ABOUT THE SPEAKER
Skylar Tibbits - Inventor
Skylar Tibbits, a TED Fellow, is an artist and computational architect working on "smart" components that can assemble themselves.

Why you should listen

Can we create objects that assemble themselves -- that zip together like a strand of DNA or that have the ability for transformation embedded into them? These are the questions that Skylar Tibbits investigates in his Self-Assembly Lab at MIT, a cross-disciplinary research space where designers, scientists and engineers come together to find ways for disordered parts to become ordered structures. 

A trained architect, designer and computer scientist, Tibbits teaches design studios at MIT’s Department of Architecture and co-teaches the seminar “How to Make (Almost) Anything” at MIT’s Media Lab. Before that, he worked at a number of design offices including Zaha Hadid Architects, Asymptote Architecture, SKIII Space Variations and Point b Design. His work has been shown at the Guggenheim Museum and the Beijing Biennale. 

Tibbits has collaborated with a number of influential people over the years, including Neil Gershenfeld and The Center for Bits and Atoms, Erik and Marty Demaine at MIT, Adam Bly at SEED Media Group and Marc Fornes of THEVERYMANY. In 2007, he and Marc Fornes co-curated Scriptedbypurpose, the first exhibition focused exclusively on scripted processes within design. Also in 2007, he founded SJET, a multifaceted practice and research platform for experimental computation and design. SJET crosses disciplines from architecture and design, fabrication, computer science and robotics.

More profile about the speaker
Skylar Tibbits | Speaker | TED.com
TED2011

Skylar Tibbits: Can we make things that make themselves?

Skylar Tibbits: egin al ditzakegu autoeraikitako objektuak?

Filmed:
1,072,366 views

MIT ikertzaileak, Skylar Tibbits-ek, autoeraikuntzan lan egiten du - zerbait eraiki beharrean (aulkia, zeru-harraskaria), autoeraikitako materialak sor ditzakegu, ia DNA-k egiten duen moduan. Oso kontzeptu aurreratua oraindik lehenengo urratsetan. Tibbits-ek erakusten dizkigu hiru proiektu, zeintzuek aztarna batzuk ematen dizkiguten geroa nolakoa izango den jakiteko.
- Inventor
Skylar Tibbits, a TED Fellow, is an artist and computational architect working on "smart" components that can assemble themselves. Full bio

Double-click the English transcript below to play the video.

00:15
Today I'd like to show you
0
0
2000
Gaur gustatuko litzaidake erakustea
00:17
the future of the way we make things.
1
2000
2000
objektuak eraikitako geroko era.
00:19
I believe that soon our buildings and machines
2
4000
2000
Nik uste dut laster gure eraikuntzak eta makineriak
00:21
will be self-assembling,
3
6000
2000
autoeraikituta izango direla.
00:23
replicating and repairing themselves.
4
8000
2000
haiek beraiek erreplikatzen eta konpontzen.
00:25
So I'm going to show you
5
10000
2000
Beraz erakutsiko dizuet
00:27
what I believe is the current state of manufacturing,
6
12000
2000
zein den, nire ustez, manufaktura-prozesuaren gaurko egoera.
00:29
and then compare that to some natural systems.
7
14000
3000
eta gero sistema natural batzuekin konparatuko ditugu.
00:32
So in the current state of manufacturing, we have skyscrapers --
8
17000
3000
Beraz gaurko manufaktura-prozesuan, zeru-harraskariak dauzkagu --
00:35
two and a half years [of assembly time],
9
20000
2000
bi urte eta erdia [eraikitzeko],
00:37
500,000 to a million parts,
10
22000
2000
500.000-tik milioiera zatietako
00:39
fairly complex,
11
24000
2000
nahiko konplexua,
00:41
new, exciting technologies in steel, concrete, glass.
12
26000
3000
teknologia berriak eta sustagarriak altzairuan, hormigoian, beiran.
00:44
We have exciting machines
13
29000
2000
Makineria sustagarriak dauzkagu
00:46
that can take us into space --
14
31000
2000
haiek espaziora eramaten gaituzten --
00:48
five years [of assembly time], 2.5 million parts.
15
33000
3000
bost urte [muntatzeko denbora], 2,5 milioi zati.
00:51
But on the other side, if you look at the natural systems,
16
36000
3000
Baina, beste aldetik, sistema naturalak ikusten badituzue,
00:54
we have proteins
17
39000
2000
Proteinak dauzkagu
00:56
that have two million types,
18
41000
2000
bi milioi motakoak,
00:58
can fold in 10,000 nanoseconds,
19
43000
2000
muntatutako 10.000 nanosegundutan,
01:00
or DNA with three billion base pairs
20
45000
2000
edo DNA 3.000 milioi base-pare
01:02
we can replicate in roughly an hour.
21
47000
3000
haiek erreplika daitezke ordu batean soilik.
01:05
So there's all of this complexity
22
50000
2000
Beraz hor dago konplexotasuna
01:07
in our natural systems,
23
52000
2000
gure sistema naturalena, hain zuzen ere,
01:09
but they're extremely efficient,
24
54000
2000
baina haiek benetan eraginkorrak.
01:11
far more efficient than anything we can build,
25
56000
2000
guk eraikitako baino askoz eraginkorragoak,
01:13
far more complex than anything we can build.
26
58000
2000
guk eraikitako baino askoz konplexuagoak.
01:15
They're far more efficient in terms of energy.
27
60000
2000
Energia esparruan askoz erakingorragoak.
01:17
They hardly ever make mistakes.
28
62000
3000
Ia inoiz akatsak suertatzen dira.
01:20
And they can repair themselves for longevity.
29
65000
2000
Eta euren buruari konpontzen diote luzaroan bizitzeko.
01:22
So there's something super interesting about natural systems.
30
67000
3000
Beraz badago oso gauza interesgarria sistema naturaletan.
01:25
And if we can translate that
31
70000
2000
Eta hori eramaten badugu
01:27
into our built environment,
32
72000
2000
gure eraikuntza esparrura,
01:29
then there's some exciting potential for the way that we build things.
33
74000
2000
orduan badago izugarrizko potentzialitasuna eraikitzeko eran.
01:31
And I think the key to that is self-assembly.
34
76000
3000
Eta nik uste dut autoeraikuntza dela gakoa.
01:34
So if we want to utilize self-assembly in our physical environment,
35
79000
3000
Gure ingurugiroan autoeraikuntza erabili nahi badugu,
01:37
I think there's four key factors.
36
82000
2000
Nik uste dut lau faktore gakok daudela.
01:39
The first is that we need to decode
37
84000
2000
Lehenengoa da guk argitu behar dugula
01:41
all of the complexity of what we want to build --
38
86000
2000
eraiki nahi dugun konplexutasuna --
01:43
so our buildings and machines.
39
88000
2000
hots, gure eraikuntzak eta makineriak.
01:45
And we need to decode that into simple sequences --
40
90000
2000
Eta sekuentzia sinple batzuekin argitu behar ditugu --
01:47
basically the DNA of how our buildings work.
41
92000
2000
gure eraikuntzen funtzionamenduren DNA.
01:49
Then we need programmable parts
42
94000
2000
Gero zati programagarriak behar ditugu
01:51
that can take that sequence
43
96000
2000
horiek sekuentziak har ditzakete
01:53
and use that to fold up, or reconfigure.
44
98000
3000
eta muntatzeko edo konfiguratzeko erabiltzea.
01:56
We need some energy that's going to allow that to activate,
45
101000
3000
Energia pixka bat behar dugu prozesua martxan jartzeko,
01:59
allow our parts to be able to fold up from the program.
46
104000
3000
eta horrek baimentzen ditu zatiak muntatzeko programatik hasita.
02:02
And we need some type of error correction redundancy
47
107000
2000
Eta akats-zuzentzaile erredundanteren bat behar dugu
02:04
to guarantee that we have successfully built what we want.
48
109000
3000
ziurtatzeko ea guk nahi dugun eraikuntza ondo egiten dugun.
02:07
So I'm going to show you a number of projects
49
112000
2000
Beraz proiektu batzuk erakutsiko dizkizuet
02:09
that my colleagues and I at MIT are working on
50
114000
2000
nire kideak eta biok MIT-en martxan jarri ditugunak
02:11
to achieve this self-assembling future.
51
116000
2000
autoeraikuntzaren geroa lortzeko.
02:13
The first two are the MacroBot and DeciBot.
52
118000
3000
Lehenengo biak MacroBot eta DeciBot dira.
02:16
So these projects are large-scale reconfigurable robots --
53
121000
4000
Proeiktu horiek handiko robot berritxuragarriak dira --
02:20
8 ft., 12 ft. long proteins.
54
125000
3000
2,5 mt, 3,7 mt, proteina handiak.
02:23
They're embedded with mechanical electrical devices, sensors.
55
128000
3000
gailu mekanikoz, elektrikoz eta sentsorez beteta daude.
02:26
You decode what you want to fold up into,
56
131000
2000
Batak, muntatu nahi duenak dekodifikatzen du,
02:28
into a sequence of angles --
57
133000
2000
perspektiba batzuen sekuentzian --
02:30
so negative 120, negative 120, 0, 0,
58
135000
2000
hemen ezeko 120, ezezko 120, 0, 0,
02:32
120, negative 120 -- something like that;
59
137000
3000
120, ezezko 120 -- horrelako zerbait;
02:35
so a sequence of angles, or turns,
60
140000
2000
badaude perspektiben sekuentzia bat, edo ikuspegiak,
02:37
and you send that sequence through the string.
61
142000
3000
eta arduradunak bidaltzen du sekuentzia hori kablearen zehar.
02:40
Each unit takes its message -- so negative 120 --
62
145000
3000
Unitate bakoitzak bere mezua hartzen du -- hemen ezezko 120 --
02:43
it rotates to that, checks if it got there
63
148000
2000
berak biratzen du lerrokatzeko, eta helburura heltzen zen ala ez frogatzen du
02:45
and then passes it to its neighbor.
64
150000
3000
eta orduan bere auzokideari informazioa pasatzen du.
02:48
So these are the brilliant scientists,
65
153000
2000
Hemen daude zientzilari distiratsuak,
02:50
engineers, designers that worked on this project.
66
155000
2000
proiektu honetan lan egiten zuten ingeniariek, diseniatzaileek.
02:52
And I think it really brings to light:
67
157000
2000
Eta nik uste dut hark argitzen duena dela:
02:54
Is this really scalable?
68
159000
2000
Hau egin al daiteke eskala handiko batean?
02:56
I mean, thousands of dollars, lots of man hours
69
161000
2000
Esan nahi dut, milaka dolar, ehundaka lanordu
02:58
made to make this eight-foot robot.
70
163000
3000
2,5 metroko robot bat egiteko.
03:01
Can we really scale this up? Can we really embed robotics into every part?
71
166000
3000
Egin al daiteke? Zati guztietan robotika sar dezakegu?
03:04
The next one questions that
72
169000
2000
Hurrengo adibideak saiatzen du erantzuten
03:06
and looks at passive nature,
73
171000
2000
eta aztertu ezazu bere natura pasiboa,
03:08
or passively trying to have reconfiguration programmability.
74
173000
3000
edo pasiboki saiatzen du programazio berritxugarria eskuratzen.
03:11
But it goes a step further,
75
176000
2000
Baina urrutiko urratsa doa,
03:13
and it tries to have actual computation.
76
178000
2000
eta denbora errealean saiztzen du kalkulatzen.
03:15
It basically embeds the most fundamental building block of computing,
77
180000
2000
Berak, funtsean, konputazio funtsezko blokeak sartzen ditu,
03:17
the digital logic gate,
78
182000
2000
ate logiko digitalak,
03:19
directly into your parts.
79
184000
2000
zatietan modu zuzenean.
03:21
So this is a NAND gate.
80
186000
2000
Hau da NAND atea.
03:23
You have one tetrahedron which is the gate
81
188000
2000
Tetaedroa daukagu, zein atea den
03:25
that's going to do your computing,
82
190000
2000
eta prozesamendua egingo du,
03:27
and you have two input tetrahedrons.
83
192000
2000
eta bi sartzeko tetaedro dauzkagu.
03:29
One of them is the input from the user, as you're building your bricks.
84
194000
3000
Batak, erabiltzailearen sarrera du,blokeak muntatu ahala.
03:32
The other one is from the previous brick that was placed.
85
197000
3000
Bestea, aurretik jarritako bloketik dator.
03:35
And then it gives you an output in 3D space.
86
200000
3000
Eta hiru-dimentsioko espazioan ondorioa ematen digu.
03:38
So what this means
87
203000
2000
Eta horrek jakin nahi du
03:40
is that the user can start plugging in what they want the bricks to do.
88
205000
3000
erabiltzaileak berak konekta dezakeela blokeek egin nahi duten lana.
03:43
It computes on what it was doing before
89
208000
2000
Berak prozesatzen du arestian egin zuena
03:45
and what you said you wanted it to do.
90
210000
2000
eta guk nahi genuen egitea.
03:47
And now it starts moving in three-dimensional space --
91
212000
2000
Eta orduan hiru-dimentsioko espazioan mugitzen da --
03:49
so up or down.
92
214000
2000
gora eta behera.
03:51
So on the left-hand side, [1,1] input equals 0 output, which goes down.
93
216000
3000
Ezkerraldean, [1,1] sarrera daukagu eta irteera da 0, orduan beherantz doa.
03:54
On the right-hand side,
94
219000
2000
Eskuinean,
03:56
[0,0] input is a 1 output, which goes up.
95
221000
3000
[0,0] sarrera 1 irteera da, orduan gora doa.
03:59
And so what that really means
96
224000
2000
Horrek esan nahi du
04:01
is that our structures now contain the blueprints
97
226000
2000
gure egiturek planoak dauzkatela
04:03
of what we want to build.
98
228000
2000
guk eraikin nahi ditugun eraikuntzetik.
04:05
So they have all of the information embedded in them of what was constructed.
99
230000
3000
Haiek aurretik eraikin zenaren informazio integratua dute.
04:08
So that means that we can have some form of self-replication.
100
233000
3000
Horrek esan nahi du autoerreplikazio mota bat daukagula eskura.
04:11
In this case I call it self-guided replication,
101
236000
3000
Kasu honetan, auto-gidari erreplikazioari deritzogu
04:14
because your structure contains the exact blueprints.
102
239000
2000
egiturak instrukzio berberak egiten dituelako.
04:16
If you have errors, you can replace a part.
103
241000
2000
Akatsak badaude, zati bat alda daiteke.
04:18
All the local information is embedded to tell you how to fix it.
104
243000
3000
Bertako informazioa integratuta dago konponbideak nola egin daitezken erakusteko.
04:21
So you could have something that climbs along and reads it
105
246000
2000
Orduan badaukagu gailu bat, zeinek leku hartara igotzen eta han irakurtzen duen
04:23
and can output at one to one.
106
248000
2000
eta irtenbide bat eskainiko digun banan banan.
04:25
It's directly embedded; there's no external instructions.
107
250000
2000
Dena integratuta; ez dago kanpoko instrukziorik.
04:27
So the last project I'll show is called Biased Chains,
108
252000
3000
Orduan nik erakutsiko dizuedan azken proiektua, Kate Bihurriak,
04:30
and it's probably the most exciting example that we have right now
109
255000
3000
eta nik uste dut garai honetako adibide hunkigarriena dela
04:33
of passive self-assembly systems.
110
258000
2000
autoerainkuntzako sistema pasibokoak.
04:35
So it takes the reconfigurability
111
260000
2000
Berak berkonfigurazioa eta programazioa
04:37
and programmability
112
262000
2000
kontuan hartuta
04:39
and makes it a completely passive system.
113
264000
3000
sistema guztiz pasibo bat bihurtzen du.
04:43
So basically you have a chain of elements.
114
268000
2000
Beraz, osagai-katea daukazu.
04:45
Each element is completely identical,
115
270000
2000
Osagai bakoitza berdin-berdina da,
04:47
and they're biased.
116
272000
2000
eta bihurriak dira.
04:49
So each chain, or each element, wants to turn right or left.
117
274000
3000
Osagai bakoitzak ezkerretara edo eskuinera jiratu nahi du.
04:52
So as you assemble the chain, you're basically programming it.
118
277000
3000
Beraz, katea lotzean, programazio bat egiten ari zara.
04:55
You're telling each unit if it should turn right or left.
119
280000
3000
Osagai bakoitzari esaten diogu ezkerrera edo eskuinera jiratu nahi izateko.
04:58
So when you shake the chain,
120
283000
3000
Eta katea astintzen dugunean,
05:01
it then folds up
121
286000
2000
tolestu egiten da
05:03
into any configuration that you've programmed in --
122
288000
3000
aurretiko antolatzeko konfigurazioan --
05:06
so in this case, a spiral,
123
291000
2000
kasu honetan, kiribila,
05:08
or in this case,
124
293000
3000
edo beste kasu horretan,
05:11
two cubes next to each other.
125
296000
3000
bi kubo, bata bestearen ondoan.
05:14
So you can basically program
126
299000
2000
Orduan programa daiteke
05:16
any three-dimensional shape --
127
301000
2000
edozein hiru-dimentsioko gailu --
05:18
or one-dimensional, two-dimensional -- up into this chain completely passively.
128
303000
3000
edo dimentsio-bakarrekoa, bi-dimentsikoa -- kate honetan modu pasibo batean.
05:21
So what does this tell us about the future?
129
306000
2000
Beraz, zer esaten digu horrek geroari buruz?
05:23
I think that it's telling us
130
308000
2000
Uste dut adibide horiek erakusten dizkigutela
05:25
that there's new possibilities for self-assembly, replication, repair
131
310000
3000
autoeraikuntzarako, erreplikaziorako, konponketarako posibilitate berriak daudela
05:28
in our physical structures, our buildings, machines.
132
313000
3000
gure egitura fisikoetan, eraikutzetan, makinerietan.
05:31
There's new programmability in these parts.
133
316000
2000
Osagai horietan programazio-ahalmen berriak daude.
05:33
And from that you have new possibilities for computing.
134
318000
2000
Eta hortik, konputazio-ahalmen berriak.
05:35
We'll have spatial computing.
135
320000
2000
Espazioko konputazio izango dugu.
05:37
Imagine if our buildings, our bridges, machines,
136
322000
2000
Demagun gure eraikuntzek, gure zubiek, makineriek,
05:39
all of our bricks could actually compute.
137
324000
2000
gure adreiluek kalkuluak egin ditzatekeela.
05:41
That's amazing parallel and distributed computing power,
138
326000
2000
Harrigarria da konputazio-ahalmen paralelo eta banatu hori,
05:43
new design possibilities.
139
328000
2000
diseinatzeko aukera berriak.
05:45
So it's exciting potential for this.
140
330000
2000
Ahalmen hunkigarria da, benetan.
05:47
So I think these projects I've showed here
141
332000
2000
Orduan, nik uste dut erakusteko proiektuak
05:49
are just a tiny step towards this future,
142
334000
2000
oso urrats txikiak direla gerorako bidean,
05:51
if we implement these new technologies
143
336000
2000
teknologia berri horiek inplementatzen baditugu
05:53
for a new self-assembling world.
144
338000
2000
autoeraikuntzako mundu berri baterako.
05:55
Thank you.
145
340000
2000
Mila esker.
05:57
(Applause)
146
342000
2000
(Txaloak)
Translated by Alvaro Moya
Reviewed by TED Open Translation

▲Back to top

ABOUT THE SPEAKER
Skylar Tibbits - Inventor
Skylar Tibbits, a TED Fellow, is an artist and computational architect working on "smart" components that can assemble themselves.

Why you should listen

Can we create objects that assemble themselves -- that zip together like a strand of DNA or that have the ability for transformation embedded into them? These are the questions that Skylar Tibbits investigates in his Self-Assembly Lab at MIT, a cross-disciplinary research space where designers, scientists and engineers come together to find ways for disordered parts to become ordered structures. 

A trained architect, designer and computer scientist, Tibbits teaches design studios at MIT’s Department of Architecture and co-teaches the seminar “How to Make (Almost) Anything” at MIT’s Media Lab. Before that, he worked at a number of design offices including Zaha Hadid Architects, Asymptote Architecture, SKIII Space Variations and Point b Design. His work has been shown at the Guggenheim Museum and the Beijing Biennale. 

Tibbits has collaborated with a number of influential people over the years, including Neil Gershenfeld and The Center for Bits and Atoms, Erik and Marty Demaine at MIT, Adam Bly at SEED Media Group and Marc Fornes of THEVERYMANY. In 2007, he and Marc Fornes co-curated Scriptedbypurpose, the first exhibition focused exclusively on scripted processes within design. Also in 2007, he founded SJET, a multifaceted practice and research platform for experimental computation and design. SJET crosses disciplines from architecture and design, fabrication, computer science and robotics.

More profile about the speaker
Skylar Tibbits | Speaker | TED.com

Data provided by TED.

This site was created in May 2015 and the last update was on January 12, 2020. It will no longer be updated.

We are currently creating a new site called "eng.lish.video" and would be grateful if you could access it.

If you have any questions or suggestions, please feel free to write comments in your language on the contact form.

Privacy Policy

Developer's Blog

Buy Me A Coffee