samo ćemo vam u tišini pokazati sve slajdove.
12:57
This personosoba was interestedzainteresovan in the historyistorija of frustrationfrustracija.
312
762000
3000
Ovu osobu je interesovala historija frustracije.
13:00
There's variousrazni typesvrste of frustrationfrustracija.
313
765000
3000
Postoje razni tipovi fustracija.
13:03
If you stubkućanstava your toenožni prst, that's a one A "arghArgh."
314
768000
3000
Ako se udarite u nožni prst, to je jedno A "argh".
13:06
If the planetplaneta EarthZemlja is annihilatedviše ne postoji by the VogonsVolgoni
315
771000
2000
Ako planetu Zemlju nasele Vogonci
13:08
to make roomsoba for an interstellarmeđuzvezdana bypasszaobići,
316
773000
2000
da naprave međuzvjezdanu zaobliaznicu,
13:10
that's an eightosam A "aaaaaaaarghaaaaaaaargh."
317
775000
2000
to je osam A "aaaaaaaargh."
13:12
This personosoba studiesstudije all the "arghsarghs,"
318
777000
2000
Ova osoba je istražila sve "arghove,"
13:14
from one throughkroz eightosam A'sA.
319
779000
2000
od jednog pa do osam slova A.
13:16
And it turnsokreće se out
320
781000
2000
I ispada
13:18
that the less-frequentmanje česte "arghsarghs"
321
783000
2000
najrjeđi "arghovi"
13:20
are, of coursekurs, the onesone that correspondodgovaraju to things that are more frustratingfrustrirajuće --
322
785000
3000
su, naravno, oni koji se odnose na stvari koji više frustrirajuće --
13:23
exceptosim, oddlyčudno, in the earlyrano 80s.
323
788000
3000
osim, začudo, početkom 80-tih.
13:26
We think that mightMožda have something to do with ReaganReagan.
324
791000
2000
Možda to ima neke veze sa Reaganom.
13:28
(LaughterSmijeh)
325
793000
2000
(Smijeh)
13:30
JMJM: There are manymnogi usagesuzance of this datapodaci,
326
795000
3000
JM: Ovi podaci se koriste u razne svrhe,
13:33
but the bottomdno lineline is that the historicalistorijski recordzapis is beingbiće digitizeddigitalizirani.
327
798000
3000
ali historijski zapisi se digitalizuju.
13:36
GoogleGoogle has startedzapočet to digitizedigitalizirati 15 millionmiliona booksknjige.
328
801000
2000
Google je počeo sa digitalizacijom 15 miliona knjiga.
13:38
That's 12 percentprocenta of all the booksknjige that have ever been publishedobjavljen.
329
803000
2000
To je 12 posto svih knjiga koje su izdate.
13:40
It's a sizablepoveliki chunkkomad of humančovjek culturekultura.
330
805000
3000
To je veliki dio ljudske kulture.
13:43
There's much more in culturekultura: there's manuscriptsrukopisi, there newspapersnovine,
331
808000
3000
Tu su i rukopisi, novine,
13:46
there's things that are not texttekst, like artart and paintingsslike.
332
811000
2000
tu su i materijali bez teksta, kao umjetnost i slike.
13:48
These all happenda se desi to be on our computersračunari,
333
813000
2000
To je sve u našim kompjuterima,
13:50
on computersračunari acrosspreko the worldsvet.
334
815000
2000
i kompjuterima širom svijeta.
13:52
And when that happensse dešava, that will transformtransformisati the way we have
335
817000
3000
Kada se to desi, to će promijeniti način na koji
13:55
to understandrazumijete our pastprošlost, our presentprisutan and humančovjek culturekultura.
336
820000
2000
mi shvatamo prošlost, sadašnjost i ljudsku kulturu.
13:57
Thank you very much.
337
822000
2000
Hvala vam mnogo.
13:59
(ApplausePljesak)
338
824000
3000
(Aplauz)
Translated by Samra Cebiric
Reviewed by Mateja Nenadovic

▲Back to top

ABOUT THE SPEAKERS
Jean-Baptiste Michel - Data researcher
Jean-Baptiste Michel looks at how we can use large volumes of data to better understand our world.

Why you should listen

Jean-Baptiste Michel holds joint academic appointments at Harvard (FQEB Fellow) and Google (Visiting Faculty). His research focusses on using large volumes of data as tools that help better understand the world around us -- from the way diseases progress in patients over years, to the way cultures change in human societies over centuries. With his colleague Erez Lieberman Aiden, Jean-Baptiste is a Founding Director of Harvard's Cultural Observatory, where their research team pioneers the use of quantitative methods for the study of human culture, language and history. His research was featured on the covers of Science and Nature, on the front pages of the New York Times and the Boston Globe, in The Economist, Wired and many other venues. The online tool he helped create -- ngrams.googlelabs.com -- was used millions of times to browse cultural trends. Jean-Baptiste is an Engineer from Ecole Polytechnique (Paris), and holds an MS in Applied Mathematics and a PhD in Systems Biology from Harvard.

More profile about the speaker
Jean-Baptiste Michel | Speaker | TED.com
Erez Lieberman Aiden - Researcher
Erez Lieberman Aiden pursues a broad range of research interests, spanning genomics, linguistics, mathematics ...

Why you should listen

Erez Lieberman Aiden is a fellow at the Harvard Society of Fellows and Visiting Faculty at Google. His research spans many disciplines and has won numerous awards, including recognition for one of the top 20 "Biotech Breakthroughs that will Change Medicine", by Popular Mechanics; the Lemelson-MIT prize for the best student inventor at MIT; the American Physical Society's Award for the Best Doctoral Dissertation in Biological Physics; and membership in Technology Review's 2009 TR35, recognizing the top 35 innovators under 35. His last three papers -- two with JB Michel -- have all appeared on the cover of Nature and Science.

More profile about the speaker
Erez Lieberman Aiden | Speaker | TED.com

Data provided by TED.

This site was created in May 2015 and the last update was on January 12, 2020. It will no longer be updated.

We are currently creating a new site called "eng.lish.video" and would be grateful if you could access it.

If you have any questions or suggestions, please feel free to write comments in your language on the contact form.

Privacy Policy

Developer's Blog

Buy Me A Coffee