English-Video.net comment policy

The comment field is common to all languages

Let's write in your language and use "Google Translate" together

Please refer to informative community guidelines on TED.com

TEDGlobal 2011

Markus Fischer: A robot that flies like a bird

鳥のように飛行するロボット

Filmed
Views 6,290,129

飛ぶロボットは数多くあります。しかし本物の鳥のように飛行するロボットはありませんでした。マルクス・フィッシャーと彼のチームが セグロカモメをモデルにして作り上げたこの軽量大型ロボット--SmartBird(賢い鳥)は、翼を羽ばたかせて飛行します。TEDGlobal 2011より飛行デモをお送りします。

- Designer
Markus Fischer led the team at Festo that developed the first ultralight artificial bird capable of flying like a real bird. Full bio

It is a dream of mankind
「鳥のように飛びたい」というのは
00:15
to fly like a bird.
人類の夢でした
00:18
Birds are very agile.
鳥はとても身軽です
00:20
They fly, not with rotating components,
回転部品は使わずに翼を
00:22
so they fly only by flapping their wings.
羽ばたく力だけで飛行します
00:25
So we looked at the birds,
私達は羽ばたく鳥を見て
00:28
and we tried to make a model
超軽量かつ力強さを備えた
00:31
that is powerful, ultralight,
翼の羽ばたきだけで飛行可能な
00:34
and it must have excellent aerodynamic qualities
モデルの設計に取り組んできました
00:37
that would fly by its own
これには空気力学を
00:41
and only by flapping its wings.
応用する必要がありました
00:43
So what would be better [than] to use
何を参考にすればいいでしょう?
00:46
the Herring Gull, in its freedom,
海の上を自由に旋回し
00:49
circling and swooping over the sea,
急降下するセグロカモメ―
00:51
and [to] use this as a role model?
これを手本にすることにしました
00:53
So we bring a team together.
私達はチームで作業をしています
00:56
There are generalists and also specialists
ジェネラリスト(万能家)や
00:58
in the field of aerodynamics
空力学やグライダー作成の
01:01
in the field of building gliders.
専門家を集めました
01:04
And the task was to build
課題はインドア用超軽量―
01:06
an ultralight indoor-flying model
飛行モデルの作成でした
01:08
that is able to fly over your heads.
後ほど頭上を飛ばすので
01:11
So be careful later on.
皆さん ご注意下さい
01:14
And this was one issue:
課題の一つは
01:19
to build it that lightweight
落下しても
01:21
that no one would be hurt
けがをしない程の
01:23
if it fell down.
超軽量化の実現でした
01:25
So why do we do all this?
なんでこんなことするのかって?
01:28
We are a company in the field of automation,
私達の専門は自動制御なので
01:30
and we'd like to do very lightweight structures
エネルギー効率の高い超軽量構造を
01:33
because that's energy efficient,
目指しています
01:36
and we'd like to learn more about
そして空力学や大気現象について
01:38
pneumatics and air flow phenomena.
もっと学びたいと考えているからです
01:41
So I now would like you
それでは皆さん
01:44
to [put] your seat belts on
シートベルトと帽子の
01:47
and put your hats [on].
着用をお願いします
01:49
So maybe we'll try it once --
それではSmartBirdの
01:51
to fly a SmartBird.
飛行をご覧下さい
01:54
Thank you.
ありがとう
01:56
(Applause)
(拍手)
01:58
(Applause)
(拍手)
02:14
(Applause)
(拍手)
02:52
So we can now
それではSmartBirdの
03:07
look at the SmartBird.
詳細を見ていきましょう
03:09
So here is one without a skin.
内側が見えるものを用意しました
03:12
We have a wingspan of about two meters.
この翼幅は約2m
03:15
The length is one meter and six,
体長は1m6cm
03:18
and the weight,
重量はたったの
03:21
it is only 450 grams.
450gです
03:23
And it is all out of carbon fiber.
全てカーボンファイバーでできています
03:26
In the middle we have a motor,
中心部にモーターと
03:29
and we also have a gear in it,
ギアが備え付けられています
03:31
and we use the gear
このギアがモーターの
03:35
to transfer the circulation of the motor.
回転を伝達します
03:37
So within the motor, we have three Hall sensors,
モーター内部の3つのホールセンサが
03:40
so we know exactly where
正確な翼の位置特定を
03:43
the wing is.
可能にしています
03:46
And if we now beat up and down ...
この部分を上下させれば
03:49
we have the possibility
本物の鳥のような
03:56
to fly like a bird.
翼の動きを再現できます
03:58
So if you go down, you have the large area of propulsion,
翼を下げる際は広い翼面を利用して
04:00
and if you go up,
推力を生みます
04:03
the wings are not that large,
逆に翼を上げる際は
04:06
and it is easier to get up.
折りたたんで抵抗を軽減します
04:10
So, the next thing we did,
次のステップというか
04:14
or the challenges we did,
課題は この上下運動の
04:17
was to coordinate this movement.
調和をとることでした
04:19
We have to turn it, go up and go down.
翼を上に下にと折り曲げるために
04:22
We have a split wing.
これを2分割して
04:25
With a split wing
根本の方で揚力を
04:27
we get the lift at the upper wing,
先の方で推力を
04:29
and we get the propulsion at the lower wing.
生み出しています
04:32
Also, we see
次にご覧頂くのは
04:35
how we measure the aerodynamic efficiency.
空力効率の計測方法です
04:37
We had knowledge about
電気機械的効率については
04:40
the electromechanical efficiency
知識がありましたので
04:42
and then we can calculate
空力効率の
04:44
the aerodynamic efficiency.
算出をすることが出来ました
04:46
So therefore,
つまり
04:48
it rises up from passive torsion to active torsion,
受動的なねじれを能動的にすると
04:50
from 30 percent
効率を30%から80%まで
04:53
up to 80 percent.
引き上げることが出来るんです
04:55
Next thing we have to do,
次の課題は
04:57
we have to control and regulate
構造を全体的に
04:59
the whole structure.
管理・調整することでした
05:01
Only if you control and regulate it,
管理・調整がとれて初めて
05:03
you will get that aerodynamic efficiency.
最大空力効率が得られます
05:06
So the overall consumption of energy
全体のエネルギー消費量は
05:09
is about 25 watts at takeoff
飛び立つ際の25Wと
05:12
and 16 to 18 watts in flight.
飛行中の16-18Wです
05:15
Thank you.
ありがとうございました
05:18
(Applause)
(拍手)
05:20
Bruno Giussani: Markus, I think that we should fly it once more.
ブルーノ: マルクス もう一回飛ばしてみてはどうかな
05:26
Markus Fischer: Yeah, sure.
マルクス: もちろん いいですよ
05:29
(Laughter)
(笑)
05:31
(Gasps)
(驚き)
05:53
(Cheers)
(歓声)
06:02
(Applause)
(拍手)
06:04
Translated by Takahiro Shimpo
Reviewed by HIROKO ITO

▲Back to top

About the speaker:

Markus Fischer - Designer
Markus Fischer led the team at Festo that developed the first ultralight artificial bird capable of flying like a real bird.

Why you should listen

One of the oldest dreams of mankind is to fly like a bird. Many, from Leonardo da Vinci to contemporary research teams, tried to crack the "code" for the flight of birds, unsuccessfully. Until in 2011 the engineers of the Bionic Learning Network established by Festo, a German technology company, developed a flight model of an artificial bird that's capable of taking off and rising in the air by means of its flapping wings alone. It's called SmartBird. Markus Fischer is Festo's head of corporate design, where he's responsible for a wide array of initiatives. He established the Bionic Learning Network in 2006.

SmartBird is inspired by the herring gull. The wings not only beat up and down but twist like those of a real bird -- and seeing it fly leaves no doubt: it's a perfect technical imitation of the natural model, just bigger. (Even birds think so.) Its wingspan is almost two meters, while its carbon-fiber structure weighs only 450 grams.

Fischer says: "We learned from the birds how to move the wings, but also the need to be very energy efficient."

More profile about the speaker
Markus Fischer | Speaker | TED.com